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Abstract

We prove the existence and uniqueness of weak solutions to the
variational formulation of the Maxwell-Boussinesq approximation prob-
lem. Some further regularity in W 1,2+δ, δ > 0, is obtained for the weak
solutions. The shape sensitivity analysis by the boundary variations
technique is performed for the weak solutions. As a result, the exis-
tence of the strong material derivatives for the weak solutions of the
problem is shown. The result can be used to establish the shape dif-
ferentiability for a broad class of shape functionals for the models of
Fourier-Navier-Stokes flows under the electromagnetic field.
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1 Introduction

The problem of magnetohydrodynamics flows have been studied by several
authors and it goes back to the work of Ladyzhenskay and Solonnikov. After
that a lot of scientists investigated the problem see [4, 8, 14, 15, 17, 18, 19, 24].
The full complete problem including the heat conductivity seems to be more
realistic and not many authors were dealt with it. Concerning the shape
sensitivity analysis we can mention work of Zolesio and his collaborators see
[2, 3, 6, 9, 10, 11], who were investigated case of Navier-Stokes problem and
also with heat conductivity. The full Navier-Fourier-Maxwell problem was
only partially study in the work of Alekseev [1].

Let Ω be an open bounded subset of R
3 with the boundary ∂Ω ∈ C1,1

which is splitted into two parts ∂Ω = Γ̄D∪Γ̄N , where ΓD is an open nonempty
subset of ∂Ω and ΓN = ∂Ω \ Γ̄D. The thermoelectromagnetoflow problem
reads in Ω:

−∇ · (ν(T )Du) + (u · ∇)u + ∇p = µ(T )rotH ×H + f −GT ; (1)

∇× (σ−1(T )∇×H) = ∇× (σ−1(T )J0 + µ(T )u×H); (2)

divu =
3∑

i=1

∂ui

∂xi

= divH = 0; (3)

−∇ · (k(T )∇T ) + u · ∇T = f. (4)

Here u is the fluid velocity vector, T is the temperature, Du = (Dij) =
(∂iuj+∂jui)/2 (i, j = 1, 2, 3) is the symmetrized gradient of the velocity, µ the
viscosity, p denotes the pressure, f and f denote the external forces and heat
sources, respectively. The buoyancy force as in the Boussinesq approximation
is described by G = β(T )(0, 0, g)⊤, where β denotes the coefficient of thermal
dilatation and g is the constant of gravity. The density is assumed to be
constant, we set ρ = 1. The existence of two body forces in the fluid, the
Lorentz force J×B = (∇×H)× (µH) and the buoyancy force, results from
the presence of the magnetic field H. Moreover (2) results if we take the
rotational in the second equation of the steady-state Maxwell equations:

∇× E = 0; J = ∇× H,

where E is the electric intensity field and J is the current density given by
the Ohm’s law

J = J0 + σ(E + u× B),

2



where σ is the electric conductivity.
Finally, the thermoelectromagnetoflow problem under study has the fol-

lowing boundary conditions

u = g, H · n = 0 on ∂Ω; (5)

T = 0 on ΓD, k(T )
∂T

∂n
+ αT = h on ΓN . (6)

2 Assumptions and main existence results

We need some assumptions on the model, which are listed below.
Let us assume that

(H1) ν, µ, σ, k : Ω × R → R are Caratheodory functions such that

∃ν#, ν# > 0 : ν# ≤ ν(·, ξ) ≤ ν#, a.e. in Ω, ∀ξ ∈ R; (7)

∃µ#, µ# > 0 : µ# ≤ µ(·, ξ) ≤ µ#, a.e. in Ω, ∀ξ ∈ R; (8)

∃σ#, σ# > 0 : σ# ≤ σ(·, ξ) ≤ σ#, a.e. in Ω, ∀ξ ∈ R; (9)

∃k#, k# > 0 : k# ≤ k(·, ξ) ≤ k#, a.e. in Ω, ∀ξ ∈ R; (10)

(H2) G = (0, 0, G) where G is a real, continuous, and bounded function and
we denote by G# the upper bound for the function G;

(H3) α ∈ Lq
+(ΓN) = {α ∈ Lq(ΓN) : α ≥ 0} for q such that q > 3/2, which

means that its conjugate q′ = q/(q − 1) verifies q′ < 3;

(H4) and

f ∈ L2(Ω), J0 ∈ L2(Ω), f ∈ L2(Ω) and h ∈ L2(ΓN ). (11)

(H5) In the variable domain setting the function βT is given by the restriction
to Ωτ of a given H1-function defined in R

3.

(H6) In the variable domain setting, the elements

f τ ∈ L2(Ωτ ), Jτ
0 ∈ L2(Ωτ ), f τ ∈ L2(Ωτ ) and hτ ∈ L2(Γτ

N ),

stand for the data in boundary value problems in Ωτ , are simply given
by restrictions to Ωτ of some functions

f ∈ H1(R3), J0 ∈ H1(R3), f ∈ H1(R3) and h ∈ H1(R3). (12)
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defined in all space. In this way the shape derivatives of all the data
vanish, except for h, and the material derivatives are just given by
the scalar products of the gradients of the data with respect to spatial
variables with the velocity vector field, e.g., ḟ = ∇f · V , provided that
all data are given in the Sobolev spaces H1(R3).

To simplify the presentation it is assumed that g = 0 (cf. Remark 3.5).
In the framework of function spaces of the Lebesgue and Sobolev type, the

norms are denoted by the symbols ‖ · ‖, ‖ · ‖1, ‖ · ‖ΓN
in spaces L2(Ω), H1(Ω),

L2(ΓN), respectively, and there scalar and vector function spaces are not
distinguished in our notations. Providing that the meaning remains clear,
the canonical norm in Lp(Ω) for p 6= 1, 2 is denoted by ‖ · ‖p. We introduce
the Hilbert spaces

V = {v ∈ H1
0(Ω) : div v = 0 in Ω} ,

V(rot) = {v ∈ L2(Ω) : rot v ∈ L2(Ω), div v = 0 in Ω, v · n = 0 on ∂Ω} ,

Z = {ξ ∈ H1(Ω) : ξ = 0 on ΓD} ,

equipped with their standard scalar products. We recall that the norms
‖ · ‖V(rot) and ‖ · ‖Z are equivalent to the usual seminorms ‖∇×·‖ and ‖∇ · ‖
and also to the norms ‖ · ‖1 on spaces H1(Ω) and H1(Ω), respectively (cf.
[8]).

We state the main results of the paper.

Theorem 2.1. Under the above assumptions (7)-(11), and, in addition, un-
der the following assumptions

b > 0 and µ#a2 < b3 , (13)

a =
ν#

µ#σ#

‖J0‖ ,

b =
ν#

µ#σ#
−

(
‖f‖ +

G#

k#
(‖f‖ + ‖h‖ΓN

)

)
,

the problem (1)-(6) has a weak solution in the following sense:
The triplet (u,H, T ) ∈ V × V(rot) × Z satisfies the following integral
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identities
∫

Ω

ν(T )Du : Dvdx +

∫

Ω

(v ⊗ u) : ∇udx =

=

∫

Ω

(
µ(T )(∇×H) ×H + f −G(T )T

)
· vdx, ∀v ∈ V; (14)

∫

Ω

1

σ(T )
(∇×H) · (∇× v)dx =

∫

Ω

µ(T )(u× H) · (∇× v)dx +

+

∫

Ω

1

σ(T )
J0 · (∇× v)dx, ∀v ∈ V(rot); (15)

∫

Ω

k(T )∇T · ∇ηdx +

∫

Ω

u · ∇Tηdx +

∫

ΓN

αTηds =

=

∫

Ω

fηdx +

∫

ΓN

hηds, ∀η ∈ Z. (16)

Moreover, the pair (H, T ) enjoys the additional regularity, actually belongs
to W1,2+ǫ(Ω) × W 1,2+ε(Ω) for some ǫ, ε > 0.

Remark 2.2. If ǫ > 2/5 we can deduce the additional regularity on u as
in [5]. Otherwise, since the operators in the above elliptic equations of the
second order have discontinuous coefficients, we can obtain Hölder continuity
on Ω̄ of the weak solution T due to the De Giorgi-Nash Theorem if f, h ∈
Lq(Ω) for q > 3. If σ is taken as a continuous function, then the main
operator in (15) has continuous coefficient and the regularity theory can be
applied to the weak solution H. Or simply if we suppose that the electric
conductivity σ is constant, it will be sufficient to our purposes in the study
of the shape sensivity. However, in the sequel the data assumptions are kept
as general as possible.

Theorem 2.3. Let ǫ0 < ǫ < 1 and 2 < q < 3 be such that

3q

3 − q
=

(2 + ǫ0)(2 + ǫ)

ǫ − ǫ0
. (17)

If J0 ∈ Lq(Ω), then H ∈ L3q/(3−q)(Ω). Under the assumption f ∈ L2+δ1(Ω),
where δ1 > 0, the weak solution u given by Theorem 2.1 enjoys the additional
regularity, actually belongs to W1,2+δ(Ω) for some δ > 0. Furthermore, un-
der the following Lipschitz-type continuity assumption on the temperature

5



dependent function parameters of the model

∃ν̄ > 0 : |ν(T 2) − ν(T 1)| ≤ ν̄|T 2 − T 1|3δ/(2+δ), (18)

∃µ̄ > 0 : |µ(T 2) − µ(T 1)| ≤ µ̄|T 2 − T 1|, (19)

∃Ḡ > 0 : |G(T 2) − G(T 1)| ≤ Ḡ|T 2 − T 1|, (20)

∃σ̄ > 0 : |σ(T 2) − σ(T 1)| ≤ σ̄|T 2 − T 1|3ǫ/(2+ǫ), (21)

∃k̄ > 0 : |k(T 2) − k(T 1)| ≤ k̄|T 2 − T 1|3ε/(2+ε), ∀T 2, T 1 ∈ R, (22)

the weak solution (u,H, T ) is unique for small data.

The existence of the pressure p in the space of distributions follows from
the well-known results by using the divergence-free test functions v ∈ C∞

0 (Ω)
in (14). Moreover, the pressure is unique up to a constant.

3 Proof of Theorem 2.1

First, we recall the Tychonoff extension to weak topologies of the Schauder
fixed point theorem [7, pp. 453-456 and 470].

Theorem 3.1. Let K be a nonempty weakly sequentially compact convex
subset of a locally convex linear topological vector space V . Let L : K → K
be a weakly sequentially continuous operator. Then L has at least one fixed
point.

Let L be the mapping of the form

L : (w,h, ξ) ∈ V × V(rot) × Z 7→ (H, T ) 7→ (u,H, T ) ,

where the functions u, H and T are the solutions for the following ellip-
tic boundary value problems. The proofs of such existence results are the
straightforward application of the classical existence theory, hence are omit-
ted here.

Proposition 3.2. Assume that conditions (10)-(11) are fulfilled. Then there
exists a unique T ∈ Z such that

∫

Ω

k(ξ)∇T · ∇ηdx +

∫

Ω

w · ∇Tηdx +

∫

ΓN

αTηds =

=

∫

Ω

fηdx +

∫

ΓN

hηds, ∀η ∈ Z. (23)
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Moreover, the energy estimate holds

k#‖T‖1 ≤ ‖f‖ + ‖h‖ΓN
. (24)

Proposition 3.3. Assume that conditions (8)-(9) and (11) are fulfilled.
Then there exists a unique H ∈ V(rot) such that

∫

Ω

1

σ(ξ)
(∇× H) · (∇× v)dx = −

∫

Ω

µ(ξ)(h×w) · (∇× v)dx +

+

∫

Ω

1

σ(ξ)
J0 · (∇× v)dx, ∀v ∈ V(rot). (25)

Moreover, the energy estimate holds

1

σ#
‖H‖1 ≤ µ#‖h× w‖ +

1

σ#

‖J0‖. (26)

Proposition 3.4. Assume that conditions (7) and (11) are fulfilled. Then
there exists a unique u ∈ V such that

∫

Ω

ν(ξ)Du : Dvdx +

∫

Ω

(v ⊗w) : ∇udx =

=

∫

Ω

(
µ(ξ)(∇×H) × H + f − G(T )T

)
· vdx, ∀v ∈ V. (27)

Moreover, the energy estimate holds

ν#‖u‖1 ≤ µ#‖∇ ×H‖‖H‖L3 + ‖f‖ + G#‖T‖L6/5. (28)

Remark 3.5. For given g ∈ H−1/2(∂Ω), there exists a lifting ug ∈ H1(Ω)
such that ug = g on ∂Ω and ug verifies

−∇ · (ν(ξ)Dug) + (w · ∇)ug = −∇pg; ∇ · ug = 0 in Ω.

If the element U = u− ug ∈ V is determined by a solution to the problem

−∇ · (ν(ξ)DU) + (w · ∇)U = −∇pU + µ(ξ)(∇×H) ×H + f −Gξ in Ω,

then u = U + ug is the solution to the problem

−∇ · (ν(ξ)Du) + (w · ∇)u = −∇p + µ(ξ)(∇× H) ×H + f −Gξ in Ω,

∇ · u = 0 in Ω, u = g on ∂Ω.

Therefore, without any loss of generality, it is assumed that g = 0.
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In view of Propositions 3.2, 3.3 and 3.4, the operator L is well defined.
Moreover, L maps the ball

K = {(w,h, ξ) ∈ V × V(rot) × Z : ‖w‖1 ≤ R1, ‖h‖1 ≤ R2,

‖ξ‖1 ≤
1

k#
(‖f‖ + ‖h‖ΓN

)}

into itself, since by (24), (26) and (28) it follows that

‖H‖1 ≤ σ#

(
µ#R1R2 +

1

σ#
‖J0‖

)
≤ R2 , (29)

‖u‖1 ≤
1

ν#

(
µ#R2

2 + ‖f‖ +
G#

k#
(‖f‖ + ‖h‖ΓN

)

)
= R1 , (30)

where R2 > 0 is such that

µ#σ#

ν#
R2

(
µ#R2

2 + ‖f‖ +
G#

k#
(‖f‖ + ‖h‖ΓN

)

)
+

σ#

σ#
‖J0‖ ≤ R2

or equivalently

a ≤ R2(b − µ#R2
2)

if b > 0 and (a
b
)2 < b

µ# which is assured by (13).
In order to apply Theorem 3.1 it remains to prove the weak continuity of

L. Since we have the compact embeddings

V,V(rot) →֒→֒ {w ∈ L4(Ω) : ∇ · w = 0 in Ω, w · n = 0 on ∂Ω}

Z →֒→֒ L1(Ω),

let {(wm,hm, ξm)} be a sequence such that wm → w and hm → h in L4(Ω)
and ξm → ξ in L1(Ω). Let (um,Hm, Tm) be the corresponding weak solutions
given by Propositions 3.2, 3.3 and 3.4, for each m ∈ N.

From the estimates (28), (26) and (24), the sequence {(um,Hm, Tm)} is
bounded in V × V(rot) × Z. Then there exists the weak limit (u,H, T ) ∈
V × V(rot) × Z such that

um ⇀ u in V; Hm ⇀ H in V(rot); Tm ⇀ T in Z,

possibly for a subsequence, still denoted by (um,Hm, Tm). Passing to the
limit as m → +∞ in the integral identities (27), (25) and (23), in which
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replacing w,h, ξ,u,H and T by the sequences wm,hm, ξm,um,Hm and Tm,
respectively, using the continuity properties of the Niemytskii operators in
the coefficients combined with the standard arguments, we conclude that
the limit (u,H, T ) is a solution corresponding to (w,h, ξ) of the required
problem (27), (25) and (23).

Then Theorem 3.1 guarantees the existence of at least one fixed point
which is the required weak solution.

The regularity (H, T ) ∈ W1,2+ǫ(Ω) × W 1,2+ε(Ω) for some ǫ, ε > 0 is a
consequence of the following regularity results.

Proposition 3.6. If J0 ∈ L2(Ω) then there exists a constant ǫ > 0 such that
the weak solution H ∈ V(rot) of (15) belongs to W1,2+ǫ(Ω), i.e.

‖∇H‖2+ǫ ≤ K1,

with a constant K1 > 0 only dependent on the data.

Proof. Adapting the regularity theory for elliptic equations of the second
order [16], we obtain H ∈ W1,2+ǫ(Ω) with 2 + ǫ < 6 since

J0 − σ(T )µ(T )H× u ∈ L2(Ω) →֒ (W1,6/5(Ω))′.

The following result is consequence of the regularity of solutions to the
mixed boundary value problems for elliptic equations (cf. [16]).

Proposition 3.7. If f ∈ L2(Ω) and h ∈ L2(ΓN) then there exists a constant
ε > 0 such that the weak solution T ∈ Z of (16) belongs to W 1,2+ε(Ω), i.e.

‖∇T‖2+ε ≤ K2,

with a constant K2 > 0 only dependent on the data.

Proof. According to [16] we obtain T ∈ W 1,2+ε(Ω) with 2 + ε < 3 since
f, h ∈ (W 1,3/2(Ω))′.

4 Proof of Theorem 2.3

The regularity u ∈ W1,2+δ(Ω) for some δ > 0 is a consequence of the following
regularity results.

9



Proposition 4.1. For every 2 < q < 3, if J0 ∈ Lq(Ω) then the weak solution
H ∈ V(rot) of (15) belongs to L3q/(3−q)(Ω).

Proof. Adapting the regularity theory for elliptic equations of the second
order [16], the desired result is obtained provided by

J0 − σ(T )µ(T )H× u ∈ Lq(Ω).

Proposition 4.2. If q is given as in (17) and f ∈ L2+δ1(Ω) for some δ1 > 0,
then there exists a constant δ > 0 such that the weak solution u ∈ V of (14)
belongs to W1,2+δ(Ω), i.e.

‖∇u‖2+δ ≤ K3,

with a constant K3 > 0 only dependent on the data.

Proof. For every x0 ∈ Ω̄, 0 < r < R small enough, Ω(x0, R) := Ω ∩
B(x0, R), θ ∈]0, 1[ and some positive constants B1, B2, independent of u,H
and T , we have the following reverse estimate (cf. [4, Lemma 3.2])

(∫

Ω(x0,r)

|∇u|2dx

)1/2

≤ θ

(∫

Ω(x0,R)

|∇u|2dx

)1/2

+
B1

R − r

(∫

Ω(x0,R)

|∇u|6/5dx

)5/6

+
B2

R − r

(∫

Ω(x0,R)

(|u⊗ u|2 + |F|2 + |f |2 + 1)dx

)1/2

where F = µ(T )rotH×H−G(T )T . By Propositions 3.6 and 4.1, we have H ∈
W1,2+ǫ(Ω) ∩ L(2+ǫ0)(2+ǫ)/(ǫ−ǫ0)(Ω). Thus it follows that rotH×H ∈ L2+ǫ0(Ω)
and F = µ(T )rotH×H−G(T )T ∈ L2+ǫ0(Ω). Since u⊗u ∈ L3(Ω) then the
Gehring inequality [13] guarantees the higher integrability u ∈ W1,2+δ(Ω)
for some 0 < δ < min{ǫ0, δ1}.

Now, we return to the proof of uniqueness. To this end, let (u1,H1, T 1)
and (u2,H2, T 2) be two weak solutions to problem (14), (16), and (15). Ar-
guing as in [5], the respective differences ū = u1 − u2, H̄ = H1 − H2 and
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T̄ = T 1 − T 2 satisfy

ν#

2
‖Dū‖2 ≤

ν̄

ν#

‖T̄‖
6δ/(2+δ)
6 ‖Du2‖2

2+δ + C2
2‖Dū‖2‖∇u2‖ +

+
C1

ν#

(
‖µ(T 1)(∇×H1) × H1 − µ(T 2)(∇×H2) ×H2‖6/5 +

+G#‖T̄‖6/5 + Ḡ‖T̄‖6‖T
2‖3/2

)2

;

1

4σ#
‖∇ × H̄‖2 ≤ σ#

∥∥∥∥
(

1

σ(T 2)
−

1

σ(T 1)

)
∇×H2

∥∥∥∥
2

+

+σ#‖µ(T 1)(u1 × H1) − µ(T 2)(u2 ×H2)‖2 + σ#

∥∥∥∥
(

1

σ(T 1)
−

1

σ(T 2)

)
J0

∥∥∥∥
2

;

k#

2
‖∇T̄‖2 ≤

k̄

k#
‖T̄‖

6ε/(2+ε)
6 ‖∇T 2‖2

2+ε +
C1

k#
‖ū‖2

6‖∇T 2‖2
3/2, (31)

where C1, C2 are the Sobolev constants of the embeddings H1(Ω) →֒ L6(Ω)
and H1(Ω) →֒ L4(Ω), respectively. Using the Lipschitz continuity assump-
tions (18)-(22), and applying Hölder and Young inequalities leads to

ν#

2
‖Dū‖2 ≤

ν̄

ν#
‖T̄‖

6δ/(2+δ)
6 ‖Du2‖2

2+δ + C2
2‖Dū‖2‖∇u2‖ +

+
C1

ν#

(
µ̄‖T̄‖6‖∇ × H1‖‖H1‖6 + µ#‖∇ × H̄‖‖H1‖3 + µ#‖∇ ×H2‖‖H̄‖3

+G#‖T̄‖6/5 + Ḡ‖T̄‖6‖T
2‖3/2

)2

;

1

4(σ#)2
‖∇ × H̄‖2 ≤

σ̄

(σ#)2
‖T̄‖

6ǫ/(2+ǫ)
6 (‖∇H2‖2

2+ǫ + ‖J0‖
2
2+ǫ)

+µ̄‖T̄‖2
6‖u

1‖2
6‖H

1‖2
6 + µ#(‖ū‖2

4‖H
1‖2

4 + ‖u2‖2
4‖H̄‖2

4).

Let K1, K2 and K3 be the upper bounds derived in Propositions 3.6, 3.7
and 4.2, respectively, and K4 stand for the upper bound in estimate (24),
namely,

K4 =
1

k#
(‖f‖ + ‖h‖ΓN

).

Next, in view of (29)-(30), we set

R1 =
1

ν#

(
µ#R2

2 + ‖f‖ + G#K4

)
,
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where R2 is chosen such that

(
1 −

µ#σ#

ν#

(
µ#R2

2 + ‖f‖ + G#K4

) )
R2 =

σ#

σ#

‖J0‖,

we have

ν#

2
‖Dū‖2 ≤

ν̄

ν#

‖T̄‖
6δ/(2+δ)
6 K2

3 + C2
2‖Dū‖2R1 +

C1

ν#

(
µ̄‖T̄‖6R

2
2 +

+µ#R2(‖∇ × H̄‖ + ‖H̄‖3) + G#‖T̄‖6/5 + Ḡ‖T̄‖6K4

)2

;

1

4(σ#)2
‖∇ × H̄‖2 ≤

σ̄

(σ#)2
‖T̄‖

6ǫ/(2+ǫ)
6 (K2

1 + ‖J0‖
2
2+ǫ)

+µ̄‖T̄‖2
6R

2
1R

2
2 + µ#(‖ū‖2

4R
2
2 + R2

1‖H̄‖2
4).

Now, sum the above two inequalities with (31) rewritten as follows as

k#

2
‖∇T̄‖2 ≤

k̄

k#
‖T̄‖

6ε/(2+ε)
6 K2

2 +
C1

k#
‖ū‖2

6K
2
4 .

As a result,

(
ν#

2
− C2R1 − Cµ#R2

2 −
C

k#
K2

4

)
‖Dū‖2 +

+

(
1

4(σ#)2
−

2C(µ#)2

ν#
R2

2 − Cµ#R2
1

)
‖∇H̄‖2 +

+

(
k#

2
−

C

ν#
(ν̄K2

3 + (µ̄R2
2 + G# + ḠK4)

2)−

−
Cσ̄

(σ#)2
(K2

1 + ‖J0‖
2
2+ǫ) − µ̄R2

1R
2
2 −

Ck̄

k#
K2

2

)
‖∇T̄‖2 ≤ 0,

with C standing for different Sobolev constants, and the uniqueness of solu-
tion holds under smallness assumption on the data.

5 Shape sensivity analysis

In this section we deal with the shape sensivity analysis to the model corre-
spondent to Theorem 2.1, when the coefficients ν, µ, k, σ and α are assumed
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constants. First, a family of mappings Tτ : R
3 → R

3 associated with a given
velocity field V (τ, x) is constructed. The evolution of geometrical domains,
if the vector field V is chosen, is governed by the real parameter τ , so we
denote by Ωτ = Tτ (Ω) the variable domain depending on two parameters,
a vector field V and the real variable τ , therefore, the variable τ has the
meaning of the time in our setting. The field V is compactly supported with
respect to the spatial variable x, i.e.,

V ∈ C(−τ1, τ1;D
2(Ω; R3)), suppV ⊂ Ω,

for some positive constant τ1. The mapping is given by the system of differ-
ential equations

d

dτ
x(τ) = V (τ, x(τ)), x(0) = X,

with the solution denoted by x(τ) = x(τ, X), τ ∈ (−τ1, τ1), X ∈ R
3.

We define the family of perturbations of a given initial configuration Ω by
Ωτ = Tτ (Ω), each specific family parametrized by τ is defined in the direction
of a given vector field V , and the variable domains are defined by the images
of the mapping, and denoted Ωτ = {x ∈ R

3| x = x(τ, X), X ∈ Ω}.
In our setting all equations defined in variable domain Ωτ can be trans-

ported to the reference domain which is also called the fixed domain Ω, using
the inverse transformation T −1

τ : Ωτ → Ω.

5.1 Perturbated problem

We consider that the velocity field V (τ, x) is divergence free, which implies
that also our u and H also conserve the divergenceless. This simplifies the
situation and we do not need to apply Bogovskii operator, since for pressure
we use the standard Rham theorem.

Definition 5.1. We say a perturbated problem to the model (1)-(6) in a
perturbated domain to the following system of equations in Ωτ

−∇ · (νDuτ ) + (uτ · ∇)uτ + ∇pτ = µrotHτ × Hτ + f τ −G(T τ )T τ ; (32)

∇× (∇×Hτ ) = ∇× (Jτ
0 + σµuτ ×Hτ ); (33)

divuτ = divHτ = 0; (34)

−∇ · (k∇T τ ) + uτ · ∇T τ = f τ ; (35)

13



with the boundary conditions:

uτ = gτ , Hτ · nτ = 0 on ∂Ωτ ; (36)

T τ = 0 on Γτ
D; k

∂T τ

∂nτ
+ αT τ = hτ on Γτ

N . (37)

We introduce the Hilbert spaces

Vτ = {v ∈ H1
0(Ωτ ) : div v = 0 in Ωτ}

Vτ (rot) = {v ∈ L2(Ωτ ) : rot v ∈ L2(Ωτ ),

div v = 0 in Ωτ , v · n = 0 on ∂Ωτ}

Zτ = {ξ ∈ H1(Ωτ ) : ξ = 0 on Γτ
D}

equipped with their standard inner products.

Theorem 5.2. Let f τ ∈ L2(Ωτ ), Jτ
0 ∈ L2(Ωτ ), f τ ∈ L2(Ωτ ) and hτ ∈

L2(Γτ
N). Assuming moreover

b > 0 and µa2 < b3

a =
ν

µσ
‖Jτ

0‖

b =
ν

µσ
−

(
‖f τ‖ +

G#

k
(‖f τ‖ + ‖hτ‖ΓN

)

)
,

then the problem (32)-(37) has a weak solution in the following sense:
The triple (uτ ,Hτ , T τ ) ∈ Vτ ×Vτ (rot) × Zτ and it satisfies

ν

∫

Ωτ

Duτ : Dvτdxτ +

∫

Ωτ

Duτ : (uτ ⊗ vτ )dxτ =

=

∫

Ωτ

(
µ(∇× Hτ) × Hτ + f τ −G(T τ )T τ

)
· vτdxτ , ∀vτ ∈ Vτ ;

k

∫

Ωτ

∇T τ · ∇ητdxτ +

∫

Ωτ

uτ · ∇T τητdxτ + α

∫

Γτ
N

T τητdsτ =

=

∫

Ωτ

f τητdxτ +

∫

Γτ
N

hτητdsτ , ∀ητ ∈ Zτ ;

∫

Ωτ

(∇×Hτ ) · (∇× wτ)dxτ = σµ

∫

Ωτ

(uτ × Hτ) · (∇× wτ )dxτ +

+

∫

Ωτ

Jτ
0 · (∇× wτ )dxτ , ∀wτ ∈ Vτ(rot).

14



Proof. See the proof of Theorem 2.1.

Theorem 5.3. If the assumptions of Theorem 5.2 are fulfilled, the solution
(uτ ,Hτ , T τ) in accordance to Theorem 5.2 is such that (Hτ , T τ) belongs to
W1,2+ǫ(Ωτ ) × W 1,2+ε(Ωτ ) for some ǫ, ε > 0. Moreover, if we assume f τ ∈
L2+δ1(Ωτ ) for some δ1 > 0 and Jτ

0 ∈ Lq(Ωτ ) with q given as in (17), then
uτ ∈ W1,2+δ(Ωτ ) for some δ > 0, and (uτ ,Hτ , T τ ) is unique under small
data.

Proof. See the proof of Theorems 2.1 and 2.3.

5.2 Transported problem

The transported solution to the fixed domain is denoted by uτ = uτ ◦ Tτ ,
Hτ = Hτ ◦Tτ , Tτ = T τ ◦Tτ with data fτ = f τ ◦Tτ , Gτ = Gτ ◦Tτ , J0τ = Jτ

0◦Tτ ,
fτ = f τ ◦ Tτ and hτ = hτ ◦ Tτ .

We begin by recalling the result.

Proposition 5.4. The unit normal vector field on Γτ is given by

nτ (Tτ (X)) = (‖∗JT −1
τ · n‖−1

R3
∗(DTτ )

−1 · n)(X)

for X ∈ Γ. Here we denote by JTτ the Jacobian of Tτ and for any matrix B
the transposed matrix is denoted by ∗B. For any f ∈ L1(Γτ ),

∫

Γτ

fdsτ =

∫

Γ

f ◦ Tτ‖M(Tτ ) · n‖R3ds,

where M(Tτ ) = det (JTτ )
∗JT −1

τ is the cofactor matrix of the Jacobian matrix
JTτ .

We introduce the following notations

ζ(τ) = det(JTτ ),

̺(τ) = ∗JT −1
τ ,

A(τ) = ζ(τ) ∗̺(τ)̺(τ),

B(τ) = ζ(τ)̺(τ),

ω(τ) = ‖M(JTτ ) · n‖R3 .
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Definition 5.5. We call the transported problem to the following system of
equations

ν

∫

Ω

A(τ) : (DuτDvτ )dx +

∫

Ω

B(τ)∇uτ : (vτ ⊗ uτ )dx =

=

∫

Ω

ζ(τ)
(
µ((̺(τ)∇) ×Hτ ) × Hτ + fτ − G(Tτ )Tτ

)
· vτdx, ∀vτ ∈ V;

∫

Ω

((̺(τ)∇) × Hτ) · ((̺(τ)∇) × wτ ) =

= σµ

∫

Ω

ζ(τ)(uτ ×Hτ + J0τ ) · ((̺(τ)∇) × wτ )dx, ∀wτ ∈ V(rot);

k

∫

Ω

A(τ) : (∇Tτ ⊗∇ητ )dx +

∫

Ω

B(τ) : (uτ ⊗∇Tτ )ητdx +

+α

∫

ΓN

Tτητω(τ)ds =

∫

Ω

fτητζ(τ)dx +

∫

ΓN

hτητω(τ)ds, ∀ητ ∈ Z.

Theorem 5.6. Suppose that the assumptions on G and (12) are fulfilled and
additionally assuming that

b > 0 and µa2 < b3

a =
ν

µσ
‖J0τ‖

b =
ν

µσ
−

(
‖fτ‖ +

G#

k
(‖fτ‖ + ‖hτ‖ΓN

)

)
,

then the triple (uτ ,Hτ , Tτ ) ∈ V×V(rot)×Z is a weak solution in the sense
of Definition 5.5. Moreover, the solution (uτ ,Hτ , Tτ ) is such that (Hτ , Tτ )
belongs to W1,2+ǫ(Ω)×W 1,2+ε(Ω) for some ǫ, ε > 0, and if fτ ∈ L2+δ1(Ω) for
some δ1 > 0 and J0τ ∈ Lq(Ω) with q given as in (17) then uτ ∈ W1,2+δ(Ω)
for some δ > 0. Furthermore (uτ ,Hτ , Tτ ) is unique under small data.

Proof. See the proof of Theorems 2.1 and 2.3.
Introducing the forms as

(F1) α0(τ,u,v) = ν
∫
Ω

ζ(τ)(̺(τ)Du) : (̺(τ)Dv)dx = ν
∫
Ω

A(τ) : (DuDv)dx

(F2) α1(τ,u,v) =
∫
Ω

ζ(τ)(̺(τ)∇u) : (v ⊗ u)dx =
∫
Ω

B(τ)∇u : (v ⊗ u)dx

(F3) α2(τ,H,v) = µ
∫
Ω

ζ(τ)
(
((̺(τ)∇) ×H) × H

)
· vdx
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(F4) α3(τ, f , T,v) =
∫
Ω

ζ(τ)
(
f − G(T)T

)
· vdx

(F5) β1(τ,H,w) =
∫
Ω
((̺(τ)∇) × H) · ((̺(τ)∇) × w) dx

(F6) β2(τ,u,H,w) = σµ
∫
Ω

ζ(τ)(u ×H) · ((̺(τ)∇) ×w) dx

(F7) β3(τ,J0,w) =
∫
Ω

ζ(τ)J0 · ((̺(τ)∇) × w) dx

(F8) γ1(τ, T, η) = k
∫
Ω

A(τ) : (∇T ⊗∇η)dx

(F9) γ2(τ,u, T, η) =
∫
Ω

ζ(τ)u · (̺(τ)∇)Tηdx =
∫
Ω

B(τ) : (u ⊗∇T)ηdx

(F10) γ3(τ, T, η) = α
∫
ΓN

Tηω(τ)ds

(F11) γ4(τ, f, η) =
∫
Ω

fηζ(τ)dx

(F12) γ5(τ, h, η) =
∫
ΓN

hηω(τ)ds

the following corollary can be stated.

Corollary 5.7. Let |τ | ≤ τ1 and τ1 be small enough, then there exists realval-
ued functions gi satisfying gi(τ) = o(τ), i = 0, ..., 11 and forms α̃i(τ, ...), i =
0, 1, 2, 3, β̃(τ, ...), i = 1, 2, 3, and γ̃(τ, ...), i = 1, · · · , 5, such that the following
statements are valid.

(B1) For all u,v ∈ V

α0(τ,u,v) = α0(0,u,v) + τα0,τ (0,u,v) + α̃0(τ,u,v)

α0,τ (0,u,v) = ν

∫

Ω

A′(0) : (DuDv)dx

α̃0(τ,u,v) ≤ g0(τ)‖u‖1‖v‖1.

(B2) For all u,v ∈ V

α1(τ,u,v) = α1(0,u,v) + τα1,τ (0,u,v) + α̃1(τ,u,v)

α1,τ (0,u,v) =

∫

Ω

B′(0)∇u : (v ⊗ u)dx

α̃1(τ,u,v) ≤ g1(τ)‖u‖2
1‖v‖1.
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(B3) For all H ∈ H1(Ω) and v ∈ V

α2(τ,H,v) = α2(0,H,v) + τα2,τ (0,H,v) + α̃2(τ,H,v)

α2,τ (0,H,v) = µ

∫

Ω

(
ζ ′(0)(∇× H) ×H

+((̺′(0)∇) ×H) × H
)
· vdx

α̃2(τ,H,v) ≤ g2(τ)‖∇ × H‖‖H‖1‖v‖1.

(B4) For all f ∈ L2(Ω), T ∈ Z and v ∈ V

α3(τ, f , T,v) = α3(0, f , T,v) + τα3,τ (0, f , T,v) + α̃3(τ, f , T,v)

α3,τ (0, f , T,v) =

∫

Ω

ζ ′(0)
(
f − G(T)T

)
· vdx

α̃3(τ, f , T,v) ≤ g3(τ)
(
‖f‖ + G#‖T‖

)
‖v‖.

(B5) For all H,w ∈ V(rot)

β1(τ,H,w) = β1(0,H,w) + τβ1,τ (0,H,w) + β̃1(τ,H,w)

β1,τ (0,H,w) =

∫

Ω

A′(0) : (∇× H) ⊗ (∇× w)dx

β̃1(τ,H,w) ≤ g4(τ)‖H‖1‖w‖1.

(B6) For all u ∈ V, H ∈ V(rot), w ∈ V(rot)

β2(τ,u,H,w) = β2(0,u,H,w) + τβ2,τ (0,u,H,w) + β̃2(τ,u,H,w)

β2,τ (0,u,H,w) = σµ

∫

Ω

(
ζ ′(0)(u × H) · (∇×w) +

+(u × H) · ((̺′(0)∇) ×w)
)
dx

β̃2(τ,u,H,w) ≤ g5(τ)‖u ×H‖2‖w‖V(rot).

(B7) For all J0 ∈ L2(Ω), w ∈ V(rot)

β3(τ,J0,w) = β2(0,J0,w) + τβ3,τ (0,J0,w) + β̃3(τ,J0,w)

β3,τ (0,J0,w) =

∫

Ω

(
ζ ′(0)J0 · (∇×w) + J0 · ((̺

′(0)∇) × w)
)
dx

β̃3(τ,J0,w) ≤ g6(τ)‖J0‖‖∇ × w‖.
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(B8) For all T, η ∈ Z

γ1(τ, T, η) = γ1(0, T, η) + τγ1,τ (0, T, η) + γ̃1(τ, T, η)

γ1,τ (0, T, η) = k

∫

Ω

A′(0) : (∇T ⊗∇η)dx

γ̃1(τ, T, η) ≤ g7(τ)‖T‖1‖η‖1.

(B9) For all u ∈ V and T, η ∈ Z

γ2(τ,u, T, η) = γ2(0,u, T, η) + τγ2,τ (0,u, T, η) + γ̃2(τ,u, T, η)

γ2,τ (0,u, T, η) =

∫

Ω

B′(0) : (u ⊗∇T)ηdx

γ̃2(τ,u, T, η) ≤ g8(τ)‖u‖1‖T‖1‖η‖1.

(B10) For all T ∈ Z, η ∈ Z

γ3(τ, T, η) = γ3(0, T, η) + τγ3,τ (0, T, η) + γ̃3(τ, T, η)

γ3,τ(0, T, η) = α

∫

ΓN

Tηω′(0)ds

γ̃3(τ, T, η) ≤ g9(τ)‖T‖1‖η‖1.

(B11) For all f ∈ L2(Ω) and η ∈ Z

γ4(τ, f, η) = γ4(0, f, η) + τγ4,τ (0, f, η) + γ̃4(τ, f, η)

γ4,τ(0, f, η) =

∫

Ω

fηζ ′(0)dx

γ̃4(τ, f, η) ≤ g10(τ)‖f‖‖η‖.

(B12) For all h ∈ L2(ΓN) and η ∈ Z

γ5(τ, h, η) = γ5(0, h, η) + τγ5,τ (0, h, η) + γ̃5(τ, h, η)

γ5,τ(0, h, η) =

∫

ΓN

hηω′(0)ds

γ̃5(τ, h, η) ≤ g11(τ)‖h‖ΓN
‖η‖1.

Applying Taylor polynomials of degree one we can prove the stability
results.
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Proposition 5.8. Under the assumptions of Theorem 5.6, if (uτ ,Hτ , Tτ ) is
the transported solution correspondent to (u,H, T ) and the following assump-
tions are fulfilled

(M1) ‖fτ − f‖ ≤ c|τ |

(M2) ‖G(Tτ )Tτ − G(T )T‖6/5 ≤ c|τ |

(M3) ‖J0τ − J0‖ ≤ c|τ |

(M4) ‖hτ − h‖ΓN
≤ c|τ |

(M5) ‖fτ − f‖ ≤ c|τ |

then we have

‖uτ − u‖1 ≤ C|τ |;

‖Hτ −H‖1 ≤ C|τ |;

‖Tτ − T‖1 ≤ C|τ |,

with C denoting different constants.

Proof. The proof is similar to the proof in [5, Proposition ] and we will
skip the proof.

Finally, we are in the position to formulate the existence theorem for the
material derivative of our problem.

Definition 5.9. The following limit in the function space norm H

ḟ = lim
τ→0

f(τ) − f(0)

τ

is called the strong material derivative ḟ of f in H.

Definition 5.10. The shape derivative u′ of u(τ) in the direction of the
vector field V is defined by the formula

u′ = u̇ −∇u · V

provided that there exists the material derivative u̇.

We recall that A(0) = B(0) = ̺(0) = I , ζ(0) = ω(0) = 1, ζ̇ = ζ ′(0),
˙̺ = ̺′(0), Ȧ = A′(0), Ḃ = B′(0), ζ̇ = ζ ′(0) and ω̇ = ω′(0), and we state the
following result on the existence of material derivatives.

20



Theorem 5.11. Under the assumptions ḟ ∈ L2(Ω), J̇ ∈ L2(Ω), ḟ ∈ L2(Ω), ḣ ∈
L2(ΓN). Assuming moreover

b̃ > 0 and µã2 < b̃3

ã =
ν

µσ
‖J̇0‖

b̃ =
ν

µσ
−

(
‖ḟ‖ +

Ġ#

k
(‖ḟ‖ + ‖ḣ‖ΓN

)

)
,

the triple (u̇, Ḣ, Ṫ ) ∈ V × V(rot) × Z and it satisfies
the momentum equations

ν
∫
Ω
(ȦDu + Du̇) : Dvdx +

∫
Ω
(Ḃ∇u + ∇u̇) : (v ⊗ u)dx +

∫
Ω
∇u : (v ⊗ u̇)dx

= µ
∫
Ω

ζ̇
(
(∇×H) × H

)
· vdx + µ

∫
Ω

(
(( ˙̺∇) ×H) ×H

)
· vdx+

+µ
∫
Ω

(
(∇× Ḣ) × H + (∇×H) × Ḣ

)
· vdx+

+
∫
Ω

(
ḟ − Ġ(T)T − G(T )Ṫ

)
· vdx +

∫
Ω

(
(f −G(T )T )ζ̇

)
· vdx, ∀v ∈ V;

the equation for the electric field

∫
Ω
(( ˙̺∇) × H + ∇× Ḣ) · (∇× w) dx +

∫
Ω
(∇×H) · (( ˙̺∇) × w) dx =

= σµ
∫
Ω

(
ζ̇(u× H) + u̇× H + u× Ḣ

)
· (∇×w)dx+

+σµ
∫
Ω
(u ×H) · (( ˙̺∇) × w)dx+

+
∫
Ω
(J̇0 + J0ζ̇) · (∇× w)dx +

∫
Ω
J0 · ( ˙̺∇) × wdx, ∀w ∈ V(rot);

the energy equation

k
∫
Ω
(Ȧ∇T + ∇Ṫ ) · ∇ηdx +

∫
Ω
(Ḃ : u⊗∇T + u̇ · ∇T + u · ∇Ṫ )ηdx

+α
∫
ΓN

(Ṫ + T ω̇)ηds =
∫
Ω
(ḟ + f ζ̇)ηdx +

∫
ΓN

(ḣ + hω̇)ηds, ∀η ∈ Z;
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and the following estimates

‖Ṫ‖1 ≤ C
(
(1 + ‖u‖1 + ‖u̇‖1)‖T‖1 + ‖ḟ‖ + ‖f‖ + ‖ḣ‖ΓN

+ ‖h‖ΓN

)
;

‖u̇‖1 ≤ C
(
(‖Ḣ‖1 + ‖H‖1)‖H‖1 + ‖ḟ‖ + ‖f‖ +

+Ġ#‖T‖1 + G#(‖Ṫ‖1 + ‖T‖1) + ‖u‖1

)
;

‖Ḣ‖1 ≤ C
(
‖H‖1 + µσ(‖u× H‖ + ‖u̇× H‖ + ‖u× Ḣ‖) + ‖J̇0‖ + ‖J0‖

)
.

Proof. We subtract the perturbated solution and the transported so-
lution and we pass to the limit with τ tending to 0 (for details see [5] for
analogous proof).

6 Concluding remarks

As we mention in introduction to overcome problem of loosing divergence
free behavior we can apply Piola transform which is given by the following
mapping:

PI : V → Vτ ;

v 7→ (JTτ · v) ◦ T −1
τ .

Denoting
ûτ := (JTτ )

−1 · (uτ ◦ Tτ ) defined on Ω

and
uτ = PI(ûτ ) is defined on Ωτ ,

the mapping PI can be applied on velocity field and also on magnetic field
to conserve the divergenceless and that u ·n = 0 and H ·n = 0. By the same
method as in Section 5 we get the stability and material derivative for û and
then we just apply the inverse mapping to conclude the results in [5].

Remark 6.1. In [5] we get the stability depending not only on the data but
also on assumption of behavior of H, but it is not the case in our present
problem.
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