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Zitná 25, 115 67 Prague 1, Czech Republic

September 9, 2009

Abstract

An extension to higher dimensions of the Bel-Debever characterization of the Weyl tensor
is considered. This provides algebraic conditions that uniquely determine the multiplicity
of a Weyl aligned null direction (WAND), and thus the principal Weyl type, in a frame
independent way. The specification of several “subtypes” is also encompassed by the criteria.
We further comment on a Cartan-like geometrical interpretation of WANDs in terms of
their invariance properties under parallel transport around infinitesimal loops. As a result,
restrictions on the algebraic types permitted in spacetimes that admit a recurrent/covariantly
constant vector field are outlined.

PACS: 04.50.-h, 04.20.-q, 04.20.Cv

1 Introduction

The Petrov classification of the Weyl tensor provides an invariant characterization of four-
dimensional geometries and it thus fundamental to the study of exact solutions of Einstein’s
equations. It admits various formulations that, while describing properties of different geometric
objects (bivectors, null directions, spinors), are in fact equivalent (see, e.g., [1–3] for reviews and
references).

In recent years, gravity in higher dimensions has become an active area of ongoing studies.
In particular, an algebraic classification of the Weyl tensor in any n > 4 spacetime dimensions
has been presented in [4, 5]. It characterizes the Weyl tensor in terms of the possible existence
of Weyl aligned null directions (WANDs) and their order of alignment. In four dimensions,
this is equivalent to the standard Petrov classification formulated in terms of the multiplicity
of principal null directions (PNDs) [5]. Since, however, there exists several approaches to the
Petrov classification when n = 4, it is natural to investigate whether such alternative methods
also extend to higher dimensions, and whether they are still equivalent to the scheme proposed
in [4,5]. Looking at the Weyl classification from a different viewpoint may help elucidate further
aspects of its geometric significance. Possibly, it can also lead to alternative definitions of
algebraically special types that may be convenient for specific calculations.

In four dimensions, one definition of the Petrov types is formulated in terms of algebraic
relations (contractions and wedge products) involving the Weyl tensor and a null vector field l
(for instance, l is a PND iff l[eCa]bc[dlf ]l

blc = 0). It was presented (with minor formal differences)
in several classic papers, apparently first by Bel and Debever [6–9] (see also, e.g., [10] and [1,3])
and it will be briefly reviewed in the following. An advantage of this method is that it does not
require a null frame to be introduced, so that definitions of algebraic special types are manifestly
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frame-independent. This proved useful, for instance, in the analysis of the peeling properties of
radiative spacetimes [10]. Further, equations of the Bel-Debever type arise naturally in the study
of spacetimes that admit a geometrically privileged (e.g., recurrent or covariantly constant) null
vector field (see [1, 3] and the discussion to follow), thus providing an immediate constraint on
the algebraic type of the corresponding Riemann/Weyl tensor.

It was observed in [5] that the aforementioned four-dimensional PND condition carries over
with no changes into higher dimensions, and can then be used as a definition of WANDs for any
n ≥ 4.1 Indeed, the explicit calculation of the Weyl type of certain black rings [11, 12] relied
on that. However, in [11] it was pointed out that the standard four-dimensional criteria [1, 3]
for algebraically special types are only necessary conditions in higher dimensions and do not
thus provide a complete algebraic classification.2 It is the main purpose of this paper to present
an extension of the Bel-Debever criteria that fully characterize the principal algebraic types of
the Weyl tensor in arbitrary dimension n ≥ 4 (section 2). Most “subtypes” (see p. L39 of [4]
and the summary below) will be also described, and the well-known four dimensional results
will be recovered for n = 4. In addition, building on an early observation by Cartan [14],
we provide a geometrical characterization of WANDs as null direction that are invariant under
parallel transport around appropriate infinitesimal loops (section 3). Several Weyl types will thus
be singled out by requiring the existence of null directions with certain invariance properties.
Possible applications in the study of holonomy are then mentioned. Comments on the Weyl
types compatible with invariance of non-null vectors will conclude the paper.

2 Bel-Debever criteria

2.1 Classification of the Weyl tensor in higher dimensions

The classification of the Weyl tensor in higher dimensions was presented in [4, 5] and has since
been discussed in several papers, see, e.g., [11] and the review [15]. It suffices here to summarize
only the basic definitions needed in the following. One first sets up a frame consisting of two
null vectors m(0) = l, m(1) = n and n − 2 orthonormal spacelike vectors m(i) (from now on,
0, 1 and i, j, . . . = 2, . . . , n− 1 are frame indices), with the only non-zero components of the flat
frame metric defined by η01 = 1 and ηij = δij (so that m(i) = m(i)), and the spacetime metric

by gab = 2l(anb) + δijm
(i)
a m

(j)
b . Then one considers the frame components of the Weyl tensor.

If there exists a vector field l such that C0i0j = 0, then l is a WAND and the Weyl tensor is
algebraically special. The possible further vanishing of components of lower boost order [4, 5]
determines the order of alignment of l, and the (principal) Weyl type of a spacetime is defined
according to the following scheme:3

Type I: C0i0j = 0
Type II: C0i0j = C010i = C0ijk = 0
Type III: C0i0j = C010i = C0ijk = C01ij = C0101 = C0i1j = Cijkl = 0
Type N: C0i0j = C010i = C0ijk = C01ij = C0101 = C0i1j = Cijkl = C101i = C1ijk = 0.

(1)

In the case of types II, III and N the corresponding WAND l is called “multiple”. The spacetime
is conformally flat (type O) if the Weyl tensor vanishes identically. Note that in the above
definitions there is some redundancy, for the Weyl tensor is tracefree (and has well-known index

1An important difference, though, is that in higher dimensions real WANDs need not exist, in general [4, 5],
as opposed to the well-known situation in four dimensions.

2For example, type N ⇒ Cabcdld = 0, but Cabcdld = 0 6⇒ type N for n > 4 [11] (explicit simple examples are
mentioned in [13]), whereas n = 4 spacetimes are of type N (or O) ⇔ Cabcdld = 0 [1, 3] – cf. also the following
discussion.

3The secondary classification [4] (which involves the alignment of a possible second WAND n) need not be
discussed explicitly here since the Bel-Debever criteria can be applied to any null direction in order to determine
its alignment.
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symmetries), so that [4]

C0i0i = 0 = C1i1i, C010i = C0jij , C101i = C1jij ,

2C0(i|1|j) = −Cikjk, 2C0[i|1|j] = C01ij , 2C0101 = −Cijij = 2C0i1i. (2)

However, keeping the full set (1) without the simplifications coming from (2) enables one to
analogously classify also Riemann-like tensors [5].

One can also define specific “subtypes” when additional conditions are met, namely [4] (for
each subtype it is understood that the previous conditions (1) for the corresponding principal
type must also hold): Type Ia: C010i = 0; Type IIa: C0101 = 0; Type IIb: C0(i|1|j) = C0101δij/(n−
2); Type IIc: the “Weyl part” of Cijkl vanishes; Type IId: C01ij = 0; Type IIIa: C011i = 0. For
type II some subtypes can also hold simultaneously, in which case we shall use the notation IIab,
IIabd, etc..

2.2 Criteria for multiple WANDs

As already mentioned, ref. [5] has proved that in any higher dimensions

l is a WAND ⇔ l[eCa]bc[dlf ]l
blc = 0, (3)

exactly as in four dimensions. We have extended this to similar conditions characterizing all
principal types (1) and most subtypes, as summarized in table 1. These were arrived at by
considering the frame decomposition of the Weyl tensor [4] and looking for suitable contrac-
tions/“wedge products” with l so as to single out components with specific boost weights, and
requiring these to vanish. The resulting conditions can also be straightforwardly checked a pos-
teriori by contraction with the vectors of an arbitrary frame adapted to l, as we now exemplify
in the case of type II and N (the remaining cases can be dealt with similarly).

Type II is specified by the equation l[eCa]b[cdlf ]l
b = 0, i.e., (recall l = m(0)) l[eCa]0[cdlf ] = 0.

Components of the l.h.s. of this equations are clearly non-zero only when c, d, f take different
values. In addition, any non-zero frame-projection must contain mf

(1) = nf (up to permutation
of f with c or d). We are thus left with the two equations l[eCa]00i = 0 and l[eCa]0ij = 0.
All frame projections of these are identically satisfied except the product with me

(1)m
a
(k), thus

giving, respectively, Ck00i = 0 and Ck0ij = 0, Q.E.D. (The argument works also in the reversed
direction, i.e. the vanishing of these frame components is also a sufficient condition for having
l[eCa]b[cdlf ]l

b = 0.)
For type N we have Cab[cdle] = 0. Similarly as above, this reduces to the two equations

Cab0i = 0 and Cabij = 0. By all possible contractions with the frame vectors, the first of these
gives C0i0j = C010i = C0i1j = C0ijk = 0. From the second equation we additionally obtain
C01ij = Cijkl = C1kil = 0, which completes the proof.

2.3 Comments on the criteria

The Bel-Debever criteria can be employed to obtain the order of alignment of any null direction.
In a given spacetime, finding a WAND whose order of alignment is as large as possible determines
the principal Weyl type. This is understood when giving the type in the third column of table 1.

Discussing the secondary classification [4] is straightforward and need not be done explicitly
here, since one has only to study similar conditions for a possible second WAND n (not parallel
to l). For example, for type D one needs two multiple WANDs to exist, i.e.

Type D: l[eCa]b[cdlf ]l
b = 0, n[eCa]b[cdnf ]n

b = 0. (4)

We do not claim that the presented criteria are the only possible characterization of the
algebraic types, and indeed it is not difficult to find different but equivalent ones, at least in
some cases (this is true also in four dimensions [1,3], where one can alternatively also formulate
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Bel-Debever conditions Vanishing Weyl components Weyl type

l[eCa]bc[dlf ]l
blc = 0 (*) C0i0i I

l[eCa]bcdl
blc = 0 (*) C0i0j ; C010i Ia

l[eCa]b[cdlf ]l
b = 0 C0i0j ; C0ijk (C010i) II

l[eCa]b[cdlf ]l
b = 0,

Cabcdl
blc = 0 C0i0j ; C010i, C0ijk; C0101 IIa

Cab[cdle]l
b = 0 C0i0j ; C010i, C0ijk; C01ij IId

l[eCab][cdlf ] = 0 C0i0j ; C0ijk (C010i); Cijkl (C0101, C0(i|1|j)) IIabc

Cabc[dle]l
c = 0 (*) C0i0j ; C010i, C0ijk; C0i1j (C0101, C01ij) IIabd

Cabcdl
d = 0 (*) C0i0j ; C010i, C0ijk; C01ij , C0101, C0i1j ; C101i II′abd

l[eCab][cdlf ] = 0,
Cabc[dle]l

c = 0 C0i0j ; C010i, C0ijk; C0i1j (C0101, C01ij), Cijkl III
l[eCab][cdlf ] = 0,
Cabcdl

d = 0 C0i0j ; C010i, C0ijk; C01ij , C0101, C0i1j , Cijkl; C101i IIIa
Cab[cdle] = 0 C0i0j ; C010i, C0ijk; C01ij , C0i1j (C0101), Cijkl; C1ijk (C101i) N

Table 1: Bel-Debever criteria in n ≥ 4 dimensions in order of increasing specialization of the algebraic
type of the Weyl tensor. For each row, the condition in the first two columns are equivalent (in the
second column, the Weyl components are sorted by boost weight, components with different weight are
separated by semicolon, and l is used as a frame vector). They imply that the algebraic type is at least
as special as indicated in the third column (it can be more special if additional conditions are satisfied
by l or, in the case of the first two rows, if there exists another WAND, different from l, with higher
order or alignement). Viceversa, if the type is the one given in the third column, the corresponding
WAND must satisfy the conditions in the first two columns. Components that vanish only thanks to
the tracefree property (2) of the Weyl tensor (e.g., C0ijk = 0 ⇒ C010i = 0) are given in round brackets:
bearing this in mind, the Bel-Debever criteria can thus be used also to (partly) classify Riemann-like
tensors. Conditions marked by (*) are those usually considered in four dimensions [1, 3], in which case
the possible algebraic (Petrov) types are fewer, and one has indeed the following equivalences: Ia ≡II,
II≡IIb ≡IIc, IIabd ≡III, II′abd ≡IIIa ≡N (and IIabc ≡IIa, but such a notation for this subtype is generally
not used in four-dimensions). Note that II≡IIc, II′abd ≡IIIa and IIabd ≡III hold also in five dimensions
since Cijkl can be expressed in terms of C0(i|1|j) [16].

them in terms of the self-dual Weyl tensor). For instance, type Ia can equivalently be defined
by Cabcdl

bld = λlalc.
In addition to those of [4], we have introduced a further subtype II′abd (whose definition is

given in table 1), since it corresponds to an algebraic condition that is both simple (it gives type
N in four dimensions) and geometrically relevant (see section 3). Additional subtypes can also
be specified by more involved criteria or by combinations of those given above, but it seems of
little interest to explore all possible subcases in full detail.

While various higher dimensional solutions (including, e.g., vacuum or charged supersym-
metric black holes/rings) have been classified, and certain families of solutions defined by their
algebraic type have been analyzed, several important issues deserves further study (see, e.g., [15]
and references therein). It is hoped that the Bel-Debever criteria presented above will be helpful
in future work. In what follows some applications are mentioned.
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3 Geometrical interpretation of WANDs: invariance under par-
allel transport

3.1 Null vector

In 1922 Cartan observed [14] that in four dimensions the Weyl tensor defines at any spacetime
point four privileged null directions, which have the property of being invariant under parallel
transport around a certain (appropriately defined) family of infinitesimal parallelograms (see
also [17] for a comment on Cartan’s paper). Here we further develop Cartan’s description and
extend it to higher dimensions, in order to provide a geometrical characterization of WANDs and
(to some extent) of their multiplicity (with a natural, partial overlap with the previous section).
In passing, we will also observe that the Petrov types of four dimensional vacuum spacetimes
can be fully characterized this way (except for type D, for which properties of a second PND
must also be considered).

Let l be a null vector at a spacetime point P . If we are given another two (infinitesimal)
vectors ε and δ at P (not parallel to each other), we can build an infinitesimal parallelogram
with one vertex at P . Then, a basic result of Riemannian geometry tells us that if we parallely
transport l around such a parallelogram, when we are back at P we will have, in general, a
new vector l′ which differs from l by Ra

bcdl
bεcδd (see, e.g., [18]). One can now ask how the

Riemann tensor is restricted by requiring that: (i) the null direction defined by l is preserved
under parallel transport around the parallelogram, i.e. Ra

bcdl
bεcδd = λla; (ii) the null vector l

is itself preserved, i.e. Ra
bcdl

bεcδd = 0. These conditions can be imposed on various classes of
parallelograms, resulting in different curvature restrictions. We will discuss this for five families
of geometrically privileged parallelograms, defined by: 1) ε and δ are, respectively, parallel and
orthogonal to l (i.e., ε = γl and δ = αl + βim

(i) in a frame adapted to l); 2) ε is arbitrary but
δ is parallel to l; 3) both ε and δ are orthogonal to l; 4) both ε and δ are arbitrary (generic
parallelogram); 5) ε is arbitrary but δ is orthogonal to l. As it turns out, cases 4) and 5) give
equivalent conditions, so that case 5) will be omitted hereafter. It is then straightforward to
work out the necessary and sufficient conditions on the frame Riemann components for (i) or
(ii) to happen. This is summarized in table 2. Note that the conditions in column 4) are of
particular geometrical meaning since they arise, e.g., in the study of spacetimes admitting a
recurrent (la;b = lapb) or covariantly constant (la;b = 0) vector field (this, in turn, makes them
relevant to discussions of holonomy, as we briefly exemplify below).

Analogous conditions arise in terms of components of the Weyl tensor if we consider the
equations Ca

bcdl
bεcδd = λla and Ca

bcdl
bεcδd = 0, so that specific Weyl types are implied. For

vacuum spacetimes one has Rabcd = Cabcd, and the interpretation of Weyl types in terms of
properties of l under parallel transport, as discussed above, applies (in particular, a generic
WAND l can be characterized as a null direction invariant under parallel transport around all
infinitesimal parallelograms whose sides are parallel and orthogonal to l itself). For a generic,
non-vacuum spacetime this is no longer true since also the Ricci tensor will influence the parallel
transport of l. If desired, it is easy to find under what restrictions on the matter content various
conditions Weyl and Riemann components become equivalent. In particular, most of the types
given in table 2 hold also for Einstein spaces (see table 2 for details). It turns out (cf. the
comments in the caption of table 1) that in four dimensions all Petrov types can be characterized
this way (in vacuum). It it thus worth summarizing this in table 3.

While a comprehensive study of the relation between holonomy and Weyl types is well beyond
the scope of this paper, let us just observe that the results of table 2 can be used to constraint
the possible types allowed by certain holonomy groups. For instance, if the holonomy is (a
subgroup of) Sim(n−2), then there is a null direction invariant under parallel transport around
any closed path. From row (i), column 4) of table 2 it then follows that in vacuum the Weyl
type is IIabd (or more special). For proper Einstein spaces4 one has C0i1j ∝ Rδij so that the

4Higher dimensional Einstein spacetimes with holonomy Sim(n − 2) have recently been studied in [19]. A
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1) ε ‖ l, δ ⊥ l 2) ε generic, δ ‖ l 3) ε ⊥ l, δ ⊥ l 4) ε generic, δ generic

R0i0j R0i0j R0i0j R0i0j

(i) Ra
bcdl

bεcδd = λla I R010i Ia R0ijk II R010i, R0ijk IIabd

R0i1j (R01ij) (X)

R010i R010i

(ii) Ra
bcdl

bεcδd = 0 Ia R0101 R01ij IId R0101 II′abd

(X) R101i (X)

Table 2: Frame components of the Riemann tensor that must vanish (at a spacetime point P ) in order
for the null direction defined by l to be invariant under parallel transport around various families of
infinitesimal parallelograms with one vertex at P (the vanishing of such components is also a sufficient
condition). The parallelograms are defined by the infinitesimal vectors ε and δ at P (specified in the
upper row of the table), as explained in the main text. In row (ii) (λ = 0) not only the null direction
but also the vector l is itself invariant and, in order to avoid repetition, it is understood that in each case
the Riemann components that vanish in row (i) (λ 6= 0 case), same column, must still vanish. Riemann
components in each box are given in order of decreasing boost weight, components with equal weights
being on the same line (the component R01ij , given in brackets, vanishes thanks to the cyclicity of the
Riemann tensor). In each box it is also given the algebraic type of the corresponding Weyl tensor in the
case of vacuum spacetimes (Rabcd = Cabcd) – except in one special case, subcase of the type Ia, which
does not correspond to any classified type. The same Weyl types also apply to Einstein spaces with
R 6= 0, except in the three cases marked by (X) (since R0i1j and R0101 will differ from the corresponding
Weyl components by terms proportional to R). (Note that in some cases the tracelessness of the Weyl
tensor plays a crucial role in determining the type, so that not all of these types apply to the Riemann
tensor of a generic, non-vacuum spacetime.)

type is only IIbd. For n = 4 this means the Petrov types III and II, respectively, in agreement
with the results of [20–22]. If the holonomy is instead (a subgroup of) E(n − 2), there is an
invariant null vector and from row (ii), column 4) we get the Weyl type II′abd in vacuum (proper
Einstein spaces are now forbidden). In four dimensions this is just type N, which again agrees
with [20–22].

3.2 Timelike vector

In the above discussion we have focused on invariance properties of a null vector under parallel
transport. It is natural to investigate what happens if one instead considers vectors with non-zero
length. We thus conclude the paper by briefly commenting on this case.

Let t be a timelike vector. Due to norm conservation one has to discuss only the equation
Ra

bcdt
bεcδd = 0, since a non-null direction can not be otherwise preserved under parallel trans-

port. We restrict here to the case when this hold for any infinitesimal parallelogram (other
possibilities can be handled similarly). We then have

Ra
bcdt

b = 0. (5)

We observe that this equation arises also in the study of spacetimes with a covariantly constant
vector field t, i.e. when the holonomy is (a subgroup of) SO(n− 1), and it is thus of particular
interest to clarify how it constraints the Weyl type.

Without loss of generality we can take t to be normalized to −1. Now, any null vector must
be of the form α(t ± s), where s ⊥ t is an appropriate spacelike vector (normalized to +1).
In particular, we can always construct a null frame with l = (−t + s)/

√
2, n = (t + s)/

√
2,

where l is an arbitrary null vector (and n is its “time-reflected”). Then eq. (5) is equivalent to

“proper” Einstein space is one that satisfies Rab = Rgab/n with R 6= 0.
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ε ‖ l, δ ⊥ l ε generic, δ ‖ l ε ⊥ l, δ ⊥ l ε generic, δ generic

Ψ0 Ψ0 Ψ0 Ψ0

Ca
bcdl

bεcδd = λla Ψ1 Ψ1 Ψ1

l is a PND II II Ψ2 III
Ψ1

Ca
bcdl

bεcδd = 0 <(Ψ2) =(Ψ2)
II Ψ3 N

Table 3: The same as in table 2, but in terms of the Weyl tensor, in the special case of n = 4 spacetime
dimensions. The equations in the first column determine which Weyl components (in Newman-Penrose
notation) vanish, and viceversa. The vanishing of Ψ0, by itself, does not tell anything about the Petrov
type, but means that l is a PND. Other conditions imply some algebraically special types, as specified in
each box (when <(Ψ2) = 0 or =(Ψ2) = 0, but not both simultaneously, the type is still II). The equations
in the first column are essentially equivalent to the standard Bel-Debever conditions. For instance, for
type III one has Ca

bcdl
b = λcdl

a, which for type N reduces to Ca
bcdl

b = 0 (since ε and δ are arbitrary in
those cases). In the particular case of vacuum spacetimes, the geometric interpretation discussed in the
main text and in table 2 apply, and the Petrov types describe invariance properties of the corresponding
PND(s) under parallel transport.

Rabc0 = Rabc1, which gives the following conditions on frame components

R0i0j = R1i1j = R0i1j = R1i0j , R0i01 = 0 = R1i01, R0ijk = R1ijk, R0101 = 0. (6)

These equations constraint the Riemann type of any spacetime that admits a timelike vector
satisfying (5) (one has also R01ij = 0 but this is not independent of (6)). More specifically, it is
easy to see that the only possible Weyl types are G, Ii, D and O.5 The Ricci tensor is also highly
constrained and, in particular, proper Einstein spacetimes are not permitted (a contraction of (5)
gives Rbdt

b = 0).
Let us discuss in more detail the case of vacuum spacetimes, i.e., Rabcd = Cabcd. In general l

will not be a WAND, so that the type is G (algebraically general), but with the constraints (6).
In the case when l is a WAND (i.e., C0i0j = 0), then by (6) also n is; the additional constraints
now are C0i1j = 0 (or Φij = 0 in the notation of [16]), C0i01 = 0 = C1i01, C0ijk = C1ijk, and
the type is Iia (meaning type Ii and Ia, with respect to both WANDs, simultaneously). If, in
addition, l is a mutiple WAND (i.e., C0ijk = 0), then n is multiple as well, and (since Φij = 0)
the type is Dabd. In four and five dimensions this actually means that the Weyl tensor vanishes
and that the spacetime is flat (see [7,23] and the comments in the caption of table 1). However,
this is not the case for n > 5, since the Weyl part of Cijkl can still be non-zero.6 To summarize,
only the algebraic types G, Iia, Dabd (and O) are compatible with (5) in vacuum.

Let us finally just mention that studying (5) when t is spacelike does not seem to be of great
interest in this context, in general. Indeed, given any Lorentzian metric (of any Riemann/Weyl
type) one can add extra-dimensions by taking a direct product with a flat metric. Any spacelike
vector with non-zero components only along the extra-dimensions will automatically satisfy (5)
in the product geometry, without imposing any additional constraints on the Riemann/Weyl
tensor (cf. [23] for n = 4).

5This is consistent with the result of [16] for static spacetimes. Note, indeed, that for any static spacetimes there
exists a spacetime conformal to it that admits a covariantly constant timelike vector field (and thus obeys (5)).

6For instance, non-flat vacuum spacetimes of type Dabd can be easily constructed in n ≥ 6 dimensions by
taking a direct product of a Minkowski space with a curved but Ricci-flat Riemannian space (these are the pp -
waves of type D mentioned in [13] – cf. the results of [16] for the properties of the Weyl tensor of direct product
geometries). Less trivial examples are provided by the exceptional “µ = 0” Robinson-Trautman spacetimes [24]
(see [16,25] for explicit solutions in any n ≥ 7 dimensions).
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