
On slowly growing solutions of linear functional
differential systems

V.Pylypenko and A.Rontó�

Abstract. We obtain new conditions sufficient for the (unique, under an additional condition) solv-
ability of a system of singular functional differential equations with non-increasing operators.

1. Problem setting and motivation

The aim of this note is to establish some general conditions sufficient for the existence
and uniqueness of a slowly growing solution of a class of singular linear functional differ-
ential equations. More precisely, we consider the system of linear functional differential
equations

x0i .t/ D

nX
kD1

.likxk/.t/C qi .t/; t 2 Œa; b/; i D 1; 2; : : : ; n; (1)

subjected to the initial conditions

xi .a/ D �i ; i D 1; 2; : : : ; n; (2)

where �1 < a < b < 1, the functions qi , i D 1; 2; : : : ; n, are locally integrable, and
lik W C.Œa; b/;R/ ! L1I loc.Œa; b/;R/, i; k D 1; 2; : : : ; n, are linear mappings which are
assumed to be positive with respect to a natural pointwise ordering. Our aim is to find
conditions sufficient for the existence and uniqueness of a slowly growing solution of the
initial value problem (1), (2). The “slow growth” of a solution x D .xi /niD1 W Œa; b/! Rn

is understood in the sense that its components satisfy the conditions

sup
t2Œa;b/

hi .t/jxi .t/j < C1; i D 1; 2; : : : ; n; (3)
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where hi W Œa; b/ ! Œ0;C1/, i D 1; 2; : : : ; n, are certain given continuous functions
possessing the properties

lim
t!b�

hi .t/ D 0; i D 1; 2; : : : ; n: (4)

Solutions of system (1) are sought for in the class of locally absolutely continuous
functions and, in particular, may be unbounded in a neighbourhood of the point b.

Definition 1. One says that a function u W .a; b� ! R (resp., u W Œa; b/ ! R) is locally
absolutely continuous if its restriction ujŒaC";b� (resp., ujŒa;b�"�) to the interval Œa C "; b�
(resp., Œa; b � "�) is absolutely continuous for any " 2 .0; b � a/.

When formulating the precise definition of a solution of this kind of equations, it is
important to take into account the unpleasant circumstance that the derivative of a locally
absolutely continuous vector function satisfying equations (1) may have a non-integrable
singularity in a neighbourhood of the point b. For example, the function

x.t/ D � .1 � t /�3 ; t 2 Œ0; 1/; (5)

for any real � satisfies the relations

x0.t/ D
2

.1 � t /3
x.1 �

3
p
1 � t /C

1

.1 � t /
5
2

x.1 �
p
1 � t /; t 2 Œ0; 1/; (6)

x.0/ D �; (7)

where the coefficient functions Œ0; 1/ 3 t 7! 2 .1 � t /�3 and Œ0; 1/ 3 t 7! .1 � t /�
5
2

are non-integrable. To introduce a proper notion of a solution of the corresponding initial
value problem, a certain weight function is thus natural to be used, which would govern
the behaviour of x0 in a left neighbourhood of the point 1. In our case, the role of these
weight functions is played by the same functions hi W Œa; b/! Œ0;C1/, i D 1; 2; : : : ; n,
that appear in the growth restriction (3), so that the corresponding definition of a solution
has the following form.

Definition 2. By a solution of the functional differential system (1), we mean a locally
absolutely continuous vector function x D .xi /

n
iD1 W Œa; b/ ! Rn which components

possessing the properties hix0i 2 L1 .Œa; b/;R/ ; i D 1; 2 : : : ; n; and satisfying equalities
(1) almost everywhere on the interval Œa; b/.

Note that in the case where hi , i D 1; 2; : : : ; n, are equal identically to non-zero
constants, the latter definition reduces in a natural way to the Carathéodory case, where the
solution is absolutely continuous on the entire interval. Under assumption (4), however,
system (1) may have solutions .xi /niD1 such that x0i 62 L1.Œa; b/;R/ for some or all i D
1; 2; : : : ; n.

Definition 3. We say that a solution x D .xi /
n
iD1 W Œa; b/ ! Rn of system (1) is slowly

growing if it has property (3).
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In the sequel, we are interested in establishing conditions under which the initial prob-
lem (1), (2) has a unique slowly growing solution for arbitrary qi , i D 1; 2; : : : ; n, with
hiqi Lebesgue integrable on Œa; b/.

Efficient and sharp conditions sufficient for the solvability of problems of type (1),
(2), (3) are useful in studies of various non-linear singular problems arising in numerous
applications. We note that the necessity in a systematic study of differential equations
with singularities had arisen quite long ago. One can mention, e. g., the singular Cauchy
problem at the point 0 for the two-dimensional system

u01.t/ D u2.t/;

u02.t/ D �
2

t
u2.t/ � .u1.t//

�; t 2 .0; 1�;

which had been studied in [1] as far back as 1907. However, it is only in the second half
of the last century when a general theory of such problems had been constructed. We refer
the reader to the works [2, 3, 5] for more details on this subject.

It should be noted that setting (1) is rather general. In particular, any system of linear
functional differential equations of the form

x0.t/ D .lx/.t/C q.t/; t 2 Œa; b/; (8)

determined by a linear mapping l D .li /
n
iD1 W C.Œa; b/;R

n/ ! L1I loc.Œa; b/;Rn/ is
nothing but (1) with lik W C.Œa; b/;R/ ! L1I loc.Œa; b/;R/, i; k D 1; 2; : : : ; n, defined by
the formulae

likv WD li .vek/; i; k D 1; 2; : : : ; n; (9)

for any v from C.Œa; b/;R/, where

ek WD col .0; 0; : : : ; 0;1; 0; : : : ; 0/; k D 1; 2; : : : ; n; (10)

with “1” on the kth place. We emphasize that lik i; k D 1; 2; : : : ; n, are defined on
the set of functions which are continuous on the half-open interval Œa; b/ and may have
discontinuities at the point b.

For the sake of simplicity, we assume throughout the paper that the above-mentioned
functions hi , i D 1; 2; : : : ; n, possess the following properties:

The functions hi W Œa; b/ ! Œ0;C1/, i D 1; 2; : : : ; n are non-increasing and
such that relations (4) hold.

(11)

Note that only the qualitative behaviour of hi , i D 1; 2; : : : ; n; in a neighbourhood of
the point b has influence on the formulation of condition (3) and, thus, hi , i D 1; 2; : : : ; n,
can be redefined in any suitable manner on the interval Œa; b � ı� for ı small enough.
Conditions (11) are satisfied, for example, by the functions

hi .t/ WD .b � t /
i ; t 2 Œa; b/;
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where fi j i D 1; 2; : : : ; ng � .0;C1/. For example, one can check directly that
function (5) for arbitrary � 2 R and " 2 .0;C1/ is a solution of the problem

sup
t2Œ0;1/

.1 � t /3C" jx.t/j < C1 (12)

for equation (6) with the function h given by formula

h.t/ WD .1 � t /3C" ; t 2 Œ0; 1/; (13)

where " is positive. It is obvious that assumptions (11) are satisfied in this case.
To conclude this introductionary section, we note that problem (1), (2), (3) is related

to the notion of a singular Cauchy problem (see, e. g., [2]). Indeed, condition (3) yields

lim
t!b�

%i .t/hi .t/xi .t/ D 0; i D 1; 2; : : : ; n; (14)

for any continuous functions %i W Œa; b/ ! R with the properties limt!b� %i .t/ D 0,
i D 1; 2; : : : ; n, i. e., a solution of (1), (2), (3) is also that of each of the problems (1), (2),
(14) and vice versa.

Problems similar to (1), (2), (3), including the singular Cauchy problem for various
classes of functional differential equations, are treated, in particular, in [4–12]. A problem
on Carathéodory solutions of system (8) possessing properties of type (2) is studied in
[13].

2. Notation

The following notation is used throughout the paper.

(1) R WD .�1;1/, N WD f1; 2; 3; : : : g.

(2) kxk WD maxiD1;2;:::;n jxi j for any x D .xi /niD1 from Rn.

(3) If �1 < a < b < 1 and A � Œa; b� is a measurable set, then L1.A;Rn/ is the
Banach space of all the Lebesgue integrable vector functions u D .ui /

n
iD1 W A !

Rn with the standard norm

L1.A;R/ 3 u 7�! max
iD1;2;:::;n

Z
A

jui .t/jdt:

(4) L1I loc..a; b�;R/ is the set of functions u W .a; b�! R such that ujŒaC";b� 2 L1.ŒaC
"; b�;R/ for any " 2 .0; b � a/.

(5) L1I loc..a; b�;Rn/ is the set of vector functions u D .ui /
n
iD1 W .a; b� ! Rn such

that ui 2 L1I loc..a; b�;R/ for each i D 1; 2; : : : ; n.

(6) C..a; b�;R/ is the linear manifold of all the continuous functions u W .a; b�! R.

(7) QCloc..a; b�;Rn/ is the set of all the locally absolutely continuous vector functions
u D .ui /

n
iD1 W .a; b�! Rn.
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(8) QClocI h..a; b�;R/ is the set of all the locally absolutely continuous functions u W
.a; b�! R such that hu0 2 L1..a; b�;R/ and

sup
t2.a;b�

h.t/ ju.t/j < C1: (15)

(9) If h D diag .h1; : : : ; hn/ W .a; b�! Rn is a continuous matrix-valued function, then
QClocI h..a; b�;R

n/ is the set of all the vector functions u D .ui /
n
iD1 W .a; b� ! R

such that ui 2 QClocI hi ..a; b�;R/ for each i D 1; 2; : : : ; n.

(10) The sets C.Œa; b/;R/, L1I loc.Œa; b/;Rn/, QCloc.Œa; b/;Rn/, and QClocI h.Œa; b/;R
n/ are

defined by analogy.

3. Existence of a slowly growing solution and its uniqueness

Our results concern the case where the right-hand sides of equations (1) are determined by
linear operators which are positive in sense of the pointwise partial ordering of the linear
manifold C.Œa; b/;R/.
Definition 4. An operator l W C.Œa; b/;R/ ! L1I loc.Œa; b/;R/ is said to be positive if
.lu/.t/ � 0 for a. e. t 2 Œa; b/ whenever u is non-negative on Œa; b/.

For systems (1) with positive lik W C.Œa; b/;R/! L1I loc.Œa; b/;R/, i; k D 1; 2; : : : ; n,
we can formulate the following
Theorem 1. Let us assume that the mappings lik W C.Œa; b/;R/ ! L1I loc.Œa; b/;R/,
i; k D 1; 2; : : : ; n, are positive and there exists a certain ı 2 Œ0; 1/ such that

nX
kD1

hklik

�
1

hk

�
2 L1.Œa; b/;R/; i D 1; 2; : : : ; n; (16)

and the inequality

nX
kD1

lik

0@ nX
jD1

Z �
a

lkj

�
1

hj

�
.s/ ds

1A .t/ � ı nX
kD1

lik

�
1

hk

�
.t/ (17)

is satisfied for a. e. t 2 Œa; b/ and every i D 1; 2; : : : ; n.
Then the initial value problem (1), (2) has a unique slowly growing solution for ar-

bitrary locally integrable functions qi W Œa; b/ ! R, i D 1; 2; : : : ; n, possessing the
property

fhiqi j i D 1; 2; : : : ; ng � L1.Œa; b/;R/: (18)

Furthermore, if qi and �i , i D 1; 2; : : : ; n, satisfy the condition

�

nX
kD1

�k.lik1/.t/ � qi .t/; t 2 Œa; b/; i D 1; 2; : : : ; n; (19)

then the unique solution of problem (1), (2), (3) has non-negative components.
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The symbol lik1 in (19) stands for the result of application of the operator lik to the
function equal identically to 1.
Remark 1. By virtue of the positivity of the mappings lik , i; k D 1; 2; : : : ; n, conditions
(19) are satisfied, in particular, if f�i j i D 1; 2; : : : ; ng � Œ0;C1/ and the functions qi ,
i D 1; 2; : : : ; n, are non-negative almost everywhere on Œa; b/.

In the more general case where the mappings lik W C.Œa; b/;R/ ! L1I loc.Œa; b/;R/,
i; k D 1; 2; : : : ; n, in (1) are monotone decomposable, i. e., (1) has the form

x0i .t/ D

nX
kD1

�
.l0ikxk/.t/ � .l

1
ikxk/.t/

�
C qi .t/; t 2 Œa; b/; i D 1; 2; : : : ; n; (20)

where lj
ik
W C.Œa; b/;R/ ! L1I loc.Œa; b/;R/, i; k D 1; 2; : : : ; n, j D 0; 1, are positive, a

weaker assertion holds.

Theorem 2. Let us assume that the mappings lj
ik
W C.Œa; b/;R/ ! L1I loc.Œa; b/;R/,

i; k D 1; 2; : : : ; n, j D 0; 1, are positive and there exists a certain ı 2 Œ0; 1/ such that

nX
kD1

hkl
j

ik

�
1

hk

�
2 L1.Œa; b/;R/; i D 1; 2; : : : ; n; j D 0; 1; (21)

and the inequality

nX
kD1

Nlik

0@ nX
jD1

Z �
a

Nlkj

�
1

hj

�
.s/ ds

1A .t/ � ı nX
kD1

Nlik

�
1

hk

�
.t/ (22)

is satisfied for a. e. t 2 Œa; b/ and every i D 1; 2; : : : ; n, where

Nlik WD l
C

ik
C l�ik ; i; k D 1; 2; : : : ; n:

Then the initial value problem (20), (2) has a unique slowly growing solution for
arbitrary locally integrable functions qi W Œa; b/ ! R, i D 1; 2; : : : ; n, possessing prop-
erty (18).

Prior to the proof of Theorems 1 and 2, which are given in Section 7, we present its
corollaries for systems with argument deviations.

4. Corollaries for equations with argument deviations

Let us consider problem (1), (2), (3) for the system of differential equations with argument
deviations

x0i .t/ D

nX
kD1

pik.t/xk.!ik.t//C qi .t/; t 2 Œa; b/; i D 1; 2; : : : ; n; (23)
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where �1 < a < b < 1 and fpik ; qi j i; k D 1; 2; : : : ; ng � L1I loc.Œa; b/;R/.
The argument deviations !k , k D 1; 2; : : : ; n, in (23) are arbitrary Lebesgue measurable
functions that are supposed to transform the interval Œa; b/ to itself. It is important to note
that the latter assumption does not lead one to any loss of generality (see, e. g., [6] for a
detailed discussion of this subject).

We are interested in conditions guaranteeing the existence of solutions with proper-
ties (3) in the case where the coefficients of equation (23) are non-negative. As above,
we assume that the functions hi , i D 1; 2; : : : ; n; appearing in conditions (3) possess
properties (11).

Corollary 1. Assume that the functions pik , i; k D 1; 2; : : : ; n, are non-negative almost
everywhere on Œa; b/. Moreover, letZ b

a

hk.t/pik.t/

hk.!ik.t//
dt < C1; i; k D 1; 2; : : : ; n; (24)

and there exists a certain ı 2 Œ0; 1/ such that the inequality

nX
kD1

pik.t/

0@ nX
jD1

Z !ik.t/

a

pkj .s/

hj .!kj .s//
ds �

ı

hk.!ik.t//

1A � 0 (25)

is satisfied for a. e. t 2 Œa; b/ and every i D 1; 2; : : : ; n.
Then problem (23), (2), (3) has a unique slowly growing solution for arbitrary locally

integrable functions qi W Œa; b/ ! R, i D 1; 2; : : : ; n, possessing property (18), and any
f�i j i D 1; 2; : : : ; ng. Furthermore, if qi and �i , i D 1; 2; : : : ; n, satisfy the condition

�

nX
kD1

�kpik.t/ � qi .t/; i D 1; 2; : : : ; n; (26)

for almost every t 2 Œa; b/, then the unique solution of problem (23), (2), (3) has non-
negative components.

Proof. It is clear that equation (23) can be represented in form (1), where the operators
lik are defined by the equality

.likxk/.t/ D pik.t/xk.!ik.t//; t 2 Œa; b/; i; k D 1; 2; : : : ; n:

Since the functions pik , k D 1; 2; : : : ; n are non-negative, it follows that operators lik ,
k D 0; 1; : : : ; n, are positive. Moreover, in view of property (24), operators lik , k D
1; 2; : : : ; n, satisfy conditions (16). Then it follows from (25) that inequalities (17) are
true.

Thus, all conditions of Theorem 1 hold and, therefore, problem (23), (2), (3) has a
unique solution for arbitrary locally integrable functions qi , i D 1; 2; : : : ; n, with proper-
ties (18).

This statement implies, in particular, the following
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Corollary 2. Let pik , i; k D 1; 2; : : : ; n, be non-negative, possess properties (24), and be
such that the condition

ess sup
t2Œa;b/

hk.!ik.t//

nX
jD1

Z !ik.t/

a

pkj .s/

hj .!kj .s//
ds < 1 (27)

holds for all i; k D 1; 2; : : : ; n.
Then, for any locally integrable functions qi W Œa; b/! R, i D 1; 2; : : : ; n, possessing

property (18) and arbitrary real �i , i D 1; 2; : : : ; n, the initial value problem (23), (2)
has a unique solution possessing property (3). Furthermore, under the additional condi-
tion (26), this solution has non-negative components.

Proof. The statement is an immediate consequence of Corollary 1.

It is worth pointing out that, under assumptions of Corollaries 1 and 2, some or all
equations of system (23) may not have the Volterra property, i. e., it may happen that

mes ft 2 Œa; b/ j !ik.t/ > tg > 0 (28)

or
mes ft 2 Œa; b/ j !ik.t/ < tg > 0; (29)

or both (28) and (29) may hold simultaneously for some i and k.
Remark 2. Condition (27) of Corollary 2 is unimprovable in the sense that it cannot be
replaced by the corresponding non-strict inequality

ess sup
t2Œa;b/

hk.!ik.t//

nX
jD1

Z !ik.t/

a

pkj .s/

hj .!kj .s//
ds � 1 (30)

even for a single pair of indices i and k, because after such a replacement the assertion
of Corollary 2 is not true any more. In order to show this, it is sufficient to consider the
simplest scalar functional differential equation

x0.t/ D p.t/x.�/; t 2 Œa; b/; (31)

where a � � < b, p W Œa; b/! Œ0;C1/ is such that hp 2 L1.Œa; b/;R/, and the function
h W Œa; b/ ! Œ0;C1/ is non-increasing and such that limt!b� h.t/ D 0: It is easy to
verify that, under the condition Z �

a

p.t/dt < 1; (32)

the homogeneous problem

x.a/ D 0; (33)
sup
t2Œa;b/

h.t/ jx.t/j < C1 (34)
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for equation (31) has no non-trivial solutions. This circumstance agrees with the assump-
tions of Corollary 2 because condition (24) for this problem means the integrability of p
with the weight h, whereas (27) coincides with (32). However, ifZ �

a

p.t/dt D 1; (35)

then the homogeneous initial value problem (31), (33) has a one-parametric family of
solutions

x.t/ D �

Z t

a

p.s/ds; t 2 Œa; b/; � 2 .�1;C1/;

each of which satisfies condition (34) because h is non-increasing, hp is integrable, and,
therefore,

ess sup
t2Œa;b/

h.t/

Z t

a

p.s/ds � ess sup
t2Œa;b/

Z t

a

h.s/p.s/ds < C1:

By virtue of (35), condition (30) is satisfied in this case but (27) is not.
Corollary 3. Let pik , i; k D 1; 2; : : : ; n, satisfy relations (24) and the condition

ess sup
t2Œa;b/

hk.!ik.t//

nX
jD1

Z !ik.t/

a

jpkj .s/j

hj .!kj .s//
ds < 1 (36)

for all i; k D 1; 2; : : : ; n.
Then, for any locally integrable functions qi W Œa; b/! R, i D 1; 2; : : : ; n, possessing

property (18) and arbitrary real �i , i D 1; 2; : : : ; n, the initial value problem (23), (2) has
a unique solution possessing property (3).

It should be noted that, under the assumptions of the last corollary, the unique solution
of problem (23), (2), (3) may not be non-negative even under condition (26).

Proof. The statement is an immediate consequence of Theorem 2.

5. Examples

As an illustration, let us consider the case where a D 0, b D 1, and both the weight func-
tions and the argument deviations in problem (23), (2), (3) are powers of the independent
variable, i. e., we have the problem

x0i .t/ D

nX
kD1

pik.t/xk
�
1 � .1 � t /ˇik

�
C qi .t/; t 2 Œ0; 1/; i D 1; 2; : : : ; n; (37)

sup
t2Œ0;1/

.1 � t /i jxi .t/j < C1; i D 1; 2; : : : ; n; (38)

xi .0/ D �i ; i D 1; 2; : : : ; n; (39)

where fpik ; qi j i; k D 1; 2; : : : ; ng � L1I loc.Œ0; 1/;R/ and fˇik ; i j i; k D 1; 2; : : : ; ng �
Œ0;C1/.
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Corollary 4. Let the functions pik , i; k D 1; 2; : : : ; n, be non-negative, satisfy the condi-
tions Z 1

0

pik.t/ .1 � t /
k.1�ˇik/ dt < C1; i; k D 1; 2; : : : ; n; (40)

and, moreover, be such that

sup
t2Œ0;1/

.1 � t /kˇik
nX

jD1

Z 1�.1�t/ˇik

0

pkj .s/ .1 � s/
�j ˇkj ds < 1; i; k D 1; 2; : : : ; n:

(41)
Then, for arbitrary locally integrable functions qi W Œ0; 1/ ! R, i D 1; 2; : : : ; n,

possessing properties (18) and any real �i , i D 1; 2; : : : ; n, problem (37), (38), (39) has
a unique slowly growing solution. Furthermore, if qi and �i , i D 1; 2; : : : ; n, satisfy the
additional condition (26) for almost every t 2 Œ0; 1/, then the unique solution of problem
(37), (38), (39) has non-negative components.

Proof. It is sufficient to apply Corollary 2 with a D 0, b D 1, !ik.t/ D 1 � .1 � t /ˇik

and hi .t/ D .1 � t /i , t 2 Œ0; 1/, i; k D 1; 2; : : : ; n.

In the case of a scalar equation of the form

x0.t/ D
m

.1 � t /˛
x
�
1 � � .1 � t /ˇ

�
C q.t/; t 2 Œ0; 1/; (42)

with the additional condition

sup
t2Œ0;1/

.1 � t / jx.t/j < C1; (43)

where fm; ˛; ˇ; g � Œ0;C1/, 0 < � � 1; we arrive immediately at the following

Corollary 5. Let us assume that the inequality

 .1 � ˇ/ � ˛ > �1 (44)

holds and, moreover,

max
�
1

�


� . C �/�

C�
� ;

1

�
.1 � ��/

�
<
1

m
; (45)

where � WD 1 � ˛ � ˇ.
Then, for an arbitrary locally integrable function q 2 L1I loc.Œ0; 1/;R/ such that

Œ0; 1/ 3 t 7! .1 � t /q.t/ is Lebesgue integrable and any real � problem (42), (43)
has a unique solution satisfying the additional condition

x.0/ D �: (46)

Furthermore, if q and � satisfy the inequality

q.t/ � �
m�

.1 � t /˛
(47)
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for almost every t 2 Œ0; 1/, then the unique solution of problem (42), (43), (46) is non-
negative.

Proof. It is sufficient to apply Corollary 4 in the case where n D 1, p.t/ D m.1 � t /�˛ ,
!.t/ D 1 � �.1 � t /ˇ and h.t/ D .1 � t / , t 2 Œ0; 1/.

Remark 3. It follows from property (44) that coefficient function in (42) may have a non-
integrable singularity at the right-hand end of the interval if 0 < ˇ < 1.

6. Auxiliary statements

In the sequel we need an abstract theorem on operators in partially ordered normed spaces
[14, Theorem 16.2]. In order to state it, we first formulate definitions. We use [14] as the
main reference (see also [15]).

Let E be a normed space over R and P be a cone [15] in E, i. e., a non-empty closed
subset of E possessing the properties P \ .�P / D f0g and ˛1P C ˛2P � P for all
f˛1; ˛2g � Œ0;C1/. A cone P generates a natural partial ordering of E. As usual, we
shall write u 5P v and v =P u if and only if v � u 2 P .

Let us recall that a cone P � E in a Banach space hE; k�kE i is normal if and only if
the relation

inf f 2 .0;C1/ j kxkE � kykE 8fx; yg � P W y � x 2 P g < C1

is true. By definition, the cone P is reproducing in E if and only if an arbitrary element x
from E can be represented in the form x D u � v, where u and v belong to P (see, e. g.,
[14, 15]).

Definition 5. An operator T W E ! E is said to be positive if TP � P .

Definition 6. Let ˛ be an element of the cone P � E. An operator T W E ! E is said
to be ˛-bounded from above (along P ) if for an arbitrary u 2 P one can specify some
mu 2 N and cu 2 .0;C1/ such that

�TmuuC cu˛ 2 P: (48)

Theorem 3 ([14]). Let linear operator T W E ! E be positive with respect to the cone
P , ˛-bounded from above and the inequality

T˛ 5P ı˛; ˛ 2 P; (49)

is satisfied. Furthermore, let the cone P be normal and reproducing. Then the estimate

r.T / � ı (50)

is true.



12 V. Pylypenko and A. Rontó

For any x from C.Œa; b/;R/, let us put

.Sx/.t/ WD x.aC b � t /; t 2 .a; b�:

Lemma 1. A function x W Œa; b/ ! R is a solution of problem (1), (2), (3) if and only if
the function u W .a; b�! R defined by the equality u WD Sx is a solution of the problem

u0i .t/ D

nX
kD1

. Qlikuk/.t/C Qqi .t/; t 2 .a; b�; i D 1; 2; : : : ; n; (51)

sup
t2.a;b�

Qhi .t/jui .t/j < C1; i D 1; 2; : : : ; n; (52)

ui .b/ D �i ; i D 1; 2; : : : ; n; ; (53)

where Qqi WD �Sqi , Qhi WD Shi , and Qlik W C..a; b�;R/ ! L1I loc..a; b�;R/, are the linear
mappings given by the formula

Qlik WD �SlikS (54)

for i; k D 1; 2; : : : ; n.

Proof. This statement is obtained immediately by carrying out the substitution

u.t/ D x.aC b � t /; t 2 .0; 1�; (55)

in relations (1), (2), and (3).

Note that, in view of (11), the functions Qhi ; i D 1; 2; : : : ; n, possess the following
properties:

The functions Qhi W .a; b� ! .0;C1/, i D 1; 2; : : : ; n are non-decreasing and
such that

lim
t!aC

Qhi .t/ D 0; i D 1; 2; : : : ; n:
(56)

The following simple lemma concerns the solvability of problem (51), (52),(53) and
corresponding semi-homogeneous problem (51), (52) and

ui .b/ D 0; i D 1; 2; : : : ; n: (57)

Lemma 2. If the semi-homogeneous problem (51), (52), (57), is uniquely solvable for
arbitrary locally integrable functions Qqi W .a; b� ! R, i D 1; 2; : : : ; n, possessing the
properties

f Qhi Qqi j i D 1; 2; : : : ; ng � L1..a; b�;R/; (58)

then the same is true for problem (51), (52), (53) for arbitrary Qqi W .a; b� ! R, i D
1; 2; : : : ; n, possessing the properties (58) and arbitrary f�i j i D 1; 2; : : : ; ng � R.
Furthermore, if Qqi and �i , i D 1; 2; : : : ; n, satisfy the condition

nX
kD1

�k. Qlik1/.t/ � �Qqi .t/; i D 1; 2; : : : ; n; (59)

then the solution of problem (51), (52), (53) has non-negative components.
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Proof. Consider the inhomogeneous problem (51), (52), (53) and perform there the change
of variable according to the formula

v WD u � �: (60)

If u D .ui /niD1 is a solution of (51), (52), (53), then the function v D .vi /niD1 satisfies the
relations

v0i .t/ D

nX
kD1

. Qlikvk/.t/C Qqi .t/C

nX
kD1

. Qlik�k/.t/; t 2 .a; b�; i D 1; 2; : : : ; n; (61)

sup
t2.a;b�

Qhi .t/jvi .t/j < C1; i D 1; 2; : : : ; n; (62)

vi .b/ D 0; i D 1; 2; : : : ; n; (63)

and vice versa. Thus, if there exists a unique solution v D .vi /
n
iD1 W .a; b� ! Rn of

a semi-homogeneous problem (61), (62), (63) for all Qqi W .a; b� ! R, i D 1; 2; : : : ; n,
possessing the property (58), then the unique solution u D .ui /niD1 of problem (51), (52),
(53) is determined from relation (60).

It follows from the positivity of operators lik W C.Œa; b/;R/! L1I loc.Œa; b/;R/, i; k D
1; 2; : : : ; n, that the operators Qlik W C..a; b�;R/ ! L1I loc..a; b�;R/, i; k D 1; 2; : : : ; n,
defined by formulae (54) are negative. Then, in view of inequalities (59), the right-hand
side terms of the equations (61) are non-positive and, thus, the derivatives of the functions
vi ; i; k D 1; 2; : : : ; n; are non-positive. This means that the solution of problem (51),
(52), (53) has non-negative components.

Let us set Qh WD diag . Qh1; : : : ; Qhn/ and introduce a linear manifold X in C..a; b�;Rn/
by putting

X WD QClocI h..a; b�;R
n/: (64)

Lemma 3. The set X is a Banach space with respect to the norm

X 3 u D .ui /
n
iD1 7�! max

iD1;2;:::;n

 Z b

a

Qhi .s/
ˇ̌
u0i .s/

ˇ̌
ds C sup

�2.a;b�

Qhi .�/ jui .�/j

!
: (65)

The proof of Lemma 3 for n D 1 can be found in [16]. The case where n > 1 is
treated in a similar manner.

Lemma 4. The set
X0 WD fu 2 X j u.b/ D 0g (66)

is a closed linear subspace in X .

Proof. This statement is obvious from (64) and (65).
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Let us consider the set

K WD

�
u D .ui /

n
iD1 2 X j inf

t2.a;b�
ui .t/ � 0

and ess sup
t2.a;b�

u0i .t/ � 0 for all i D 1; 2; : : : ; n
�
: (67)

Lemma 5. The following assertions are true:

(1) The set K is a normal and reproducing cone in the space X ;

(2) The set
K0 WD K \X0 (68)

is a normal and reproducing cone in the space X0.

Proof. Assertion 1. It follows from [16, Lemma 5.8] that K is a regular cone in X . In
particular, K is normal (see, e. g., [15, Theorem 1.6]). It thus remains to show that the
cone K is reproducing in X .

We shall argue by analogy to the proof of the classical Jordan theorem (see, e. g., [17]).
Let us choose an arbitrary u 2 X and consider the functions �j D .�j i /niD1 W .a; b�! Rn,
j D 0; 1, where

.a; b� 3 t 7�! �0i .t/ WD Var
Œt;b�

ui C jui .b/j; (69)

.a; b� 3 t 7�! �1i .t/ WD Var
Œt;b�

ui C jui .b/j � ui .t/ (70)

for any i D 1; 2; : : : ; n.
Let us show that �0 2 X . Indeed, using the well-known property of the total variation

Var
Œt;b�

ui D

Z b

t

ˇ̌
u0i .s/

ˇ̌
ds; t 2 .a; b�;

we obtain thatZ b

a

Qhi .t/
ˇ̌
�00i .t/

ˇ̌
dt �

Z b

a

Qhi .t/
ˇ̌
u0i .t/

ˇ̌
dt < C1; i D 1; 2; : : : ; n; (71)

because u 2 X and, in particular, Qhu0 2 L1..a; b�;Rn/. It follows from (71) that the
derivative of function (69) is integrable with the weight Qhi . Furthermore, since Qhi , i D
1; 2; : : : ; n, are non-decreasing (see assumptions (56)), we have

sup
t2.a;b�

Qhi .t/Var
Œt;b�

ui D sup
t2.a;b�

Qhi .t/

Z b

t

ˇ̌
u0i .s/

ˇ̌
ds

� sup
t2.a;b�

Z b

t

Qhi .s/
ˇ̌
u0i .s/

ˇ̌
ds D

Z b

a

Qhi .t/
ˇ̌
u0i .t/

ˇ̌
dt < C1
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for i D 1; 2; : : : ; n; whence it follows that �0 2 X and, by virtue of (70), the function �1
is also an element of X .

Clearly, the function �0 is non-negative. Using the additivity of the total variation
(see, e. g., [17]), it is easy to show that function (69) is non-increasing. According to the
definition (67) of the set K, this means that �0 belongs to K.

The function �1 belongs to K as well. Indeed, let s and t be arbitrary points from
.a; b� such that s � t . By using the additivity of the total variation, we obtain

�1i .s/ � �1i .t/ D Var
Œs;b�

ui � ui .s/C ui .t/ � Var
Œt;s�

ui � Var
Œs;b�

ui

D �.ui .s/ � ui .t// � Var
Œt;s�

ui (72)

for i D 1; 2; : : : ; n. It follows from the definition of the total variation that

Var
Œt;s�

ui � jui .s/ � ui .t/j (73)

and, therefore, relation (72) yields the estimate

�1i .s/ � �1i .t/ � �.ui .s/ � ui .t// � jui .s/ � ui .t/j;

which implies that �1i .s/ � �1i .t/ for all i D 1; 2; : : : ; n. Considering the arbitrariness of
s and t , we conclude that �1i , i D 1; 2; : : : ; n, are non-increasing. Furthermore, applying
(73) at the point b, we get

�1i .t/ � jui .t/ � ui .b/j C jui .b/j � ui .t/

� .jui .t/j � jui .b/j/C jui .b/j � ui .t/ � 0

for any t 2 .a; b�. We have thus shown that �1 2 K. Finally, the obvious identity

u D �0 � �1;

in view of the arbitrariness of u, completes the proof of the fact that K is reproducing.
Assertion 2. The proof of this assertion is a repetition, with obvious modifications, of

the argument given above.

Let us put

.Tiu/ .t/ WD �

nX
kD1

Z b

t

. Qlikuk/.s/ ds; t 2 .a; b�; i D 1; 2; : : : ; n; (74)

for any function u from X0. Using mappings (74), we define an operator T W X0 !
QClocI h..a; b�;R

n/ by setting

.T u/.t/ WD

nX
iD1

ei .Tiu/.t/; t 2 .a; b�; (75)

for an arbitrary function u from X0, where ek , k D 1; 2; : : : ; n, are the vectors given by
formulae (10).
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Lemma 6. If the mappings Qlik W C..a; b�;R/! L1I loc..a; b�;R/, i; k D 1; 2; : : : ; n, are
negative , then for any u D .uk/

n
kD1

from X , there exists a certain �u 2 Œ0;C1/ such
that the estimate ˇ̌

. Qlikuk/.t/
ˇ̌
� �u

ˇ̌̌̌
Qlik

�
1

Qhk

�
.t/

ˇ̌̌̌
; t 2 .a; b�; (76)

holds for all i; k D 1; 2; : : : ; n.

The proof of Lemma 6 follows from that of [16, Lemma 5.10].

Lemma 7. If the mappings Qlik W C..a; b�;R/! L1I loc..a; b�;R/, i; k D 1; 2; : : : ; n, are
negative and possess properties

nX
kD1

Qhk Qlik

�
1

Qhk

�
2 L1..a; b�;R/; i D 1; 2; : : : ; n; (77)

then the following assertions are true:

(1) T .X0/ � X0;

(2) T .K0/ � K0;

(3) The operator T W X0 ! X0 is ˛-bounded from above, where ˛ D .˛i /
n
iD1 is a

vector function from X0 given by the formulae

˛i .t/ WD �

nX
kD1

Z b

t

�
Qlik

�
1

Qhk

��
.s/ds; t 2 .a; b�: (78)

Proof. Assertion 1. It is proved in [16, Lemma 5.10] that, under assumption (16), T .X/ �
X . On the other hand, it is obvious from (74) that

.T u/.b/ D 0

for any u from X . Using these facts and recalling definition (66) of X0, we arrive at the
desired inclusion.

Assertion 2 follows from definitions of the operator T and the cone K0 and negativity
of the mappings Qlik W C..a; b�;R/! L1I loc..a; b�;R/, i; k D 1; 2; : : : ; n.

To prove Assertion 3, let us choose an arbitrary vector function u D .uk/nkD1 fromK0
and consider the functions Tiu, i D 1; 2; : : : ; n. By virtue of Lemma 6, one can specify
a constant �u 2 Œ0;C1/ such that estimate (76) is true. Considering (74) and (78), we
obtain

.Tiu/
0.t/ D

nX
kD1

. Qlikuk/.t/ � ��u

nX
kD1

ˇ̌̌̌
Qlik

�
1

Qhk

�ˇ̌̌̌
.t/

D �u

nX
kD1

�
Qlik

�
1

Qhk

��
.t/ D �u˛

0
i .t/ (79)
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and

.Tiu/.t/ D �

nX
kD1

Z b

t

. Qlikuk/.s/ ds � ��u

nX
kD1

Z b

t

�
Qlik

�
1

Qhk

��
.s/ ds D �u˛i .t/

(80)
for any i D 1; 2; : : : ; n and t 2 .a; b�, In view of (67) and (68), relations (79) and (80)
mean that inclusion (48) holds with P WD K0, mu WD 1, and cu WD �u for all u 2 K0.
Therefore, it remains to show that ˛ 2 K0.

Indeed, the functions Qhi˛0i , i D 1; 2; : : : ; n, are integrable in view of assumption (77).
Furthermore, since Qhi , i D 1; 2; : : : ; n, are non-negative and non-decreasing, it follows
from equality (78) and the negativity of Qlik , i; k D 1; 2; : : : ; n, that

sup
t2.a;b�

Qhi .t/˛i .t/ D sup
t2.a;b�

 
� Qhi .t/

nX
kD1

Z b

t

�
Qlik

�
1

Qhk

��
.s/ds

!

� sup
t2.a;b�

nX
kD1

Z b

t

Qhi .s/

ˇ̌̌̌
Qlik

�
1

Qhk

�ˇ̌̌̌
.s/ds

� sup
t2.a;b�

nX
kD1

Z b

a

Qhi .s/

ˇ̌̌̌
Qlik

�
1

Qhk

�ˇ̌̌̌
.s/ds (81)

for all i D 1; 2; : : : ; n, and the integrals in (81) are finite due to assumption (77). Since
the inequalities

.�1/j˛
.j /
i .t/ � 0; t 2 .a; b�; j D 0; 1;

are an immediate consequence of (78), we have thus proved that ˛ belongs to K0. It
remains to recall Definition 6.

Lemma 8. A vector function u D .ui /
n
iD1 W .a; b� ! Rn from X0 is a solution of

problem (51), (52), (57), if and only if it is a solution of the functional equation

u D T uC ´; (82)

where ´ D .´i /niD1,

´i .t/ D �

Z b

t

Qqi .s/ds; i D 1; 2; : : : ; n: (83)

Proof. This last lemma is an immediate consequence of relations (74) and the definition
of the set X0.

7. Proofs

7.1. Proof of Theorem 1. We are going to use Theorem 3. First of all, according to
Lemma 1, we replace the original problem (1), (2), (3) by problem (51), (52), (53).
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By virtue of Lemma 3, 4 and 5, the setK0 given by (68) forms a normal and reproduc-
ing cone in the Banach space X0. Lemma 7 guarantees that the operator T W X0 ! X0
defined by formula (74) is positive with respect to the coneK0 and ˛-bounded from above,
where ˛ D .˛i /niD1 given by the formula (78). Therefore, in order to be able to apply The-
orem 3, we need to establish inequality (49), i. e., to show that T˛ � ı˛ and .T ˛/0 � ı˛0

pointwise on the given interval.
Carrying out the change of variables in the inequality (17) according to formula (55),

we get the relation

nX
kD1

Qlik

0@ nX
jD1

Z b

�

Qlkj

 
1

Qhj

!
.s/ ds

1A .t/ � �ı nX
kD1

Qlik

�
1

Qhk

�
.t/ (84)

for a. e. t 2 .a; b� and every i D 1; 2; : : : ; n. In view of (78), it follows immediately from
(84) that

nX
kD1

. Qlik˛k/.t/ � ı

nX
kD1

Qlik

�
1

Qhk

�
.t/; i D 1; 2; : : : ; n: (85)

Recalling that the functions ˛i , i D 1; 2; : : : ; n, are given by formulae (78), we obtain

˛0i .t/ D

nX
kD1

Qlik

�
1

Qhk

�
.t/; i D 1; 2; : : : ; n;

and

.Ti˛/
0.t/ D

nX
kD1

. Qlik˛k/.t/; i D 1; 2; : : : ; n; t 2 .a; b�;

whence, due to (85), we conclude that

.Ti˛/
0.t/ � ı˛0i .t/; t 2 Œa; b�; i D 1; 2; : : : ; n:

Then, taking into account the definition of (78), the linearity and negativity of the operator
Ql , and using inequalities (84), we have

.Ti˛/.t/ D �

nX
kD1

Z b

t

. Qlik˛k/.s/ds

D �

Z b

t

nX
kD1

Qlik

0@� nX
jD1

Z b

s

Qlkj

 
1

Qhj

!
.�/d�

1A .s/ds
� �ı

nX
kD1

Z b

t

Qlik

�
1

Qhk

�
.s/ds D ı˛i .t/; t 2 Œa; b�; i D 1; 2; : : : ; n:

Thus, all the conditions of Theorem 3 are satisfied and, therefore, we get estimate (48) for
the spectral radius of operator (75). Since ı < 1, it follows that equation (82) is uniquely
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solvable and, therefore, in view of the Lemma 8, the semi-homogeneous problem (51),
(52), (57) has a unique solution for arbitrary locally integrable functions Qqi W .a; b�! R,
i D 1; 2; : : : ; n, possessing the property (58). Finally, to obtain the assertion required,
it remains to refer to Lemmata 1 and 2. Finally, properties (77), (58), (59) are obtained
immediately by carrying out substitution (55) in relations (16), (18), (19) of Theorem 1.

7.2. Proof of Theorem 2. Theorem 2 is proved similarly to Theorem 1 by using [14,
Theorem 16.5].
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