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Abstract

We study a bifurcation problem for the equation ∆u+λu+ g(λ, u) = 0 on a rectangle

with Signorini boundary conditions on a part of one edge and mixed (zero Dirichlet and

Neumann) boundary conditions on the rest of the boundary. Here λ ∈ R is the bifurcation

parameter, and g is a small perturbation. Under certain assumptions concerning an

eigenfunction u0 corresponding to an eigenvalue λ0 of the linearized equation with the

same nonlinear boundary conditions, we prove the existence of a local smooth branch

of nontrivial solutions bifurcating from the trivial solutions at λ0 in the direction of u0.

The contact sets of these nontrivial solutions are intervals which change smoothly along

the branch. The main tool of the proof is a local equivalence of the unilateral BVP to

a system consisting of a corresponding classical BVP and of two scalar equations. To

this system classical Crandall-Rabinowitz type local bifurcation techniques (scaling and

Implicit Function Theorem) are applied.
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1 Introduction

Let Ω := (0, 1)× (0, `) be a rectangle with ` > 0. Let its boundary be divided into a “Dirichlet

part” ΓD := ({0}×(0, `))∪({1}×(0, `)), a “unilateral part” ΓU := ((γ1, γ2)×{0}) ⊂ ((0, 1)×{0})
with 0 < γ1 < γ2 < 1 and a “Neumann part” ΓN := ∂Ω \ (ΓD ∪ ΓU) (see Fig. 1). We will study

bifurcation from the trivial solution of the Signorini boundary value problem

∆u + λu + g(λ, u) = 0 in Ω, (1.1)

u = 0 on ΓD, ∂νu = 0 on ΓN , (1.2)

u ≤ 0, ∂νu ≤ 0, u∂νu = 0 on ΓU , (1.3)

where λ is a real positive bifurcation parameter and g : R+ × R → R is a C1-smooth function

(where R+ := (0,∞)). We will assume that there are C > 0 and q > 2 such that for all λ ∈ R+

g(λ, 0) = ∂ug(λ, 0) = 0, (1.4)

|g(λ, u)|+ |∂ug(λ, u)| ≤ C(1 + |u|q) for all u ∈ R. (1.5)

Furthermore, we will assume that we are given an eigenvalue λ0 > 0 and a corresponding

eigenfunction u0 to the (nonlinear) eigenvalue problem

∆u + λu = 0 in Ω (1.6)

with boundary conditions (1.2), (1.3) and that the contact set

A(u) := {x ∈ (γ1, γ2), : u(x, 0) = 0}

of the eigenfunction u0 is a strong subinterval of (γ1, γ2):

A(u0) = [α0, β0] with γ1 < α0 < β0 < γ2. (1.7)

Our main goal is to prove that under certain natural assumptions a smooth local branch

of nontrivial weak solutions of the problem (1.1)–(1.3) bifurcates at λ0 in the direction u0 from

the branch of trivial solutions, and that this branch contains all nontrivial solutions satisfying

u ∈ W 2,2(Ω), lying near (λ0, 0) and such that u
‖u‖ is close to u0 (see Theorem 2.3). This branch

will be parametrized as (λ̂(s), û(s)), where the function λ̂ : [0, s0) → R is C1-smooth and

the mapping s → û(s) is C1-smooth as the map into L2(Ω) and continuous as a map into

W 1,2(Ω). The contact sets A(û(s)) are intervals in (γ1, γ2) changing also C1-smoothly along

the bifurcating branch.

The basic ideas are close to those from the previous paper [3]. We show that the variational

inequality, which is a weak formulation of our problem, is after a suitable scaling equivalent
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in a neighborhood of the bifurcation point to a certain smooth operator equation in a suitable

Hilbert space, and that this smooth operator equation can be solved locally by means of the

Implicit Function Theorem. We show that for all solutions under consideration, the contact

set is an interval A(u) = [α, β]. Then they are simultaneously solutions of a mixed boundary

value problem, but only solutions of this boundary value problem which are in W 2,2(Ω) and

satisfying simultaneously (1.3) are really solutions of the variational inequality. Moreover, the

parts of the boundary where Dirichlet and Neumann conditions are fulfilled, that means α, β,

change with λ. Therefore we transform our problem by using a diffeomorpism of the interval

[0, 1] onto itself in such a way that we can work with the mixed boundary value problem with

fixed boundary data but with α, β in the coefficients of the transformed equation. The operator

equation mentioned is in fact a weak formulation of this transformed problem together with

two scalar conditions guaranteing the W 2,2(Ω) regularity.

Let us note that the basic ideas of the proof of our main result are explained in [4].

0 1
0

`
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Iα,β Eα,βEα,β
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ΓD ΓD

ΓNΓN

Figure 1: The domain Ω.

2 Main Results

We introduce a real Hilbert space H with scalar product 〈·, ·〉, defined by

H := {u ∈ W 1,2(Ω) : u = 0 on ΓD}, 〈u, ϕ〉 :=
∫

Ω

∇u · ∇ϕ dx dy, u, ϕ ∈ H,
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and its closed convex subset

K := {u ∈ H : u ≤ 0 on ΓU}

and consider the weak formulation of (1.1)–(1.3) and (1.6), (1.2), (1.3) in terms of the variational

inequalities

u ∈ K :

∫
Ω

(∇u · ∇(ϕ− u)− (λu + g(λ, u))(ϕ− u)) dx dy ≥ 0 for all ϕ ∈ K (2.1)

and

u ∈ K :

∫
Ω

(∇u · ∇(ϕ− u)− λu(ϕ− u)) dx dy ≥ 0 for all ϕ ∈ K, (2.2)

respectively. We will denote by ‖ · ‖ the norm in H which is equivalent on our space H to the

usual Sobolev norm.

An essential part of our considerations is related to mixed boundary value problems of

the following type: Take the differential equation (1.1) and accompany it with the boundary

conditions (1.2) and

u = 0 on Iα,β, ∂yu = 0 on Eα,β, (2.3)

where
Iα,β := {(x, 0) ∈ ΓU : α < x < β} = (α, β)× {0},
Eα,β := {(x, 0) ∈ ΓU : γ1 < x < α or β < x < γ2} = ΓU \ Iα,β,

and α and β are parameters with γ1 < α < β < γ2.

Let γ1 < α0 < β0 < γ2 be the parameters from assumption (1.7), and set

δ0 :=
1

3
min{α0 − γ1, β0 − α0, γ2 − β0}, D := {(α, β) : |α− α0| < δ0, |β − β0| < δ0}.

We introduce coordinate transformations in Ω, i.e. diffeomorphisms of Ω onto itself, which

map Iα,β onto Iα0,β0 and Eα,β onto Eα0,β0 . These coordinate transformations will be used to

transform the mixed boundary value problem (1.1),(1.2),(2.3), which has (α, β)-independent

coefficients in the equation, but (α, β)-dependent boundary conditions, into a mixed boundary

value problem, which has (α, β)-dependent coefficients in the equation, but (α, β)-independent

boundary conditions.

For any (α, β) ∈ D let ξα,β : [0, 1] → [0, 1] be a function such that

the map (α, β, x) 7→ ξα,β(x) is C∞-smooth on D × [0, 1], (2.4)

ξα0,β0(x) = x for all x ∈ [0, 1], (2.5)

ξα,β(0) = 0, ξα,β(1) = 1,

ξ−1
α,β(x) = x + α− α0 for |x− α0| ≤ δ0,

ξ−1
α,β(x) = x + β − β0 for |x− β0| ≤ δ0,

ξα,β is a diffeomorphism of [0, 1] onto [0, 1],

 for all (α, β) ∈ D, (2.6)
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where ξ−1
α,β is the inverse function to ξα,β. For (α, β) ∈ D let us define the linear bounded

operator Φα,β : L2(Ω) → L2(Ω) by

(Φα,βf)(x, y) := f(ξα,β(x), y) for any f ∈ L2(Ω). (2.7)

The following technical lemma will be proved in the Appendix:

Lemma 2.1 The map (α, β, f) 7→ Φα,βf is continuous from D×H into H, and for any q > 1

it is C1-smooth from D × W 1,q(Ω) into Lq(Ω). Similarly for the families of inverse operators

Φ−1
α,β and adjoint operators Φ∗

α,β.

In order to calculate the L2(Ω)-adjoint operators Φ∗
α,β we use change of integration variable

x̄ = ξα,β(x) and get∫
Ω

(Φ∗
α,βf)(x, y)ϕ(x, y) dx dy =

∫
Ω

f(x, y)ϕ(ξα,β(x), y) dx dy =

∫
Ω

f(ξ−1
α,β(x), y)ϕ(x, y)

ξ′α,β(ξ−1
α,β(x))

dx dy,

i.e.

(Φ∗
α,βf)(x, y) =

f
(
ξ−1
α,β(x), y

)
ξ′α,β(ξ−1

α,β(x))
. (2.8)

In order to calculate the transformed differential operators we calculate ∂x(Φα,βu)(x, y) =

∂xu(ξα,β(x), y)ξ′α,β(x) and ∂2
xx(Φα,βu)(x, y) = ∂2

xxu(ξα,β(x), y)
(
ξ′α,β(x)

)2
+∂xu(ξα,β(x), y)ξ′′α,β(x).

Denoting

∆α,β := ∂x

(
ξ′α,β

(
ξ−1
α,β(x)

)
∂x

)
+

∂2
yy

ξ′α,β(ξ−1
α,β(x))

, ∇α,β :=

√ξ′α,β

(
ξ−1
α,β(x)

)
∂x,

∂y√
ξ′α,β

(
ξ−1
α,β(x)

)
 ,

we get ∆α,β = Φ∗
α,β∆Φα,β and∫

Ω

∇α,βu · ∇α,βv dx dy =

∫
Ω

∇Φα,βu · ∇Φα,βv dx dy (2.9)

for u ∈ W 1,p(Ω), v ∈ W 1,q(Ω) and p, q > 1 with 1/p + 1/q = 1. Moreover, it follows from (2.6)

that

∆α,β = ∆, ∇α,β = ∇ for |x− α0| < δ0 or |x− β0| < δ0. (2.10)

Next, let us choose a smooth cut-off function χ : [0,∞) → [0, 1] such that

χ(r) = 1 for 0 ≤ r ≤ δ0/2, χ(r) = 0 for r ≥ δ0, (2.11)

and let us define functions X(−1/2), Y (−1/2) : Ω → R by

X(−1/2)(α0 + r cos ω, r sin ω) := χ(r)r−1/2 sin ω
2
,

Y (−1/2)(β0 + r cos ω, r sin ω) := χ(r)r−1/2 sin ω
2
.

(2.12)
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Here r is the distance of (x, y) ∈ Ω from (α0, 0), ω is the angle measured anticlockwise from the

segment (x, y), (α0, 0) to Iα0,β0 in the definition of X(−1/2), while r is the distance of (x, y) ∈ Ω

from (β0, 0), ω is the angle measured clockwise from the segment (x, y), (β0, 0) to Iα0,β0 in the

definition of Y (−1/2). The following lemma (see [3], Lemma 2.4) states the main properties of

the functions X(−1/2) and Y (−1/2):

Lemma 2.2 (i) We have X(−1/2), Y (−1/2) ∈ Lq(Ω) for all 1 ≤ q < 4, X(−1/2), Y (−1/2) ∈ W 1,q(Ω)

for all 1 ≤ q < 4
3

and ∆X(−1/2), ∆Y (−1/2) ∈ C∞(Ω).

(ii) We have X(−1/2) = Y (−1/2) = 0 on ΓD ∪ Iα0,β0 and ∂νX
(−1/2) = ∂νY

(−1/2) = 0 on

ΓN ∪ Eα0,β0.

(iii) For any (α, β) ∈ D it holds ∇α,βX(−1/2) = ∇X(−1/2), ∆α,βX(−1/2) = ∆X(−1/2),

∇α,βY (−1/2) = ∇Y (−1/2), ∆α,βY (−1/2) = ∆Y (−1/2),∫
Ω

∆α,βX(−1/2)ϕ dx dy =
∫

Ω
∆Φα,βX(−1/2)Φα,βϕ dx dy,∫

Ω
∆α,βY (−1/2)ϕ dx dy =

∫
Ω

∆Φα,βY (−1/2)Φα,βϕ dx dy,

}
for all ϕ ∈ L1(Ω) (2.13)

and ∫
Ω

∆α,βX(−1/2)ϕ dx dy = −
∫

Ω
∇α,βX(−1/2) · ∇α,βϕ dx dy,∫

Ω
∆α,βY (−1/2)ϕ dx dy = −

∫
Ω
∇α,βY (−1/2) · ∇α,βϕ dx dy,

for all ϕ ∈ W 1,p(Ω) with ϕ = 0 on ΓD ∪ Iα0,β0 and p > 4.

 (2.14)

Define a closed subspace H0 ⊂ H by H0 := {u ∈ H : u = 0 on Iα0,β0}. Further, for

(α, β) ∈ D let Xα,β, Yα,β ∈ H0 be defined by∫
Ω

(
∇α,βXα,β · ∇α,βϕ−∆X(−1/2)ϕ

)
dx dy =

=

∫
Ω

(
∇α,βYα,β · ∇α,βϕ−∆Y (−1/2)ϕ

)
dx dy = 0 for all ϕ ∈ H0. (2.15)

In other words, Xα,β and Yα,β are the weak solutions to the mixed boundary value problems

−∆α,βu = f in Ω,

u = 0 on ΓD ∪ Iα0,β0 ,

∂νu = 0 on ΓN ∪ Eα0,β0

with f = ∆X(−1/2) and f = ∆Y (−1/2), respectively. Standard results about smooth dependence

of weak solutions to linear elliptic boundary value problems on the coefficients yield that the

map (α, β) ∈ D 7→ Xα,β ∈ W 1,2(Ω) is C∞-smooth. Finally, denote

Xα,β := Xα,β + X(−1/2), Y α,β := Yα,β + Y (−1/2), (2.16)
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and
a11 :=

∫
Ω

(
Xα0,β0∂xu0∂αξα0,β0 + u0

(
∂αXα0,β0 + Xα0,β0∂αξ′α0,β0

))
dx dy,

a12 :=
∫

Ω

(
Xα0,β0∂xu0∂βξα0,β0 + u0

(
∂βXα0,β0 + Xα0,β0∂βξ′α0,β0

))
dx dy,

a21 :=
∫

Ω

(
Y α0,β0∂xu0∂αξα0,β0 + u0

(
∂αYα0,β0 + Y α0,β0∂αξ′α0,β0

))
dx dy,

a22 :=
∫

Ω

(
Y α0,β0∂xu0∂βξα0,β0 + u0

(
∂βYα0,β0 + Y α0,β0∂βξ′α0,β0

))
dx dy.

(2.17)

Our main result is the following

Theorem 2.3 Let (λ0, u0) be a solution to (2.2) with ‖u0‖ = 1 and (1.7) such that there exists

d > 0 with

∂yu0 > 0 on Iα̂(s),β̂(s) ∪ ((0, 1)× (0, d)) , (2.18)

that

λ0 is simple as an eigenvalue of the BVP (1.6), (1.2), (2.3) with (α, β) = (α0, β0), (2.19)

and that

det

(
a11 a12

a21 a22

)
6= 0. (2.20)

Further, assume that g is C1-smooth and (1.4), (1.5) hold.

Then there exist s0 > 0 and mappings λ̂, α̂, β̂ : [0, s0) → R and û : [0, s0) → H with

λ̂(0) = λ0, û(0) = 0, α̂(0) = α0 and β̂(0) = β0 such that the following holds:

(i) For all s ∈ (0, s0) the pair (λ, u) =
(
λ̂(s), û(s)

)
is a solution to (2.1) with A (û(s)) =[

α̂(s), β̂(s)
]
, and û(s) ∈ W 2,p(Ω) for all p ≥ 2, and there exists ε > 0 such that

∂yû(s) > 0 on Iα̂(s),β̂(s) ∪ ((0, 1)× (0, ε)) .

(ii) There exists a C1-smooth map v̂ : [0, s0) → H such that v̂(0) = 0 and

û(s) = sΦα̂(s),β̂(s) (u0 + v̂(s)) for all s ∈ (0, s0).

(iii) The functions λ̂, α̂, β̂ are C1-smooth from [0, s0) into R and the map û is continuous

from [0, s0) into H and C1-smooth from [0, s0) into L2(Ω). If, moreover, g is Ck-smooth with

some k ≥ 2 and

|∂j
ug(λ, u)| ≤ C(1 + |u|q) for all j = 1, . . . k, λ ∈ R+, u ∈ R, (2.21)

then λ̂, α̂, β̂ and v̂ are Ck-smooth.

(iv) There exists η > 0 such that for any solution (λ, u) ∈ R × (H \ {0}) to (2.1) with

u ∈ W 2,2(Ω) and |λ − λ0| + ‖u‖ +
∥∥∥ u
‖u‖ − u0

∥∥∥ < η there exists s ∈ (0, s0) with u = û(s) and

λ = λ̂(s).
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Let us comment on the main assumptions of Theorem 2.3.

The conditions (2.19) and (2.20) are generically fulfilled. They have to be verified numeri-

cally.

One could ask why we don’t need any simplicity or isolatedness assumption concerning λ0

as an eigenvalue of (2.2). The eigenvalues of a variational inequality need not be isolated and

they can cover even an interval in general (even in a finite dimensional case, see [20]). Moreover,

an eigenvalue of a variational inequality can have more than one normalized eigenvector, and

also those normalized eigenvectors can be isolated or not. The next corollary shows that under

the assumptions of Theorem 2.3 a certain isolatedness property of (λ0, u0) as as eigenpair to

(2.2) is necessarily satisfied:

Corollary 2.4 Let (λ0, u0) be a solution to (2.2) with ‖u0‖ = 1, (1.7), (2.19), (2.20) and

(2.18). Then there exists η > 0 such that there is no couple (λ, u) satisfying (2.2), ‖u‖ 6= 0,

u ∈ W 2,2(Ω) and 0 < |λ− λ0|+ ‖ u
‖u‖ − u0‖ < η.

Example 2.5 Let us consider the eigenvalue problem (1.6) with the boundary conditions

u = 0 on ΓD, ∂νu = 0 on ΓN ∪ ΓU . (2.22)

The eigenvalues and eigenfunctions of this problem are

λm,n = (mπ)2 + (
nπ

`
)2, um,n(x, y) = sin mπx · cos

nπ

`
y, m = 1, 2, . . . , n = 0, 1, 2, . . . ,

respectively. If ` < 23/2 then the first four eigenvalues are λ1,0 < λ2,0 < λ3,0 < λ1,1. Let us

assume that 1/3 < γ1 < γ2 < 2/3. Then

u3,0 > 0, u1,1 > 0 on ΓU . (2.23)

It follows from [20] that there exists an eigenvalue λ0 of the variational inequality (2.2) between

any two eigenvalues of the problem (1.6), (2.22) having eigenfunctions which are positive on

ΓU . Numerical simulation (see Fig. 2) shows that the corresponding eigenfunction u0 fulfills

the condition (2.18). The method developed in [14] shows that there is at least one eigenvalue

λ0 ∈ (λ3,0, λ1,1) of (2.2) with the corresponding eigenvector which arises by a certain deformation

of u3,0 (which is pressed down on ΓU in a certain way) such that the resulting function u0

satisfies (2.18). (Variational inequalities on cones K with nonempty interiors are considered in

[14] but the method works also for general cones, the interior being replaced by a pseudo-interior

considered in [20], cf. [15]). This method can show the existence of couples λ0, u0 satisfying the

assumption (2.18) and lying also between other particular couples of eigenvalues λm,n, λk,l.
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x y

Figure 2: The eigenfunction u0 with ` = 0.27, λ0 = 99.8, α0 = 0.38 and β0 = 0.62.

3 Equivalence of the Variational Inequality to an Oper-

ator Equation

One of the grounding of the proof of our main result is a certain equivalence of our variational

inequality (2.1) in a neighbourhood of a bifurcation point (λ0, 0) to an operator equation. In

order to formulate this result, let us define a mapping F : R×H → H by

〈F (λ, u), ϕ〉 := −
∫

Ω

∇u∇ϕ− [λu + g(λ, u)]ϕ dx dy for all ϕ ∈ H. (3.1)

For (α, β) ∈ D let us denote

Hα,β := {u ∈ H : u = 0 on Iα,β},

H0 := Hα0,β0 = {u ∈ H : u = 0 in Iα0,β0}, (3.2)

H1 := im ∂uF (λ0, 0). (3.3)

In particular, we have ∫
Ω

∇u0∇ϕ− λ0u0ϕ dx dy = 0 for all ϕ ∈ H0. (3.4)

We use the notation from Section 2. Moreover, let us define

vα,β := Φα,β(Xα,β + X(−1/2)), wα,β := Φα,β(Yα,β + Y (−1/2)). (3.5)
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Theorem 3.1 Let the couple (λ0, u0) satisfy (2.2), (1.7) and (2.18) with some d ∈ (0, `).

Further, assume (1.4), (1.5). Then the following assertions hold.

(i) For any η > 0 there exists ζ > 0 such that if (s, λ, v, α, β) ∈ R+ × R+ ×H1 ×D satisfies

〈F (λ, sΦα,β(u0 + v)) , Φα,βϕ〉 = 0 for any ϕ ∈ H0, (3.6)∫
Ω
[λsΦα,β(u0 + v) + g(λ, sΦα,β(u0 + v))]vα,β dx dy = 0,∫

Ω
[λsΦα,β(u0 + v) + g(λ, sΦα,β(u0 + v))]wα,β dx dy = 0

(3.7)

and s + ‖v‖+ |λ− λ0|+ |α− α0|+ |β − β0| < ζ, then the couple (λ, u) with

u = sΦα,β(u0 + v) (3.8)

satisfies (2.1), A(u) = [α, β], ‖u‖+ ‖ u
‖u‖ − u0‖ < η and u ∈ W 2,p(Ω) for all p > 1.

(ii) For any ε > 0 there exists η > 0 such that for any couple (λ, u) ∈ R+×(H \{0}) satisfying

(2.1), u ∈ W 2,2(Ω) and ‖u‖+‖ u
‖u‖−u0‖+|λ−λ0| < η there exists (s, v, α, β) ∈ R+×H1×D

satisfying (3.6), (3.7), (3.8), s + ‖v‖+ |α− α0|+ |β − β0| < ε, A(u) = [α, β].

For the proof we need additional notation and regularity results.

For any fixed (α, β) ∈ D, let us define functions X
(1/2)
α and Y

(1/2)
β by

X
(1/2)
α (α + r cos ω, r sin ω) := χ(r)r1/2 sin ω

2
,

Y
(1/2)
β (β + r cos ω, r sin ω) := χ(r)r1/2 sin ω

2
,

where the function χ is from (3.23) and r, ω are as in the definition of X(−1/2), Y (−1/2) in (2.12).

Observation 3.2 Let us consider an arbitrary given r > 1. We work in the two-dimensional

case and therefore W 1,2(Ω) ⊂ Lp(Ω) for all p > 1. Let us choose p = qr with q from (1.5). Then

the mapping (λ, u) 7→ g(λ, u) is continuous as a map of R+ × Lp(Ω) into ∈ Lr(Ω) under the

assumption (1.5) due to the theorems about Nemyckii operator (see e.g. [22, Proposition 26.6]).

Consequently, it is continuous as a map of R+ ×H into any Lr(Ω), r > 1. The same holds for

the mapping (λ, u) 7→ ∂ug(λ, u), and even for the mapping (λ, u) 7→ ∂
(j)
u g(λ, u) (j = 1, 2, ..., k)

if g is Ck-smooth and (2.21) is fulfilled with some k > 1.

Remark 3.3 Let u be a weak solution of the mixed boundary value problem

−∆u = f in Ω (3.9)

with (1.2), (2.3), where f ∈ Lp(Ω), p > 1 is such that 2
p′

+ 1
2

(with 1
p

+ 1
p′

= 1) is non integer

(which is true if p 6= 4). It follows from [8, Theorem 2] that we can write u as

u = ũ + K1
α,β(f)X(1/2)

α + K2
α,β(f)Y

(1/2)
β , (3.10)
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where ũ ∈ W 2,p(Ω) and K1
α,β(f), K2

α,β(f) ∈ R. The coefficients K1
α,β(f), K2

α,β(f) are indepen-

dent of the choice of δ and cut-off function χ because X
(1/2)
α and Y

(1/2)
β are independent of this

choice in Bδ/2(α) and Bδ/2(β), respectively.

Let us emphasize that the functions X
(1/2)
α , Y

(1/2)
β belong neither to W 2,2(Ω) nor to C1(Ω),

because of the singularity in the first derivatives at (α, 0) or (β, 0), respectively. In particular,

∂xX
(1/2)
α (α−, 0) = −∞, ∂xY

(1/2)
β (β+, 0) = +∞. (3.11)

It follows that in the case p > 2 we have u ∈ C1(Ω) if and only if u ∈ W 2,2(Ω), and this is true

if and only if K1
α,β(f) = K2

α,β(f) = 0. In this case even u ∈ W 2,r(Ω) for all r > 1.

Lemma 3.4 Assume that (1.5) is fulfilled with some q > 1. Let (λ, u, α, β) ∈ R×H ×D, let

u be a weak solution of (1.1), (1.2), (2.3). Then (3.10) holds with f = λu + g(λ, u) (i.e. with

K1
α,β(λu + g(λ, u)), K2

α,β(λu + g(λ, u)) and some ũ satisfying ũ ∈ W 2,r(Ω) for all r > 1.

Proof. Consider a given r > 1. We have f := λu + g(λ, u) ∈ Lr(Ω) (see Observation 3.2), and

Remark 3.3 used for this f implies that (3.10) holds with ũ ∈ W 2,r(Ω).

Remark 3.5 Let (λ, u, α, β) ∈ R×H ×D, let u be a weak solution of (3.9), (1.2) and (2.3).

It follows from [19, Theorem 4.2.3] that we have for r → 0

u(α + r cos ω, r sin ω) = K1
α,β(f)X

(1/2)
α (α + r cos ω, r sin ω) + O(r3/2),

u(β + r cos ω, r sin ω) = K2
α,β(f)Y

(1/2)
β (β + r cos ω, r sin ω) + O(r3/2),

(3.12)

where K1
α,β(f), K2

α,β(f) ∈ R are the coefficients from Remark 3.3.

Lemma 3.6 For any (α, β) ∈ D we have∫
Ω
∇vα,β · ∇ϕ dx dy =

∫
Ω
∇wα,β · ∇ϕ dx dy = 0

for all ϕ ∈ W 2,2(Ω) with ϕ = 0 on ΓD ∪ Iα,β,
(3.13)

K1
α,β(f) =

2

π

∫
Ω

fvα,β dx dy, K2
α,β(f) =

2

π

∫
Ω

fwα,β dx dy for all f ∈ L2(Ω). (3.14)

Proof. In order to prove (3.13), let us take such ϕ. Due to the definition of Φα,β, vα,β, ∇α,β,

Lemma 2.2(iii), (iv) and the imbedding W 2,2(Ω) ⊂ W 1,q(Ω) for all 2 ≤ q < ∞ we get∫
Ω
∇ϕ · ∇vα,β dx dy =

∫
Ω
∇Φα,βΦ−1

α,βϕ · ∇Φα,β(Xα,β + X(−1/2)) dx dy

=
∫

Ω
∇α,βΦ−1

α,βϕ · ∇α,βXα,β − Φ−1
α,βϕ∆X(−1/2) dx dy

which is zero due to (2.15) with Φ−1
α,βϕ instead of ϕ there (let us observe that we have Φ−1

α,βϕ ∈
W 2,2(Ω) and Φ−1

α,βϕ = 0 on ΓD ∪ Iα0,β0 . Similarly one can show that
∫

Ω
∇ϕ · ∇wα,β dx dy = 0

and the assertion (3.13) is proved.
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In order to prove (3.14), let us realize that it follows from (2.9), (2.13), from Lemma 2.2(iv)

and (2.15) that ∫
Ω
∇Φα,βXα,β · ∇Φα,βϕ−∆Φα,βX(−1/2)Φα,βϕ dx dy

=
∫

Ω
∇α,βXα,β · ∇α,βϕ−∆α,βX(−1/2)ϕ dx dy

=
∫

Ω
∇α,βXα,β · ∇α,βϕ−∆X(−1/2)ϕ dx dy = 0

for all ϕ ∈ W 1,2(Ω) with ϕ = 0 on ΓD ∪ Iα0,β0 .

It follows that Φα,βXα,β is a weak solution to

−∆Φα,βXα,β = ∆Φα,βX(−1/2) in Ω,

Φα,βXα,β = 0 on ΓD ∪ Iα,β,

∂νΦα,βXα,β = 0 on ΓN ∪ Eα,β.

(3.15)

Remark 3.5 implies that we have

(Φα,βXα,β)(α + r cos ω, r sin ω) = K̃1
α,βX

(1/2)
α (α + r cos ω, r sin ω) + O(r3/2)

= K̃1
α,βr1/2 sin ω

2
+ O(r3/2) for r → 0+, ω ∈ [0, π]

(3.16)

with some K̃1
α,β ∈ R.

Furthermore, with help of the property (2.6) it is easy to see from (3.23) and (2.12) that

(Φα,βX(−1/2))(α + r cos ω, r sin ω) = X(−1/2)(α0 + r cos ω, r sin ω) = r−1/2 sin ω
2

for r ∈ (0, δ/2], ω ∈ [0, π].
(3.17)

Adding (3.16) and (3.17) we obtain for vα,β = Φα,β(X(−1/2) + Xα,β) the expansion

vα,β(α + r cos ω, r sin ω) = r−1/2 sin ω
2

+ K̃1
α,βr1/2 sin ω

2
+ O(r3/2)

for r → 0+, ω ∈ [0, π].
(3.18)

Moreover, (3.15) and Lemma 2.2(ii) and (iii) imply that vα,β satisfies

∆vα,β = 0 in Ω,

vα,β = 0 on ΓD ∪ Iα,β,

∂νvα,β = 0 on ΓN ∪ Eα,β.

(3.19)

Let us emphasize that we have only vα,β ∈ W 1,q(Ω) for 1 ≤ q < 4/3 and vα,β is neither classical

nor weak solution of the boundary value problem (3.19) (which has in W 1,2(Ω) only the trivial

solution). Cf. [10, Lemma 2.3.1] and the text after it. We have ∆u = −f in Ω, u satisfies the

boundary conditions (1.2), (2.3) and the expansion (3.12) holds by Remark 3.5. This together

with (3.18) imply that we have

∂ru = 1
2
K1

α,β(f)r−1/2 sin ω
2

+ O(r1/2),

∂rvα,β = −1
2
r−3/2 sin ω

2
+ 1

2
K̃1

α,βr−1/2 sin ω
2

+ O(r1/2).
(3.20)
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Let us set Ωρ(α) := Ω \Bρ(α), Γρ(α) := ∂Bρ(α) ∩ Ω for ρ ∈ (0, δ/2). The Green formula gives∫
Ωρ(α)

∆uvα,β − u∆vα,β dx dy =

∫
∂Ωρ(α)

∂νuvα,β − u∂νvα,β dΓ. (3.21)

By using (1.1), (1.2), (2.3), (3.19) and (3.12), (3.18), (3.20) with r = ρ we obtain from (3.21)

that∫
Ωρ(α)

−fvα,β dx dy

=
∫

Γρ(α)
∂νuvα,β − u∂νvα,β dΓ

=
∫

Γρ(α)
∂ruvα,β − u∂rvα,β dΓ

= ρ
∫ π

0
(1

2
K1

α,β(f)ρ−1/2 sin ω
2

+ O(ρ1/2))(ρ−1/2 sin ω
2

+ K̃1
α,βρ1/2 sin ω

2
+ O(ρ3/2))

−(K1
α,β(f)ρ1/2 sin ω

2
+ O(ρ3/2))(−1

2
ρ−3/2 sin ω

2
+ 1

2
K̃1

α,βρ−1/2 sin ω
2

+ O(ρ1/2)) dω

= K1
α,β(f)

∫ π

0
sin2 ω

2
dω + O(ρ) = K1

α,β(f)π
2

+ O(ρ).

The limiting process for ρ → 0+ then gives∫
Ω

−fvα,β dx dy = K1
α,β(f)

π

2

and our assertion follows. Similarly for K2
α,β(f) and the proof is done.

Proposition 3.7 A point (s, λ, v, α, β) ∈ R2×H1×D satisfies (3.6) if and only if u from (3.8)

is a weak solution of the boundary value problem (1.1), (1.2), (2.3). In this case, (s, λ, v, α, β)

satisfies (3.7) if and only if u ∈ W 2,2(Ω). Then also u ∈ W 2,r(Ω) for all r > 1.

Proof. The statement about the equivalence of (3.6) with a weak formulation of (1.1), (1.2),

(2.3) follows from standard considerations and the fact that Φα,β is a one-to-one mapping of

Hα0,β0 onto Hα,β. The equivalence of the C1(Ω) regularity with the condition (3.7) follows from

Remark 3.3 and the form (3.14) of Kj
α,β(λu + g(λ, u)), j = 1, 2 (Lemma 3.6).

Let us set

E(u) := {(x, 0) ∈ ΓU ; u(x, 0) 6= 0}, I(u) := ΓU \ E(u) = intA(u))× {0}.

(the interior in ΓU).

Proposition 3.8 Let Ω′ ⊂ Ω be a sub-domain such that {(γ1, 0), (γ2, 0)} /∈ Ω′. Then for any

(λ, u) ∈ R+ ×H satisfying (2.1) we have u ∈ W 2,2(Ω′), the equation (1.1) is fulfilled a.e. in Ω

and the boundary conditions (1.2), (1.3) hold in the sense of traces. If, moreover, I(u) ⊂ ΓU

then u ∈ W 2,2(Ω).

In fact we will have even u ∈ W 2,p(Ω) with all p > 2 for our solutions.
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Proof. follows by a combination of known results formulated usually only for particular bound-

ary value problems (pure Dirichlet, pure Neuman and Signorini-Dirichlet). For the completeness

we will explain it in more details.

First, we will show that a solution of (2.1) satisfies u ∈ W 2,2(Ω′
U) for any sub-domain

Ω′
U ⊂ Ω such that Ω′

U ∩∂Ω is a closed segment in ΓU . It is known ([9, Theorem 3.2.3.1]) that if

ΩU is a convex domain with a smooth boundary ∂ΩU , ΓU is an open part of ∂ΩU , then for any

f ∈ L2(ΩU) there is unique weak solution w ∈ W 2,2(ΩU) of the problem −∆w + w = f in ΩU

with the Signorini condition (1.3) on ΓU and w = 0 on ∂Ω \ ΓU . For any Ω′
U mentioned there

exists a larger sub-domain ΩU ⊂ Ω such that ΩU ∩ ∂Ω is a closed segment in ΓU containing

Ω′
U ∩ ∂Ω in the interior. There is a smooth cut-off function χU : Ω → [0, 1] such that

χU = 0 in Ω \ ΩU , χU = 1 in Ω′
U , ∂yχU = 0 on ΓU . (3.22)

We will show below that the function wU := χUu satisfies the variational inequality

w ∈ KU := {ϕ ∈ W 1,2(ΩU) : ϕ ≤ 0 on ΓU , ϕ = 0 on ∂ΩU \ ΓU},∫
ΩU
∇w∇(ϕ− w) + w(ϕ− w) dx dy ≥

∫
ΩU

f(ϕ− w) dx dy for all ϕ ∈ KU

(3.23)

with

f = (λu + g(λ, u)) · χU − 2∇u · ∇χU −∆χU · u + wU ∈ L2(ΩU).

This is a weak formulation of −∆w + w = f in ΩU with (1.3) on ΓU , w = 0 on ∂Ω \ ΓU , and

therefore wU ∈ W 2,2(ΩU), which implies immediately u ∈ W 2,2(Ω′
U).

Hence, for the proof of u ∈ W 2,2(Ω′
U) it is sufficient to show (3.23). Standard considerations

imply that if u is a solution of (2.1) then ∆u ∈ L2(Ω), consequently the normal derivative is

defined as a functional on the space of traces W 1/2,2(∂Ω) (see e.g. [17]) or on the whole H (see

[2, Remark 5.2] for a brief self-contained explanation), and that the equation (1.1) is fulfilled

a.e. in Ω, the boundary conditions (1.3) are fulfilled in the sense of the functional mentioned

(cf. [2, Observation 5.2] for details). In particular, we have∫
∂Ω

∂νuϕ dΓ =

∫
ΓU

∂νuϕ dΓ ≤ 0 for all ϕ ∈ K,

∫
∂Ω

∂νuu dΓ =

∫
ΓU

∂νuu dΓ = 0,

where the integrals are understood in the sense of the value of the functional ∂νu at ϕ and u,

respectively. Using these facts we get for all ϕ ∈ KU∫
ΩU
∇wU∇ϕ + wUϕ dx dy =

∫
ΩU

[χU∇u + u∇χU ]∇ϕ + wUϕ dx dy

=
∫

ΩU
∇u∇(χUϕ)−∇u∇χU · ϕ + u∇χU∇ϕ + wUϕ dx dy

≥
∫

ΩU
[λu + g(λ, u)]χUϕ−∇u∇χU · ϕ + u∇χU∇ϕ + wUϕ dx dy

=
∫

ΩU
[λu + g(λ, u)]χUϕ− 2∇u∇χU · ϕ +∇χU(∇uϕ + u∇ϕ) + wUϕ dx dy

=
∫

ΩU
[λu + g(λ, u)]χUϕ− 2∇u∇χU · ϕ−∆χU · uϕ + wUϕ dx dy,
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∫
ΩU
∇wU∇wU + wUwU dx dy =

∫
ΩU
−∆(χUu)χUu + wUwU dx dy +

∫
∂Ω

∂ν(χUu)χUu dΓ

=
∫

ΩU
(−∆u)χ2

Uu− 2∇u∇χU · χUu−∆(χU)χUu2 + wUwU dx dy +
∫

∂Ω
∂ν(χUu)χUu dΓ,

which implies (3.23).

Further, we will show that a solution of (2.1) satisfies u ∈ W 2,2(Ω′
D) for any sub-domain

Ω′
D ⊂ Ω such that Ω′

D∩∂Ω ⊂ ΓD. It is known ([9, Theorem 3.2.1.2]) that if ΩD is a domain with

a smooth boundary ∂ΩD, then for any f ∈ L2(ΩD) there is unique weak solution w ∈ W 2,2(ΩD)

of the problem ∆w = f in ΩD, w = 0 on ∂ΩD. For any Ω′
D mentioned there exist a larger

sub-domain ΩD ⊂ Ω such that ΩD ∩ ∂Ω ⊂ ΓD and a cut-off function χD : Ω → [0, 1] such that

χD = 0 in Ω \ ΩD, χD = 1 in Ω′
D.

If u satisfies (2.1) then w = χDu is a weak solution of the problem ∆w = f in ΩD, w = 0 on

∂ΩD with a certain f ∈ L2(Ω) and therefore w ∈ W 2,2(ΩD), which implies u ∈ W 2,2(Ω′
D).

Similarly we can derive u ∈ W 2,2(Ω′
N) for any sub-domain Ω′

N ⊂ Ω such that Ω′
N ∩∂Ω ⊂ ΓN

from the known fact that the week solution of the problem −∆w + w = f in ΩN , ∂νw = 0 on

∂ΩN is in W 2,2(ΩN) (see [9, Theorem 3.2.1.3]). In this case we take a cut-off function satisfying

χN = 0 in Ω \ ΩN , χN = 1 in Ω′
N , ∂yχN = 0 on ΓN ∩ ∂ΩN .

Since our Ω has only right angles, the solution of (2.1) (which satisfies ∆u ∈ L2(Ω), (1.1)

a.e. in Ω and (1.2)) is W 2,2(ΩC) also in a neighbourhood ΩC of the corners.

Any sub-domain Ω′ from the assumptions can be covered by the domains Ω′
U , Ω′

D, ΩN and

ΩC mentioned above, and it follows W 2,2(Ω′). If we have in addition I(u) ⊂ ΓU then ∂νu = 0

in a neighborhoods (in ΓU ∪ΓN) of the points (γ1, 0), (γ2, 0), and these neighbourhoods can be

covered by extending of the set ΩN and Ω′
N , respectively. Hence, we obtain u ∈ W 2,2(Ω).

Lemma 3.9 Let (λ0, u0) ∈ R+ × H satisfy (2.2), let Ω′ be a sub-domain of Ω, Ω′ ⊂ Ω ∩ ΓD.

Then u0 ∈ W 2,r(Ω′) and u ∈ W 2,r(Ω′) for any r > 1 and any (λ, u) ∈ R+ × H satisfying the

variational inequality (2.1) or the mixed boundary value problem (1.1), (1.2), (2.3). For any

r > 1, R > 0 there are C > 0 and η > 0 such that if (λ, u) ∈ R+×H with |λ| ≤ R, 0 < ‖u‖ < η

satisfies (2.1) or (1.1), (1.2), (2.3), then

‖ u

‖u‖
− u0‖W 2,r(Ω′) ≤ C

(
|λ− λ0|+ ‖ u

‖u‖
− u0‖+ ‖u‖

)
, (3.24)

‖ u

‖u‖
− u0‖C2(Ω′) ≤ C

(
|λ− λ0|+ ‖ u

‖u‖
− u0‖+ ‖u‖

)
. (3.25)

Proof. Let us consider a smooth sub-domain Ω′′ of Ω′ such that Ω′ ⊂ Ω′′ ∪ ΓD, Ω′ ∩ ΓD ⊂
int (Ω′′ ∩ΓD) (the interior in ΓD). If r > 1 and bj ∈ L∞(Ω′′) (j = 1, 2) then there is C > 0 such
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that for any weak solution w of the problem

∆w +
∑
j=1,2

bj(x)∂xj
w = f in Ω′′, w = 0 on ∂Ω′′ (3.26)

with f ∈ Lr(Ω′′) we have w ∈ W 2,r(Ω′) and

‖w‖W 2,r(Ω′) ≤ C(‖w‖Lr(Ω′′) + ‖f‖Lr(Ω′′)) (3.27)

(see e.g. [7, Theorems 9.15, 9.13]). Let χD : Ω → [0, 1] be a smooth cut-off function such that

χD = 0 in Ω \ Ω′′, χD = 1 in Ω′.

It is easy to see that χDu, χDu0 satisfy in the weak sense

∆(χDu)− 2∇χD∇u = χD∆u + u∆χD = χD(λu + g(λ, u)) + u∆χD in Ω′′, χDu = 0 on ∂Ω′′,

∆(χDu0)− 2∇χD∇u0 = χD∆u0 + u0∆χD = λ0χDu0 + u0∆χD in Ω′′, χDu0 = 0 on ∂Ω′′.

Dividing the first equation by ‖u‖, subtracting and defining w = χDu
‖u‖ − u0, we get (3.26) with

bj = −2∂xj
χD and

f = (λ− λ0)χDu0 + (λχD + ∆χD)

(
u

‖u‖
− u0

)
+ χD

g(λ, u)

‖u‖
.

We have f ∈ Lr(Ω′′) for any r > 1 by Observation 3.2 and therefore (3.27) holds. It follows

from (1.4) and (1.5) that
‖g(λ,u)‖Lr(Ω)

‖u‖ → 0 if ‖u‖ → 0 (see Lemma 6.2 in Appendix for details).

In particular, there is η > 0 such that
‖g(λ,u)‖Lr(Ω)

‖u‖ ≤ C‖u‖ for all (λ, u) ∈ R+ × H satisfying

‖u‖ < η. Due to the continuity of the embedding H ⊂ Lr(Ω) and the boundedness of λ under

consideration we obtain (3.24) from (3.27).

The proof of (3.25) will be done in a similar way. Because of the embedding of W 2,r(Ω′)

into C1,γ(Ω′) with certain γ, we obtain from (3.24) the estimate

‖ u

‖u‖
− u0‖C1,γ(Ω′) ≤ C

(
|λ− λ0|+ ‖ u

‖u‖
− u0‖+ ‖u‖

)
. (3.28)

the function w defined above satisfy due to (3.26) the equation

∆w = f in Ω′′, w = 0 on ∂Ω′′ (3.29)

now with

f = (λ− λ0)χDu0 + (λχD + ∆χD)

(
u

‖u‖
− u0

)
+ 2∇χD

(
∇u

‖u‖
− ∇u0

)
+ χD

g(λ, u)

‖u‖

(i.e. the gradients of u and u0 are now included into f). In order to use the estimate

‖w‖C2(Ω′) ≤ C(‖w‖C(Ω′) + ‖f‖C0,γ(Ω′)) (3.30)
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from [7, Theorem 4.12] it remains because of (3.28) to realize that

‖g(λ, u)‖C0,γ(Ω′)

‖u‖
≤ C‖u‖. (3.31)

This becomes obvious by having in mind again the embedding of W 2,r(Ω′) into C1,γ(Ω′),

Lemma 6.2 and Hölder inequality by which we obtain

‖g(λ, u)‖C0,γ(Ω′)

‖u‖
≤ C

‖g(λ, u)‖W 2,r(Ω′)

‖u‖
≤ C

‖∂ug(λ, u)∂xu + ∂ug(λ, u)∂yu‖Lr(Ω′)

‖u‖
≤ C‖u‖.

Now, (3.30) together with (3.28) give (3.25).

Remark 3.10 For any p > 2 sufficiently close to 2 there is R > 0 such that all weak solutions

of the mixed boundary value problem (3.9), (1.2), (2.3) with f ∈ L2(Ω), (α, β) ∈ D, satisfy

‖u‖W 1,p(Ω) ≤ R‖f‖L2(Ω). (3.32)

See e.g. [11, Theorem 1]. The problem (3.9), (1.2), (2.3) can be transformed by the transforma-

tion Φα,β to a boundary value problem with fixed α = α0, β = β0 in (2.3) and with parameters

α, β in the coefficient of the equation. (Cf. [3], proof of Lemma 3.7 for a concrete weak form

of such equations.) The ellipticity coefficients of these equations are independent of α, β and it

follows from the result mentioned that the constant C in (3.32) is independent of (α, β) ∈ D.

The embedding theorems and the continuity of the Nemyckii operator (see Observation 3.2)

imply that if u is small in H and λ close to λ0 then f = λu + g(λ, u) is small in L2(Ω).

Hence, the estimate (3.32) guarantees that if (λ, u) ∈ R+ × H is a solution of (1.1), (1.2),

(2.3) with ‖u‖ small enough, λ close to λ0 and (α, β) ∈ D then ‖u‖C(Ω) is small. In partic-

ular, |∂ug(λ, u(x, y))| < λ for a. a. (x, y) ∈ Ω, λ close to λ0 and ‖u‖ small, and therefore

sign (λv(x, y) + ∂ug(λ, u(x, y))v(x, y)) = sign v(x, y) for all such (λ, u), any v ∈ W 1,2(Ω) and

a.a. (x, y) ∈ Ω. Furthermore, due to (1.4) and (3.32), for all (λ, u) ∈ R+ × H satisfying

(1.1), (1.2), (2.3) with ‖u‖ small enough we have |g(λ, u(x, y))| < λ|u(x, y)|, and consequently

sign (λu(x, y) + g(λ, u(x, y))) = sign u(x, y) for a.a. (x, y) ∈ Ω with u(x, y) 6= 0.

Observation 3.11 Let Γ0 be an open subset of ΓU , let (λn, un) satisfy in a weak sense the

equation (1.1) and the boundary condition

∂νu = 0 on Γ0, (3.33)

that means∫
Ω

∇un∇ϕ− (λu + g(λ, u))ϕ dx dy = 0 for all ϕ ∈ H satisfying ϕ = 0 on ∂Ω \ Γ0.
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If ‖un‖ → 0, ‖ un

‖un‖ − u0‖ → 0, λn → λ0 then g(λn, un)/‖un‖ → 0 in L2(Ω) (see Lemma 6.2)

and we obtain by the limiting process (by using (1.4)) that∫
Ω

∇u0∇ϕ− λ0u0ϕ dx dy = 0 for all ϕ ∈ H satisfying ϕ = 0 on ∂Ω \ Γ0,

i.e. (λ0, u0) satisfies in the weak sense the equation (1.6) and the condition (3.33).

In the following lemmas we consider automatically the assumptions of Theorem 3.1.

Lemma 3.12 There exist ε0 > 0 and η > 0 such that if (λ, u) ∈ R+ × H satisfies (2.1),

u ∈ W 2,2(Ω) and

‖u‖+ ‖ u

‖u‖
− u0‖+ |λ− λ0| < η (3.34)

then

∂yu ≥ 0 in Ωε0 . (3.35)

Lemma 3.13 There exist ε0 > 0 and η > 0 such that if (λ, u) ∈ R+ ×H satisfies (1.1), (1.2),

(2.3) with u ∈ W 2,2(Ω), (α, β) ∈ D and (3.34) then (3.35) holds.

Lemma 3.14 For any ε ∈ (0, ε0) with ε0 from Lemma 3.12 there is η > 0 with the following

property: if (λ, u) ∈ R+×H satisfies (2.1), (3.34) and u ∈ W 2,2(Ω) then there exists (α, β) ∈ D,

|α− α0|+ |β − β0| < ε such that A(u) = [α, β], u ∈ W 2,p(Ω) for all p > 1 and

∂yu > 0 in Iα,β ∪ Ωε0 , (3.36)

u < 0 on Eα,β. (3.37)

Lemma 3.15 For any ε ∈ (0, ε0) with ε0 from Lemma 3.12 there is η > 0 such that if (λ, u) ∈
R+ ×H satisfies (1.1), (1.2), (2.3) with (α, β) ∈ D, (3.34) and u ∈ W 2,2(Ω) then |α − α0| +
|β − β0| < ε, A(u) = [α, β], u ∈ W 2,p(Ω) for all p > 1 and (3.36), (3.37) are fulfilled.

Proof of Lemma 3.12. Let us consider an arbitrary (λ, u) satisfying (2.1). Let us set

v := ∂yu. Due to our assumptions we have v ∈ W 1,2(Ωd), consequently also v− ∈ W 1,2(Ωd),

and (1.2), (1.3) imply

v = v− = 0 on ΓN ∪ E(u), u = ∂xu = 0 on I(u) (3.38)

in the sense of traces. We will show below that there is C > 0 and ε̃ ∈ (0, d) with the following

property. For any ε ∈ (0, ε̃) there is η > 0 such that if (λ, u) ∈ R+ × H satisfies (2.1) and

(3.34), then

‖∇v−‖L2(Ωε) ≤ C‖v−‖L2(Ωε) (3.39)
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(where C is independent of ε ∈ (0, ε̃)). Let us assume for a moment that this is true. The

Poincare inequality implies

‖v−‖L2(Ωε) ≤ C(Ωε)‖∇v−‖L2(Ωε) with C(Ωε) → 0 for meas Ωε → 0

(see e.g. [7]). Clearly there is ε0 ∈ (0, ε̃) such that the last two estimates can be fulfilled

simultaneously for ε ∈ (0, ε0) only if v− is identically zero (cf. [13, Theorem III.6.1] for the

basic idea of the last trick). Hence, it must be ∂yu ≥ 0 in Ωε0 . Thus, for the proof of (3.35) it

is sufficient to show the existence of C, ε̃ with the properties mentioned above.

Let ε ∈ (0, d) be arbitrary. It is easy to see that the function v = ∂yu0 is a weak solution

of the equation ∆v + λ0v = 0. It follows from (2.18) that v attains its minimum over Ωε in

all points (0, y), (1, y), y ∈ (0, ε). The strong maximum principle implies that ∂xv(0, y) =

∂x,yu0(0, y) > 0 > ∂xv(1, y) = ∂x,yu0(1, y) for all y ∈ (0, ε). It follows by using (2.18) and

Lemma 3.9 that if (λ, u) satisfies (2.1) and (3.34) with η > 0 small enough then

∂yu > 0 in [0, 1]× [
ε

2
, ε]. (3.40)

Due to (3.40), (3.38) there exist smooth functions ϕn on Ωε such that

ϕn → v− in W 1,2(Ωε),

ϕn have compact supports in [(0, 1)× (0, ε/2)] ∪ I(u),

∂yϕn = 0 on I(u).

(3.41)

(We can take first ϕ̃n with a compact support in [(γ1 + θ, γ2 − θ)× (0, ε/2− 1/n)] ∪ I(u) and

define ϕn(x, y) = ϕ̃n(x, y − 1/n) for y ∈ (1/n, ε/2), ϕn(x, y) = ϕ̃n(x, 0) for y ∈ (0, 1/n). Then

also the last condition in (3.41) is fulfilled.)

Let us show that ∫
Ωε

|∇(v−)|2 dx dy = −
∫

Ωε

∇(v)∇(v−) dx dy. (3.42)

If v ∈ H is smooth then the set {(x, y) ∈ Ωε : v(x, y) < 0} is open and v− coincides with −v

on a neighbourhood of any its point, i.e. also derivatives of v− coincide with those of −v. Both

integrands are zero on {(x, y) ∈ Ωε : v(x, y) > 0}. Further, ∇(v−) = 0 in the points where

∇(v) = 0. Finally, the set {(x, y) ∈ Ω0
ε : v(x, y) = 0, ∇v 6= 0} is of measure zero because in

a neigbourhood of any its point it forms a smooth curve due to the implicit function theorem.

Hence, (3.42) holds. For general v ∈ H we get (3.42) via approximation by smooth functions.

Using the equality (3.42), integration by parts with respect to y, the Green formula and
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the equation (1.1) (see also Proposition 3.8) we get∫
Ωε
|∇(v−)|2 dx dy = − limn→+∞

∫
Ωε
∇(∂yu)∇ϕn dx dy

= limn→+∞

(∫
Ωε
∇u∇(∂yϕn) dx dy −

∫ 1

0
∇u∇ϕn dx

∣∣∣y=ε

y=0

)
= limn→+∞

(
−
∫

Ωε
∆u · ∂yϕn dx dy +

∫
∂Ωε

∂νu∂yϕn dΓ−
∫ 1

0
∇u∇ϕn dx

∣∣∣y=ε

y=0

)
= limn→+∞

(
−
∫

Ωε
∆u∂yϕn dx dy +

∫
∂Ωε

∂νu∂yϕn dΓ−
∫ 1

0
∇u∇ϕn dx

∣∣∣y=ε

y=0

)
= limn→+∞

(∫
Ωε

(λu + g(λ, u))∂yϕn dx dy +
∫

∂Ωε
∂νu∂yϕn dΓ−

∫ 1

0
∇u∇ϕn dx

∣∣∣y=ε

y=0

)
= limn→+∞

(
−
∫

Ωε
(λv + ∂ug(λ, u)v)ϕn dx dy)

)
+
∫ 1

0
(λu + g(λ, u))ϕn dx

∣∣∣y=ε

y=0
+
∫

∂Ωε
∂νu∂yϕn dΓ−

∫ 1

0
∇u∇ϕn dx

∣∣∣y=ε

y=0

)
.

Both integrals over the interval (0, 1) and that over ∂Ωε vanish for all n because of (3.41), (3.38)

and (2.3). Hence, the limiting process gives∫
Ωε

|∇(v−)|2 dx dy ≤
∫

Ωε

∣∣(λv + ∂ug(λ, u)v) · v−
∣∣ dx dy. (3.43)

Due to Observation 3.2 there is C > 0 such that ‖∂ug(λ, u)‖L4(Ωε) ≤ C for all (λ, u) satisfying

(3.34) and∫
Ωε

∣∣∂ug(λ, u)v · v−
∣∣ dx dy ≤ ‖∂ug(λ, u)‖L4(Ωε)‖v‖L4(Ωε)‖v‖L2(Ωε) ≤ C‖∇v‖L2(Ωε)‖v‖L2(Ωε).

Dividing (3.43) by ‖∇v‖L2(Ωε) we obtain (3.39).

As we explained on the begining, the proof of (3.35) is finished.

Proof of Lemma 3.13. is the same as that of Lemma 3.12.

Proof of Lemma 3.14. Let ε0 and the corresponding η be from Lemma 3.12, that means

(3.35) holds for all (λ, u) satisfying (2.1) with (α, β) ∈ D and (3.34).

First, let us show that if η is small enough and (λ, u) satisfies (2.1) and (3.34) then there

are no x1, x2 ∈ (0, 1) such that

u(x1, 0) = u(x2, 0) = 0, u(x, 0) < 0 for all x ∈ (x1, x2). (3.44)

Let us assume by way of contradiction that there are such x1, x2. Hence, due to (3.35) we have

u(x1, y) ≥ 0, u(x2, y) ≥ 0 for all y ∈ (0, ε0). (3.45)

Due to (2.18) and Lemma 3.9 we could take η simultaneously such that (3.40) holds for all

solutions under consideration. Let ε ∈ (0, ε0) be arbitrary and let us consider the rectangle

Ωx
ε = (x1, x2)× (0, ε). We have u ∈ W 2,2(Ωx

ε) by the assumption. Hence, we can multiply (1.1)
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(holding a.e. in Ω) by u−, integrate over Ωx
ε and use the Green Formula. The boundary terms

vanish because of u−(x1, y) = u−(x2, y) = 0 for all y ∈ (0, ε) by (3.45), u−(x, ε) = 0 for all

x ∈ (x1, x2) by (3.40) and ∂yu · u− = 0 on ΓU (see Proposition 3.8). Therefore we get∫
Ωx

ε

|∇u−|2 dx dy = −
∫

Ωx
ε

∇u∇u− dx dy = −
∫

Ωx
ε

(λu + g(λ, u))u− dx dy.

Due to the assumption (1.4) there is C > 0 such that ‖g(λ, u)‖L2(Ωx
ε ) ≤ C‖u‖L2(Ωx

ε ) if (3.34) is

fulfilled with η small (see Lemma 6.2 in Appendix), and it follows that∫
Ωx

ε

|∇u−|2 dx dy ≤ C‖u−‖2
L2(Ωx

ε )

with C independent of ε ∈ (0, ε0). Simultaneously∫
Ωx

ε

(u−)2 dx dy ≤ C(Ωx
ε)

∫
Ωx

ε

|∇(u−)|2 dx dy with C(Ωx
ε) → 0 for meas(Ωx

ε) → 0

(see e.g. [7]). If (3.44) holds then u− is nontrivial and therefore the last two inequalities cannot

be fulfilled for ε small. This is a contradiction and (3.44) is excluded for x1, x2 ∈ (γ1, γ2) and

all (λ, u) satisfying (2.1) and (3.34) with η from our considerations.

Let us show that if µ ∈ (0, δ0) then our η > 0 can be chosen so small that for all (λ, u)

satisfying (2.1) and (3.34) we have

u(x, 0) < 0 for all x ∈ [γ1 + µ, α0 − µ] ∪ [β0 + µ, γ2 − µ]. (3.46)

Under our assumptions about A(u0) we have

u0 < 0 on Eα0,β0 ∪ {(γ1, 0), (γ2, 0)} (3.47)

and therefore there exists ε′ ∈ (0, ε0] such that

u0(x, y) < 0 for all (x, y) ∈ ([γ1 + µ, α0 − µ] ∪ [β0 + µ, γ2 − µ])× [0, ε′].

It follows from Lemma 3.9 that if (λ, u) satisfies (2.1) and (3.34) with η small enough then

u(x, ε′) < 0 for all x ∈ [γ1 + µ, α0 − µ] ∪ [β0 + µ, γ2 − µ].

If u(x0, 0) ≥ 0 for some x0 ∈ [γ1 + µ, α0 − µ] ∪ [β0 + µ, γ2 − µ] then (3.35) implies u(x0, y) ≥ 0

for all y ∈ (0, ε′], which is the contradiction. Hence, (3.46) must hold.

Now we will prove that if η > 0 is small enough then for any (λ, u) under consideration

there are x1, x2 ∈ [α0, β0] such that x1 < x2, u(x, 0) = 0 for all x ∈ (x1, x2). (3.48)

Indeed, otherwise due to the fact that (3.44) is already excluded, we see that we would have a

sequence (λn, un) such that λn → λ0, ‖un‖ → 0, ‖ un

‖un‖−u0‖ → 0 with un < 0 on ΓU maybe with
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the exception of one point (xn, 0) ∈ ΓU , where un(xn, 0) = 0. We would have ∂νun(x, 0) = 0

on ΓU (see also Proposition 3.8), and Observation 3.11 would imply that also ∂yu0 = 0 on Γ0,

which contradicts the assumption (2.18).

Since (3.48), (3.46) are proved and (3.44) is excluded for all solutions (λ, u) under consid-

eration with η small, it is easy to see that for any such (λ, u) there are α, β with A(u) = [α, β],

α0 − µ < α < β < β0 + µ. We could choose µ < ε/2. It remains to prove that α < α0 + ε/2,

β > β0 − ε/2 if η is small enough. In the opposite case we would have (λn, un) such that

λn → λ0, ‖un‖ → 0, ‖ un

‖un‖ − u0‖ → 0 and satisfying (2.1) and the zero Neumann condition

at least on (γ1, α0 + ε/2) or on (β0 − ε/2, γ2). It would follow by using Observation 3.11 that

also u0 should satisfy zero Neumann boundary condition on (α0, α0 + ε/2) or on (β0− ε/2, β0),

which is a contradiction with (2.18). Hence, it must be |α − α0| + |β − β0| < ε if η is small

enough.

In particular, we have I(u) = Iα,β and therefore u is a solution of the mixed boundary

value problem (1.1), (1.2), (2.3). We assume that u ∈ W 2,2(Ω) and therefore we have even

u ∈ W 2,p(Ω) for all p > 1 by Lemma 3.4 and Remark 3.3.

It remains to prove the inequality (3.36). It is easy to see that the function v is a weak

solution of the equation

∆v = −λv − ∂ug(λ, u)v.

It follows from (3.35) and Remark 3.10 that the right hand side of the last equation is non-

positive in Ωε0 for all (λ, u) under consideration with λ close to λ0 if η is small enough. The

function v is nontrivial by (3.40) and the Maximum Principle for weak solutions (see e.g. [7,

Theorem 8.19]) implies that it cannot attain its minimum over Ωε0 in the interior of Ωε0 . This

minimum is zero because of (3.35) and v = ∂yu = 0 on Eα,β. Hence, ∂yu > 0 in Ωε0 . The second

derivatives are continuous up to the Dirichlet part of the boundary (see e.g. [7]) and we have

∂yv = ∂yyu = −∂xxu − λu − g(λ, u) = 0 on Iα,β. The Strong Maximum Principle implies that

v can attain its minimum at no point (x0, 0) ∈ Iα,β because it would follow that ∂yv(x0, 0) > 0

(see e.g. [7, Lemma 3.4]), which would be a contradiction. Hence, (3.36) must hold.

The condition (3.37) follows from u ∈ K, A(u) = [α, β], and the definitions of Eα,β, A(u).

Proof of Lemma 3.15. Let ε0 and η > 0 be from Lemma 3.13, that means (3.35) holds for

any (λ, u) satisfying (1.1), (1.2), (2.3) and (3.34).

Let ε ∈ (0, ε0), µ ∈ (0, δ0) be given. Let as choose µ ∈ (0, θ). In the same way as in the proof

of Lemma 3.14 we can show that η can be chosen such that (3.46) and (3.40) are valid for all

solutions under consideration. Due to the boundary conditions (2.3) we have [α, β] ⊂ A(u). We

can show in the same way as in the proof of Lemma 3.14 that (3.44) cannot occur. In contrast

to Lemma 3.14, u need not be non-positive. Therefore in order to verify A(u) = [α, β], besides
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excluding (3.44) we need also to show that there is no interval [x1, x2] ⊂ [α− µ, α] ∪ [β, β + µ]

such that

u(x1, 0) = u(x2, 0) = 0, u(x, 0) ≥ 0 for all x ∈ (x1, x2). (3.49)

Let us assume by contradiction that there are x1, x2 satisfying (3.49). First, let x2 ≤ α. Since

(3.44) is excluded and we have u(x, 0) = 0 for all x ∈ [α, β], it must be

u(x, 0) ≥ 0 for all x ∈ (x2, x2 + µ̃) (3.50)

with some µ̃ > 0. Due to (3.35), u is nonnegative on Ωx
ε := [x1, x2 + µ̃] × [0, ε] and attains at

(x2, 0) its zero minimum over this rectangle. The function u is not identically zero because of

(3.40) and λu + g(λ, u) ≥ 0 in Ωx
ε by Remark 3.10. We have u ∈ C1(Ω) by our assumptions

and the embedding theorem, and therefore the normal derivative at (x2, 0) exists. Hence, the

Strong Maximum Principle implies that it should be ∂νu(x1, 0) = −∂yu(x1, 0) < 0. However,

(x1, 0) ∈ Eα,β and therefore ∂yu(x1, 0) = 0 by (2.3), which is a contradiction. The case β ≤ x1

can be treated symmetrically and (3.49) for x1, x2 discussed is excluded. Hence, A(u) = [α, β]

is proved.

It follows from (3.35), (3.46) that (λ, u) under consideration satisfies also (2.1) if η is small

enough. Thus, the conditions (3.36), (3.37) and |α−α0|+ |β−β0| < ε follow from Lemma 3.14.

Proof of Theorem 3.1. To prove the assertion (i), let η > 0 be given. It follows from

Lemma 2.1 that there exists ζ > 0 such that for all (s, λ, v, α, β) ∈ R+×R+×H1×D satisfying

s + ‖v‖ + |λ − λ0| + |α − α0| + |β − β0| < ζ the corresponding u defined by (3.8) satisfies

‖u‖ + ‖ u
‖u‖ − u0‖ < η. If, moreover, (s, λ, v, α, β) satisfies (3.6), (3.7) then Proposition 3.7

implies that u ∈ W 2,p(Ω) for all p > 1 and that (λ, u) satisfies (1.1), (1.2), (2.3). Further,

Lemma 3.15 implies that if ζ is chosen sufficiently small then we have A(u) = [α, β] and (3.37)

holds, hence u ∈ K. Finally, standard considerations (multiplication (1.1) by ϕ−u, integration

over Ω and using Green’s formula and boundary conditions (1.2), (2.3)) give that (λ, u) satisfies

(2.1) and (i) is proved.

To prove (ii), let ε > 0 be given. Because of Lemma 3.14, for any ε′ ∈ (0, ε) there exists

η > 0 such that for any (λ, u) ∈ R+ ×W 2,2(Ω) satisfying (2.1), ‖u‖ 6= 0 and (3.34) there exists

(α, β) ∈ D such that A(u) = [α, β], |α − α0| + |β − β0| < ε′ and (3.37) holds. In particular

I(u) = [α, β] ⊂ ΓU and therefore (λ, u) satisfy(1.1), (1.2), (2.3). Define

s := 〈Φ−1
α,βu, u0〉, v :=

Φ−1
α,βu

s
− u0. (3.51)

Then (3.8) holds. Due to (2.5) and Lemma 2.1, if ε′ and η are small then s
‖u‖ =

〈
Φ−1

α,β

(
u
‖u‖

)
, u0

〉
is close to 〈u0, u0〉 = 1, Φ−1

α,β

(
u
s

)
is close to u0. Hence, if ε′0 and η are sufficiently small then
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s + |λ− λ0|+ ‖v‖+ |α−α0|+ |β− β0| < ε. Remark 3.3 and Lemma 3.4 imply u ∈ W 2,p(Ω) for

all p > 2. Hence, Proposition 3.7 ensures that (3.6) and (3.7) are fulfilled.

4 Application of the Implicit Function Theorem: Con-

tinuation for the Operator Equation

In this section we will use the notation from Sections 2, 3. In particular, the transformations

Φα,β are from (2.7), the subspaces H0 and H1 are from (3.2) and (3.3), respectively, and the

functions vα,β, wα,β are from (3.5). Our goal is to describe the set of solutions to (3.6), (3.7) in

a neighbourhood of (λ0, 0, α0, β0), which is done in the following theorem.

Theorem 4.1 Let (λ0, u0, α0, β0) satisfy (2.2), (1.7), (2.19), and (2.20). Let g be C1-smooth

and let (1.4), (1.5) hold.

Then there exist s0 > 0, neighbourhoods Λ0 ⊂ R+ of λ0, W0 ⊂ H0 of the origin and

Wα, Wβ ⊂ R of α0 and β0, respectively, and C1-mappings λ̂ : (−s0, s0) → Λ0, v̂ : (−s0, s0) →
W0, α̂ : (−s0, s0) → Wα, β̂ : (−s0, s0) → Wβ such that λ̂(0) = λ0, v̂(0) = 0, α̂(0) = α0,

β̂(0) = β0 and that (s, λ, v, α, β) ∈ (−s0, s0)× Λ0 ×W0 ×Wα ×Wβ satisfies (3.6), (3.7) if and

only if λ = λ̂(s), v = v̂(s), α = α̂(s), β = β̂(s).

If g is Ck-smooth with some k ≥ 2 and (2.21) holds then λ̂, α̂, β̂ and v̂ are Ck-smooth.

Theorem 4.1 will be proved by means of the Implicit Function Theorem. Hence, we need

C1-smoothness of the operators involved.

Lemma 4.2 The mapping F defined in (3.1) is C1-smooth. If, moreover, the function g is

Ck-smooth and (2.21) holds with some k > 1 then F is even Ck-smooth.

Proof follows by standard considerations using Observation 3.2.

Let us introduce the map G : R× R+ ×H0 ×D → H0 × R2, G = (G1, G2, G3) by

G1(s, λ, v, α, β) := 1
s
Φ∗

α,βF (λ, sΦα,β(u0 + v)) for s 6= 0,

G1(0, λ, v, α, β) := Φ∗
α,β∂uF (λ, 0)Φα,β(u0 + v),

G2(s, λ, v, α, β) :=
∫

Ω
[λΦα,β(u0 + v) + g(λ, sΦα,β(u0 + v))/s]vα,β dx dy for s 6= 0,

G2(0, λ, v, α, β) :=
∫

Ω
λΦα,β(u0 + v)vα,β dx dy,

G3(s, λ, v, α, β) :=
∫

Ω
[λΦα,β(u0 + v) + g(λ, sΦα,β(u0 + v))/s]wα,β dx dy for s 6= 0,

G3(0, λ, v, α, β) :=
∫

Ω
λΦα,β(u0 + v)wα,β dx dy.

(4.1)

Lemma 4.3 The mapping G is C1-smooth. If (2.20) holds then the partial derivative

∂(λ,v,α,β)G(0, λ0, 0, α0, β0) is an isomorphism from R×H1 ×D onto H0 ×D where H0, H1 are

given by (3.2), (3.3). If g is Ck-smooth with k > 1 and (2.21) holds then G is Ck-smooth.
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Proof. Because of (1.4) there is a continuous function h : R+ × R → R such that

h(λ, 0) = 0, g(λ, u) = h(λ, u)u for all (λ, u) ∈ R+ × R.

Introducing a new integration variable x̄ = ξα,β(x), renaming x̄ again by x, and using (2.9), for

any ϕ ∈ H0 we get

〈G1(s, λ, v, α, β), ϕ〉 =∫
Ω
∇Φα,β(u0 + v)∇Φα,βϕ− [λΦα,β(u0 + v) + h(λ, sΦα,β(u0 + v))Φα,β(u0 + v)]Φα,βϕ dx dy

=
∫

Ω
∂x [u0(x, y) + v(x, y)] ∂xϕ(x, y) · ξ′α,β

(
ξ−1
α,β(x)

)
+∂y [u0(x, y) + v(x, y)] ∂yϕ(x, y) 1

ξ′α,β(ξ−1
α,β(x))

−[λ (u0(x, y) + v(x, y)) + h(λ, s(u0 + v))(u0 + v)]ϕ(x, y) 1

ξ′α,β(ξ−1
α,β(x))

dx dy

Hence, we have

G1(s, λ, v, α, β) = M1

(
ξ′α,β(ξ−1

α,β(x))∂x(u0 + v), ∂y(u0+v)

ξ′α,β(ξ−1
α,β(x))

)
−M2

(
(λ(u0 + v) + h(λ, s(u0 + v))(u0 + v)) 1

ξ′α,β(ξ−1
α,β(x))

)
,

where the linear bounded operators M1 : (L2(Ω))
2 → H0 and M2 : L2(Ω) → H0 are defined by

〈M1(v1, v2), ϕ〉 :=
∫

Ω
(v1∂xϕ + v2∂yϕ) dx dy and 〈M2v, ϕ〉 :=

∫
Ω

vϕ dx dy for all ϕ ∈ H0. Using

the C∞-smoothness of the map

(α, β, u) ∈ D ×W 1,2(Ω) 7→

(
ξ′α,β(ξ−1

α,β)∂xu,
∂yu

ξ′α,β(ξ−1
α,β)

)
∈
(
L2(Ω)

)2
,

we get the C∞-smoothness of the part with M1.

It remains to show the C1-smoothness of the Nemyckii operator

(s, λ, v) 7→ h(λ, s(u0 + v))(u0 + v) (4.2)

from R× R+ ×H1 into L2(Ω). We show this by showing that all partial derivatives exist and

are continuous.

The partial derivative of (4.2) with respect to s is

(s, λ, v) 7→ ∂uh(λ, s(u0 + v))(u0 + v)2 =
1

s
∂ug(λ, s(u0 + v))(u0 + v)− 1

s2
g(λ, s(u0 + v)).

This map is continuous from R × R+ × H1 to ∈ L2(Ω) because of (1.4), (1.5) and Theorem

about Nemyckii operator (see e.g. [22, Proposition 26.6]). The partial derivative of (4.2) with

respect to λ is

(s, λ, v) 7→ ∂λh(λ, s(u0 + v))(u0 + v) = ∂λg(λ, s(u0 + v)).
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This map is again continuous from R × R+ ×H1 to ∈ L2(Ω) because of (1.5) and [22, Propo-

sition 26.6]. The partial derivative of (4.2) with respect to v in the point (s, λ, v) is the linear

bounded operator

w ∈ H1 7→ ∂uh(λ, s(u0 + v))(u0 + v)sw + h(λ, s(u0 + v))w ∈ L2(Ω).

Using (1.5) and [22, Proposition 26.6], it is easy to show that it depends continuously in the

uniform operator norm in L(H1; L2(Ω)) on (s, λ, v).

Concerning G2 and G3 we have

G2(s, λ, v, α, β) =
∫

Ω
[λΦα,β(u0 + v) + h(λ, sΦα,β(u0 + v))Φα,β(u0 + v)]vα,β dx dy

=
∫

Ω
[λ(u0 + v) + h(λ, s(u0 + v))(u0 + v)](Xα,β + X(−1/2)) 1

ξ′α,β(ξ−1
α,β(x))

dx dy,

G3(s, λ, v, α, β) =
∫

Ω
[λΦα,β(u0 + v) + h(λ, sΦα,β(u0 + v))Φα,β(u0 + v)]wα,β dx dy

=
∫

Ω
[λ(u0 + v) + h(λ, s(u0 + v))(u0 + v)](Yα,β + Y (−1/2)) 1

ξ′α,β(ξ−1
α,β(x))

dx dy.

It follows from the form (3.14) of K1
α,β(f), K2

α,β(f) with f = λΦα,β(u0 + v) + h(λ, sΦα,β(u0 +

v))Φα,β(u0 + v) and their independence of δ, χ in (3.23) that also G2, G3 are independent of δ,

χ (let us remark that δ, χ in G1 are not even involved).

We will show the C1-smoothness of G2 again by showing that all its partial derivatives exist

and are continuous. The map

(α, β) ∈ D 7→ G2(s, λ, v, α, β) ∈ R

is C∞-smooth, and the map (s, λ, v, α, β) 7→ ∂αG2(s, λ, v, α, β) from R× R+ ×H0 ×D to R is

continuous with respect to all variables. Similarly for the derivative with respect to β.

We have Xα,β, Yα,β ∈ W 1,2(Ω), X(−1/2), Y (−1/2) ∈ Lq(Ω) for all 1 ≤ q < 4, X(−1/2), Y (−1/2) ∈
W 1,q(Ω) for 1 ≤ q < 4/3 (see Lemma 2.2). The partial derivative of G2 with respect to v equals

∂vG2(s, λ, v, α, β)w =
∫

Ω
[λ + ∂uh(λ, s(u0 + v))(u0 + v) + h(λ, s(u0 + v))]w

Xα,β+X(−1/2)

ξ′α,β(ξ−1
α,β(x))

dx dy,

and the map (s, λ, v, α, β) 7→ ∂vG2(s, λ, v, α, β) from R × R+ × H0 × D to the space of linear

functionals on H0 is continuous with respect to all variables.

The smooth differentiability with respect to s and λ is clear thanks to the form of the

expressions considered.

The C1-smoothness of G3 can be proved in a similar way.

In the case of the Ck-smoothness of g, the Ck-smoothness of G1, G2, G3 can be proved

similarly under the assumption (2.21).

Now we are going to prove that the partial derivative ∂(λ,v,α,β)G(0, λ0, 0, α0, β0) is an iso-

morphism from R+ ×H1 ×D to H0 ×D.
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Let us define an operator F0 : R+ → L(H0; H0) by

〈F0(λ)u, ϕ〉 =

∫
Ω

∇u∇ϕ− λuϕ dx dy for all ϕ ∈ H0.

Hence, F0(λ)u = 0 is a weak formulation of the problem (1.6), (1.2), (2.2). Because of (2.19)

and the obvious Fredholmness of the operator F0(λ0) we have

H1 = im F0(λ0), (4.3)

ker F0(λ0) = span {u0}, (4.4)

H0 = H1 ⊕ span {u0}, (4.5)

F0(λ0)| im F0(λ0) is an isomorphism from im F0(λ0) onto itself. (4.6)

We denote Lj := ∂(λ,v,α,β)Gj(0, λ0, 0, α0, β0), j = 1, 2, 3.

Because of ξ′′α0,β0
(x) = 0 we get

∂α

[
ξ′α,β(ξ−1

α,β(x))
]
α=α0,β=β0

= ∂αξ′α0,β0
(x),

∂α

[(
ξ′α,β(ξ−1

α,β(x))
)−1
]

α=α0,β=β0

= −∂αξ′α0,β0
(x).

Furthermore, it holds

[∂αΦα0,β0ϕ] (x, y) = ∂xϕ(x, y)∂αξα0,β0(x).

Therefore, if ϕ ∈ W 2,2(Ω) satisfies ϕ = 0 on ΓD ∪ Iα0,β0 then ∂αΦα0,β0ϕ ∈ W 1,2(Ω) also satisfies

homogeneous Dirichlet boundary conditions on ΓD∪Iα0,β0 (because ∂αξα0,β0(0) = ∂αξα0,β0(1) = 0

and ∂xϕ(x, 0) = 0 for x ∈ [α0, β0]). Similarly for ∂βΦα0,β0ϕ. Therefore, ∂αΦα0,β0ϕ, ∂βΦα0,β0ϕ ∈
H0 for all ϕ ∈ H0 ∩W 2,2(Ω). In particular, we have by (3.4) that∫

Ω
∇u0∇∂αΦα0,β0ϕ− λ0u0∂αΦα0,β0ϕ dx dy = 0,∫

Ω
∇u0∇∂βΦα0,β0ϕ− λ0u0∂βΦα0,β0ϕ dx dy = 0

for all ϕ ∈ H0 ∩W 2,2(Ω). (4.7)

Direct calculation using (2.5) yields

ξ′α,β(ξ−1
α,β(x))

∣∣
α=α0,β=β0

= 1, ξ′′α0,β0
(x) = 0,

∂α(ξα,β(ξ−1
α,β(x)))

∣∣
α=α0,β=β0

= ∂α(ξ′α,β(x))
∣∣
α=α0,β=β0

,

∂α(ξ−1
α,β(x))

∣∣
α=α0,β=β0

= − ∂α(ξα,β(x))|α=α0,β=β0
,

∂α(1/(ξ′α,β(ξ−1
α,β(x))))

∣∣
α=α0,β=β0

= − ∂α(ξ′α,β(x))
∣∣
α=α0,β=β0

and similar expressions for ∂β. Realizing (4.7) we obtain that

〈L1(ᾱ, β̄, λ̄, v̄), ϕ〉 =
∫

Ω
∇
(
v̄ + ∂xu0

(
ᾱ∂αξα0,β0 + β̄∂βξα0,β0

))
∇ϕ

− λ0

(
v̄ + ∂xu0

(
ᾱ∂αξα0,β0 + β̄∂βξα0,β0

))
ϕ− λ̄u0ϕ dx dy for all ϕ ∈ H0.

(4.8)
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Similarly we obtain

L2(ᾱ, β̄, λ̄, v̄) = λ0

∫
Ω

v̄(Xα0,β0 + X(−1/2)) + u0[ᾱ
(
∂αXα0,β0 + (Xα0,β0 + X(−1/2))∂αξ′α0,β0

)
+ β̄

(
∂βXα0,β0 + (Xα0,β0 + X(−1/2))∂βξ′α0,β0

)
] dx dy,

(4.9)

L3(ᾱ, β̄, λ̄, v̄) = λ0

∫
Ω

v̄(Yα0,β0 + Y (−1/2)) + u0[ᾱ
(
∂αYα0,β0 + (Yα0,β0 + Y (−1/2))∂αξ′α0,β0

)
+ β̄

(
∂βYα0,β0 + (Yα0,β0 + Y (−1/2))∂βξ′α0,β0

)
] dx dy.

(4.10)

It remains to show that the map ∂(λ,v,α,β)G(0, λ0, 0, α0, β0) = (L1, L2, L3) is bijective.

Let us have arbitrary (w, a, b) ∈ H0 × R2 such that

L1(ᾱ, β̄, λ̄, v̄) = w,

L2(ᾱ, β̄, λ̄, v̄) = a,

L3(ᾱ, β̄, λ̄, v̄) = b.

(4.11)

Putting ϕ := u0 into (4.8) and observing (by similar arguments used to derive (4.7)) that

w̄ := v̄ + ∂xu0

(
ᾱ∂αξα0,β0 + β̄∂βξα0,β0

)
∈ H0 (4.12)

we get by (3.4) that ∫
Ω

−λ̄|u0|2 dx dy = 〈w, u0〉

leading immediatelly to

λ̄ = −〈w, u0〉/
∫

Ω

|u0|2 dx dy.

Simultaneously, (4.8) being zero becomes∫
Ω
∇
(
v̄ + ∂xu0

(
ᾱ∂αξα0,β0 + β̄∂βξα0,β0

))
∇ϕ

−λ0

(
v̄ + ∂xu0

(
ᾱ∂αξα0,β0 + β̄∂βξα0,β0

))
ϕ− λ̄u0ϕ dx dy

=
∫

Ω
∇w∇ϕ dx dy for all ϕ ∈ H0

(4.13)

or, in other words,∫
Ω

∇w̄∇ϕ− λ0w̄ϕ dx dy =

∫
Ω

∇w∇ϕ + λ̄u0ϕ dx dy for all ϕ ∈ H0,

where w̄ is from (4.12). Hence,

〈F0(λ0)w̄, ϕ〉 =

∫
Ω

∇w∇ϕ + λ̄u0ϕ dx dy for all ϕ ∈ H0

which reads as

F0(λ0)w̄ = w + z

where z ∈ H0 is such that

〈z, ϕ〉 =

∫
Ω

λ̄u0ϕ dx dy for all ϕ ∈ H0.
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Writting w + z = c0u0 + w1 with c0 := 〈w + z, u0〉 and w1 ∈ H1 we get

v̄ + ∂xu0

(
ᾱ∂αξα0,β0 + β̄∂βξα0,β0

)
= w̄ = (F0(λ0))

−1w1 =: w2,

with w2 already known. In particular,

w̄ ∈ H1

and

v̄ = −∂xu0

(
ᾱ∂αξα0,β0 + β̄∂βξα0,β0

)
+ w2. (4.14)

Inserting this in (4.11) divided by λ0 we get a linear homogeneous 2 × 2-system of equations

with unknowns ᾱ, β̄ of the form

a11ᾱ + a12β̄ = b1,

a21ᾱ + a22β̄ = b2

(4.15)

where aij are from (2.17) and

b1 := a/λ0 −
∫

Ω
w2(Xα0,β0 + X(−1/2)) dx dy,

b2 := b/λ0 −
∫

Ω
w2(Yα0,β0 + Y (−1/2)) dx dy.

(4.16)

To see it, let us realize that in more detail we have∫
Ω
−∂xu0

(
ᾱ∂αξα0,β0 + β̄∂βξα0,β0

)
(Xα0,β0 + X(−1/2))

+u0[ᾱ
(
∂αXα0,β0 + (Xα0,β0 + X(−1/2))∂αξ′α0,β0

)
+ β̄

(
∂βXα0,β0 + (Xα0,β0 + X(−1/2))∂βξ′α0,β0

)
] dx dy

= a/λ0 −
∫

Ω
w2(Xα0,β0 + X(−1/2)) dx dy,∫

Ω
−∂xu0

(
ᾱ∂αξα0,β0 + β̄∂βξα0,β0

)
(Yα0,β0 + Y (−1/2))

+u0[ᾱ
(
∂αYα0,β0 + (Yα0,β0 + Y (−1/2))∂αξ′α0,β0

)
+ β̄

(
∂βYα0,β0 + (Yα0,β0 + Y (−1/2))∂βξ′α0,β0

)
] dx dy

= b/λ0 −
∫

Ω
w2(Yα0,β0 + Y (−1/2)) dx dy.

Now, putting appropriate terms together we see that the coefficients aij in (4.15) are re-

ally those from (2.17). Now, because of (2.20), and (4.14) gives also a unique v̄. The sys-

tem (4.15) is uniquelly solvable and (4.14) gives also a unique v̄. Hence, the bijectivity of

∂(λ,v,α,β)G(0, λ0, 0, α0, β0) is proved. Thus, ∂(λ,v,α,β)G(0, λ0, 0, α0, β0) is an isomorphism.

Proof of Theorem 4.1. The problem (3.6), (3.7) is equivalent to

G(s, λ, v, α, β) = 0, (4.17)

where G is defined by (4.1). Lemma 4.3 ensures that this mapping is C1-smooth and that under

the condition (2.20), ∂(λ,v,α,β)G(0, λ0, 0, α0, β0) is an isomorphism from R+×H1×D to H0×D.

Hence, it follows from the Implicit Function Theorem that there exist s0 > 0, neighbourhoods

Λ0 ⊂ R+ of λ0, W0 ⊂ H0 of the origin and Wα, Wβ ⊂ R of α0 and β0, respectively, and C1-

mappings λ̂ : (−s0, s0) → Λ0, v̂ : (−s0, s0) → W0, α̂ : (−s0, s0) → Wα, β̂ : (−s0, s0) → Wβ such

that λ̂(0) = λ0, v̂(0) = 0, α̂(0) = α0, β̂(0) = β0 and that (λ, v, α, β) ∈ Λ0 × W0 × Wα × Wβ

satisfies (3.6), (3.7) if and only if λ = λ̂(s), v = v̂(s), α = α̂(s), β = β̂(s).
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5 Proof of the Main Results

Proof of Theorem 2.3 Theorem 4.1 implies that there are neighbourhoods Λ0 ⊂ R, W0 ⊂
H0, Wα, Wβ ⊂ R of λ0, 0, α0, β0, respectively, and C1-mappings λ̂ : (−s0, s0) → Λ0, v̂ :

(−s0, s0) → W0, α̂ : (−s0, s0) → Wα, β̂ : (−s0, s0) → Wβ such that (i) in Theorem 2.3

holds and (λ, v, α, β) = (λ̂(s), v̂(s), α̂(s), β̂(s)), s ∈ (−s0, 0) ∪ (0, s0), are exactly all nontrivial

solutions of the problem (3.6), (3.7) lying in a neighbourhood of (λ0, 0, α0, β0). That means

due to Proposition 3.7 that (λ, u) = (λ̂(s), û(s)), s ∈ (−s0, 0) ∪ (0, s0), with u = û(s) defined

in the assertion (iv) of Theorem 2.3 are all weak nontrivial solutions of the boundary value

problems (1.1), (1.2), (2.3) with α, β close to α0, β0, lying in a neighbourhood of (λ0, 0) and

satisfying u ∈ W 2,2(Ω). Theorem 3.1(i) guarantees that those (λ, u) = (λ̂(s), û(s)) with positive

s simultaneously satisfy (ii) in Theorem 2.3, and also (iv) follows. The assertion (iii) as well as

the very last assertion of Theorem 2.3 follows from the smoothness given by Theorem 4.1, the

form of û(s) in (iv) and from Lemma 2.1. Finally, 3.1(ii) implies that also the assertion (v) in

Theorem 2.3 is true.

Proof of Theorem 2.4. Let us consider the case when the nonlinearity g is identically zero

in Theorem 2.3. Then the problem (2.1) coincides with (2.2). The couples (λ, u) with λ = λ0,

u = su0, s > 0 satisfy (2.2) and it follows from the assertion (v) of Theorem 2.3 that all (λ, u)

satisfying (2.2) with u ∈ W 2,2(Ω), |λ − λ0| + ‖u‖ + ‖ u
‖u‖ − u0‖ small enough should be of this

form. If the assertion of Theorem 2.4 were not true then we would have (λn, un) satisfying (2.2),

‖un‖ 6= 0, 0 < |λn − λ0|+ ‖ un

‖un‖ − u0‖ → 0. Due to the fact that the problem (2.2) is positively

homogeneous, we could choose un such that ‖un‖ → 0, which would be a contradiction.

6 Appendix

For the proof of Lemma 2.1 we need the following modification of the continuity in the mean

property in Lq(Ω). In this lemma we can consider an arbitrary open bounded set Ω in Rn.

Lemma 6.1 Let M be a precompact set in Lq(Ω) with q > 1. Then for any ε > 0 and r > 0

there is δ > 0 such that the following holds: If ϕj : Ω → Ω (j = 1, 2) are bijective, ϕj ∈ C1(Ω)

and ‖ϕ1 − ϕ2‖C(Ω) < δ, and if the Jacobians Jϕj
satisfy |Jϕj

(x)| ≥ r for all x ∈ Ω, then(∫
Ω

|h(ϕ1(z))− h(ϕ2(z))|qdz

)1/q

< ε for all h ∈ M. (6.1)

Proof. Because M is precompact in Lq(Ω) and because C(Ω) is continuously and densely

embedded into Lq(Ω), for any ε̃ > 0 there exists a finite set M̃ ⊂ C(Ω) such that for any
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h ∈ M there is a h̃ ∈ M̃ with (∫
Ω

|h(z)− h̃(z)|qdz

)1/q

< ε̃.

Hence (∫
Ω

|h(ϕj(z))− h̃(ϕj(z))|qdz

)1/q

=

(∫
Ω

|h(z)− h̃(z)|q|Jϕj
(ϕ−1

j (z)|−1dz

)1/q

<
ε̃

r
,

and the integral from (6.1) can be estimated by(∫
Ω

|h(ϕ1(z))− h̃(ϕ1(z))|qdz

)1/q

+

(∫
Ω

|h̃(ϕ1(z))− h̃(ϕ2(z))|qdz

)1/q

+

+

(∫
Ω

|h̃(ϕ2(z)− h(ϕ2(z)|qdz

)1/q

<
2ε̃

r
+

(∫
Ω

|h̃(ϕ1(z))− h̃(ϕ2(z))|qdz

)1/q

.

Moreover, because M̃ is finite and all h̃ ∈ M̃ are uniformly continuous, there exists δ̃ > 0 such

that

|h̃(z1)− h̃(z2)| < ε̃ for all h̃ ∈ M̃ and z1, z2 ∈ Ω with |z1 − z2| < δ̃.

Hence, if ‖ϕ1−ϕ2‖C(Ω) < δ̃ then the integral from (6.1) can be estimated by
(

2
r

+ (mes Ω)1/q
)

ε̃.

Proof of Lemma 2.1. Define F : D ×W 1,q(Ω) → W 1,q(Ω) by F(α, β, f) := Φα,βf . First we

will prove the C1-smoothness of F as a map from D ×W 1,q(Ω) into Lq(Ω).

If F is differentiable then the partial derivatives can be calculated pointwise:

∂αF(α, β, f)(x, y) = ∂xf(ξα,β(x), y)∂αξα,β(x),

∂βF(α, β, f)(x, y) = ∂xf(ξα,β(x), y)∂βξα,β(x),

(∂fF(α, β, f)g) (x, y) = g(ξα,β(x), y).

 (6.2)

In other words, the right hand sides of (6.2) are candidates for being the partial derivatives

of F . In order to show that the candidate for ∂αF is really the partial derivative of F with

respect to α, we have to prove that(∫
Ω

∣∣∣∣f(ξα̃,β(x), y)− f(ξα,β(x), y)

α̃− α
− ∂xf(ξα,β(x), y)∂αξα,β(x)

∣∣∣∣q dx dy

)1/q

→ 0 (6.3)

for α̃ → α.

Let f1, f2, . . . ∈ C1(Ω) be a sequence converging to f in W 1,q(Ω). For (6.3) we have to show

that (∫
Ω

∣∣∣∣fn(ξα̃,β(x), y)− fn(ξα,β(x), y)

α̃− α
− ∂xfn(ξα,β(x), y)∂αξα,β(x)

∣∣∣∣q dx dy

)1/q

→ 0 (6.4)
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for α̃ → α uniformly with respect to n. The expression in the absolute value in the integral in

(6.4) can be written as∫ 1

0

∂xfn(sξα̃,β(x) + (1− s)ξα,β(x), y)(ξα̃,β(x), y)− ξα,β(x), y)

α̃− α
ds− ∂xfn(ξα,β(x), y)∂αξα,β(x) =

=

∫ 1

0

∂xfn(sξα̃,β(x) + (1− s)ξα,β(x), y) ds

∫ 1

0

∂αξtα̃+(1−t)α,β(x) dt− ∂xfn(ξα,β(x), y)∂αξα,β(x).

There exists c > 0 such that |∂αξα,β(x)| ≤ c for all (α, β) ∈ D and x ∈ [0, 1]. Therefore the

whole integral in (6.4) can be estimated by

c

(∫
Ω

∣∣∣∣∫ 1

0

(∂xfn(sξα̃,β(x) + (1− s)ξα,β(x), y)− ∂xfn(ξα,β(x), y)) ds

∣∣∣∣q dx dy

)1/q

+

+

(∫
Ω

∣∣∣∣∂xfn(ξα,β(x), y)

∫ 1

0

(
∂αξtα̃+(1−t)α,β(x)− ∂αξα,β(x)

)
dt

∣∣∣∣q dx dy

)1/q

. (6.5)

Using ∣∣∣∣∫ 1

0

(∂xfn(sξα̃,β(x) + (1− s)ξα,β(x), y)− ∂xfn(ξα,β(x), y)) ds

∣∣∣∣q ≤
≤
∫ 1

0

|∂xfn(sξα̃,β(x) + (1− s)ξα,β(x), y)− ∂xfn(ξα,β(x), y)|q ds,

the first term in (6.5) can be estimated by

c

(∫ 1

0

∫
Ω

|∂xfn(sξα̃,β(x) + (1− s)ξα,β(x), y)− ∂xfn(ξα,β(x), y)|q dx dy ds

)1/q

Due to Lemma 6.1 (with M = {f1, f2, . . .}, ϕ1(x, y) = (ξα,β(x), y) and ϕ2(x, y) = (sξα̃,β(x) +

(1− s)ξα,β(x), y) and, hence, (ϕ1−ϕ2)(x, y) = (−s(ξα,β(x)− ξα̃,β), 0)), the interior integral over

Ω tends to zero for α̃ → α uniformly with respect to n and s, hence the first term in (6.5) tends

to zero for α̃ → α uniformly with respect to n. The second term in (6.5) can be estimated by

max
0≤t≤1

∣∣∂αξtα̃+(1−t)α,β(x)− ∂αξα,β(x)
∣∣ (∫

Ω

|∂xfn(ξα,β(x), y)|q dx dy

)1/q

,

which obviously tends to zero for α̃ → α uniformly with respect to n.

Analogously one can show that F is partially differentiable with respect to β.

For any fixed (α, β) ∈ D, the map f ∈ W 1,q(Ω) 7→ F(α, β, f) = Φα,βf ∈ Lq(Ω) is linear

and continuous, hence F is partially differentiable with respect to f .

In order to get the C1-smoothness of F it remains to show that the maps (α, β, f) ∈
D × W 1,q(Ω) 7→ ∂αF(α, β, f) ∈ Lq(Ω), (α, β, f) ∈ D × W 1,q(Ω) 7→ ∂βF(α, β, f) ∈ Lq(Ω) and

(α, β, f) ∈ D ×W 1,q(Ω) 7→ ∂fF(α, β, f) ∈ L (W 1,q(Ω), Lq(Ω)) are continuous.
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First continuity of ∂αF : We have

‖∂αF(α̃, β̃, f̃)− ∂αF(α, β, f)‖Lq(Ω) =

=
(∫

Ω

∣∣∣∂xf̃(ξα̃,β̃(x), y)∂αξα̃,β̃(x)− ∂xf(ξα,β(x), y)∂αξα,β(x)
∣∣∣q dx dy

)1/q

=

≤
(∫

Ω

∣∣∣(∂xf̃(ξα̃,β̃(x), y)− ∂xf̃(ξα,β(x), y)
)

∂αξα̃,β̃(x)
∣∣∣q dx dy

)1/q

+

+
(∫

Ω

(
∂xf̃(ξα,β(x), y)− ∂xf(ξα,β(x), y)

)
∂αξα̃,β̃(x)q dx dy

)1/q

+

+
(∫

Ω
∂xf̃(ξα,β(x), y)

(
∂αξα̃,β̃(x)− ∂αξα,β(x)

)q
dx dy

)1/q

.

Due to Lemma 6.1, all these integrals tend to zero if f̃ → f in W 1,q(Ω), (α̃, β̃) → (α, β), and

the continuity of ∂αF is proved.

Similarly for ∂βF .

Finally, let us show the continuity of ∂fF . We have

‖∂fF(α̃, β̃, f̃)g − ∂fF(α, β, f)g‖Lq(Ω) =

(∫
Ω

∣∣g(ξα̃,β̃(x), y)− g(ξα,β(x), y)
∣∣q dx dy

)1/q

,

which converges to zero for (α̃, β̃) → (α, β) uniformly with respect to ‖g‖W 1,q(Ω) ≤ 1 because

of the compact embedding of W 1,q(Ω) into Lq(Ω) and Lemma 6.1.

In order to show the continuity of F as a map from W 1,q(Ω) into W 1,q(Ω) we have to show

that F is continuous as a map from W 1,q(Ω) into m Lq(Ω) (what follows from its differentiability

shown above) and that the map F1 : W 1,q(Ω) → Lq(Ω), which is defined by F1(α, β, f)(x, y) :=

∂xf(ξα,β(x), y)ξ′α,β(x), is continuous. The continuity of F1 can be shown as that of ∂αF .

Analogously we can prove the assertions for Φ−1
α,β and Φ∗

α,β by using the formula (2.8).

Lemma 6.2 Let (1.4), (1.5) hold, let p > 1 be arbitrary. There are δ > 0, C > 0 such that

‖g(λ, u)‖Lp(Ω) ≤ C‖u‖2, ‖∂ug(λ, u)‖Lp(Ω) ≤ C‖u‖ for all (λ, u) ∈ R+ ×H, ‖u‖ < δ. (6.6)

Proof. It follows from (1.4) that there exist δ > 0 and C > 0 such that

if |s|q < δ then |g(λ, s)| < Cs2. (6.7)

For the proof of the first part of our assertion it is sufficient to show that if (λn, un) ∈ R+×H,

‖un‖ → 0 then there is C > 0 such that

‖g(λn, un)‖Lp(Ω) ≤ C‖un‖2. (6.8)

Let un be such a sequence. Let us introduce the sets

En
δ := {x ∈ Ω : |un(x)|q ≥ δ}.
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We obtain by (6.7) and the embedding theorems (see Observation 3.2) that(∫
Ω\En

δ
|g(λn, un)|p dx

)1/p

≤ C
(∫

Ω\En
δ

(|un|2)p
dx
)1/p

≤ C‖un‖2
L2p(Ω) ≤ C‖un‖2. (6.9)

We have 1 ≤ δ−1|un(x)|q for all x ∈ En
δ and we obtain by using (1.5) that(∫

En
δ
|g(λ, un)|p dx

)1/p

≤
(∫

Ω
(c(1 + |un|q))p dx

)1/p

≤
(∫

Ω
(c(δ−1 + 1)|un|q))p

dx
)1/p ≤ C‖un‖q

Lpq(Ω) ≤ C‖un‖q.
(6.10)

Since q > 2, the last expression is not larger then C‖un‖2 for small ‖un‖, and the first inequality

from our assertion follows.

The second estimate can be shown analogously, replacing (6.7) by the inequality |∂ug(λ, s)| <
C|s| which is fulfilled if |s|q < δ.
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[2] J. Eisner, M. Kučera, L. Recke, Smooth continuation of solutions and eigenvalues for

variational inequalities based on the implicit function theorem. J. Math. Anal. Appl. 274,

No. 1 (2002), 159–180.

[3] J. Eisner, M. Kučera, L. Recke, Smooth dependence on data of solutions and contact

regions for a Signorini problem. Nonlinear Analysis 72 (2010), 1358–1378.
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[16] A. Kufner, A.-M. Sändig, Some Applications of Weighted Sobolev Spaces. Teubner-Texte

zur Mathematik, Vol. 100, Leipzig, 1987.

[17] J. L. Lions, E. Magenes, Problemes aux limits non homogenes, Dunod, Paris 1968.

[18] V.G. Mazya, S.A. Nazarov, B.A. Plamenevskii, Asymptotic theory of elliptic boundary

value problems in singularly perturbed domains. Operator Theory: Advances and Appli-

cations 112. Basel: Birkhäuser, 2000.
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