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Boundedness of the maximal operator and
singular integral operator in generalized Morrey
spaces

Ali Akbulut, Vagif Guliyev and Rza Mustafayev

Abstract. In this paper we provide the conditions on the pair (wy,ws) which
ensures the boundedness of the maximal operator and Calderén-Zygmund singu-
lar integral operators from one generalized Morrey space M,, ,, to another M, ,,,
1 < p < o0, and from the space M, ,, to the weak space WM, ,,. As applica-
tions, by these results we get some estimates for uniformly elliptic operators on
generaized Morrey spaces.

1. INTRODUCTION

The theory of boundedness of classical operators of real analysis, such as max-
imal operator and singular integral operators etc, from one weighted Lebesgue
space to another one is well studied by now. These results have good applications
in the theory of partial differential equations. However, in the theory of partial
differential equations, along with weighted Lebesgue spaces, general Morrey-type
spaces also play an important role.

Let f € L'*°(R"). The maximal operator M is defined by

1
Mf(x) = sup B 1) o | f(y)|dy,

where |B(x,t)| is the Lebesgue measure of the ball B(x,t).

Definition 1.1. Let k(z) : R"\{0} — R. We call k(z) a Calderdn-Zygmund
kernel (C-Z kernel) if
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(i) ke C*R"\{0});

(ii) k(z) is homogeneous of degree —— n;
(iii) / k(z)doe =0, where ¥ ={x e R":|z|=1} is the unit sphere in R".
s

Theorem 1.2 ([9]). Let k be a real measurable function in R™ x (R™\{0}) such
that

(i) k(z,z) is a C-Z kernel for a.a. = € R"
(i) ma [0 /057 )k(, 2 ooy = M < .

l7]<2n

Fore >0 set
i@ = [ ke i
Then there exists T'f € L,(R™) such that
A (|72 f =T fllz, @) = 0
and, moreover, there exists a positive constant C' such that
1T Fllp@ny < ClFlzy@n)-

Morrey spaces M,, \ were introduced by C. Morrey in 1938 [14] and defined as
follows. For0<A<n,1<p<oo, feMpriffe L;OC(R”) and

A
1 1wty = 1, ey = odup T 1|2y < 00,
where B(z, ) is the open ball centered at « of radius . Note that M, o = L,(R")
and M,,,, = Lo(R"). If A < 0 or A > n, then M, \ = ©, where O is the set of
all functions equivalent to 0 on R™.

These spaces appeared to be quite useful in the study of the local behaviour
of solutions to partial differential equations, apriori estimates and other topics in
the theory of partial differential equations.

We also denote by WM, 5 the weak Morrey space of all functions f € VVL;OC (R™)
for which

_A
1w, = W lwat, @y = sup 7l fllwe, ) < oo
’ ’ z€R™, >0
where W L, denotes the weak L,-space.
F. Chiarenza and M. Frasca [8] studied the boundedness of the maximal oper-
ator M in these spaces. Their results can be summarized as follows:

Theorem 1.3. Let 1 < p < ooand 0 < X <n. Then for1 < p < oo M is
bounded from My, to M, \ and for p =1 M is bounded from M\ to WM, .
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G.D.Fazio and M.A.Ragusa [9] studied the boundedness of the Calderén-Zygmund
singular integral operators in Morrey spaces, and their results imply the following
statement for Calderén-Zygmund operators 7.

Theorem 1.4. Let 1 < p < o0, 0 < A <n. Then for 1 < p < oo Calderon-
Zygmund singular integral operator T' is bounded from M, \ to M,y and for

p=1T is bounded from M ) to WM, ,.

Note that in the case of the classical Calderén-Zygmund singular integral op-
erators Theorem 1.4 was proved by J. Peetre [18]. If A = 0, the statement of
Theorem 1.4 reduces to Theorem 1.2 for L,(R™) (see also [6], [21]).

In the present work, we study the boundedness of maximal operator M and
Calderén-Zygmund singular integral operators 1T from one generalized Morrey
space M, ., to another M, ,,, 1 < p < oo, and from the space M, to the
weak space WM, ,,. As applications, by these results we get some estimates for
uniformly elliptic operators on generaized Morrey spaces.

By A < B we mean that A < C'B with some positive constant C' independent
of appropriate quantities. If A < B and B < A, we write A =~ B and say that A
and B are equivalent.

2. GENERALIZED MORREY SPACES

For the sake of completeness we recall the definition of the spaces and some
properties of the spaces we are going to use.

If in place of the power function r* in the definition of M, \ we consider any
positive measurable weight function w(z,r), then it becomes generalized Morrey
space M, .

Definition 2.1. Let w(z,r) be a positive measurable weight function on R™ X
(0,00) and 1 < p < oco. We denote by M,,, the generalized Morrey space, the
space of all functions f € LI°(R™) with finite quasinorm

_1
1 fllrmpo@eny = sup w(@, ) 7| fllL, (B

z€R™,r>0

Definition 2.2. We say that (wy,ws) belong to the class Z,,,, p € [0,00), if there
1s a constant C' such that, for any x € R™ and for any t > 0

(/t“ (essinfr<s<oow1(% S>>p @) < 0#, ifpe(0,00)  (21)

rm T

and

essinf, cscoo wi(, s wy(x,t
ess sup ASAL <’)§C (’),
t<r<oo " "

if p=0. (2.2)
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Definition 2.3. We say that (wy,ws) belong to the class gpm, p € [0,00), if there
1s a constant C' such that, for any v € R™ and for any t > 0,

(/too (#)1 %)p = szii7t>» if p € (0,00) (2.3)

wo(x,t)

and

wi(z,r)

ess sup <C , if p=0. (2.4)

t<r<oo T A

Note that Z,,, C Z,., for p € [0, 00).
The following property for the class Z,,, p € [0,00) is valid.

Lemma 2.4. Let 0 < p < 0. Then
Zpn C Zop-

Proof. Let p € (0,00). Assume that (wy,ws) € Z,,. Then for any s € (¢, 00)

wa(x,t) > /OO essinf, oo wi (7, 7) ’ dr ’
tn ~ ‘ rm r

. - P
- /°° essinf, ;oo wi(x,7)\ 7 ﬁ
~ 5 rn T

. © Ir p
2 essinfw; (x, 7) T
s<T<00 s T;—i_

_essinf oo (x,7)

~ .

Sn
Thus
wo(z,t) S essinfyr oo wi(x, 7)
2 esssup )
t t<5<00 sm

It proves that
Zpn C Zop-
O

Remark 2.5. Let w(t) = t*. Then (w,w) € Zy,, but (w,w) € Z,, for any
p € (0,00).

T. Mizuhara [13], E. Nakai [16] and V. S. Guliyev [10] (see also [11]) generalised
Theorem 1.4 and obtained sufficient conditions on functions w; and ws ensuring
the boundedness of M and 7" from M,, ,,, to M,,,,. In [16] the following statement
was proved, containing the result in [13].
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Theorem 2.6. Let 1 < p < co. Moreover, let w be a positive measurable function
satisfying the following conditions: there exists ¢ > 0 such that

0<r<t<2r=clwlr) <wt) <cw(r) (2.5)

and (w,w) € Zvlvn.
Then for 1 < p < oo the operators M and T are bounded from M, ,, to M, .,
and forp=1 M and T are bounded from My, to WMy .

The following statement, containing the results in [13], [16] was proved in [10]
(see also [11]).

Theorem 2.7. Let 1 < p < 0o and (wy,wq) € gp,n(R”). Then for 1 < p < oo
the operator T' is bounded from M, ., to M, ,, and for p =1 the operator T is
bounded from My, to WM, ,,.

In [1]-[5], [10] and [11] the boundedness of the maximal operator and the sin-
gular integral operators in local and global Morrey-type spaces has been inves-
tigated. Note that the global Morrey-type space is a more general space than
generalized Morrey space.

3. BOUNDEDNESS OF THE MAXIMAL OPERATOR IN GENERALIZED MORREY
SPACES

Let 9M(0,00) be the set of all Lebesgue-measurable functions on (0,00) and
M+ (0, 0o) its subset consisting of all nonnegative functions on (0, 00). We denote
by 9MM*(0, 00;T) the cone of all functions in 9 (0, 0o) which are non-decreasing
on (0,00) and

A= {(,0 € M (0,00 1) :tlir&¢(t) = O} :

Let u be a continous and non-negative function on (0, 00). We define the supremal
operator S, on g € M(0, 00) by

(5ug)(t) = lu gl Locit.o0)s T € (0,00).

The following Theorem was proved in [4].

Theorem 3.1. Let vy, vy be non-negative measurable functions satisfying 0 <
|01 Ly(t,00) < 00 for any t > 0 and u be a continuous non-negative function on
(0, 00)

Then the operator S, is bounded from Luo ,(0,00) t0 Laoy,(0,00) on the cone
A if and only if

[o5u (I o0) [, gy < (3.1)



Sufficient conditions on w for the boundedness of M in generalized Morrey
spaces M, ,,(R") have been obtained in [1], [2], [4], [5], [13], [16].
The following lemma is true.

Lemma 3.2. Let 1 < p < co. Then for any ball B = B(x,r) in R™ the inequality
IMfllL, @ S IfllLmeen + 7 sup Mz By (3.2)

holds for all f € Ly°(R™).
Moreover, the inequality

IMfllwe, B S o @) +7" tSsz NS Ly (B (3.3)

holds for all f € LY°(R").
Proof. Let 1 < p < co. It is obvious that for any ball B = B(z, )

IM iz, < IM(fX@B) L) + 1M (fxem@8) L, (5)
By the continuity of the operator M : L,(R™) — L,(R"), 1 < p < co we have

IM(fxee)llL,m S 1 lL,es-
Let y be an arbitrary point from B. If B(y,t)N{R"\(2B)} # 0, then ¢ > r. Indeed,
if z € B(y,t) N{R"\(2B)}, thent > ly —z| > |z — 2| — |z —y| > 2r —r =1.
On the other hand B(y,t) N {R"\(2B)} C B(z,2t). Indeed, z € B(y,t) N
{R™\(2B)}, then we get |z — 2| < |y — 2| + |z —y| <t +7r < 2t.
Hence

1
M o)) = sup o | £ )ldy
\2) >0 | By, t)| Jey.onmn@28)
< 2" sup fy)ldy
>r |B(,2t)] B(m,2t)’ (@)l
1
= 2" sup - —~ |/ (y)|dy.
t>2r‘B($at)| B(z,t)
Therefore, for all y € B we have
n su )|d 3.4
M) < 2" swp s | ()l (3.4
Thus
M < +|B|7 [ su / )
Iy 5 W+ 181 (sup s |

Let p = 1. It is obvious that for any ball B = B(x,r)
1M fllwrysy < IM(Fxes)lwee) + M Fxees)lwes):
By the continuity of the operator M : Ly (R") — W L (R") we have
IM(fxee)llweie S I1flles)-



Then by (3.4), we get the inequality (3.3).
U

Lemma 3.3. Let 1 < p < co. Then for any ball B = B(x,r) in R™, the inequality
IMflle,Bam ST° sup tr [ fll, ), (3.5)

holds for all f € L°(R™).
Moreover, the inequality

M fllwr,y (B ST sup t " fll 2y (B (3.6)

holds for all f € LY(R").

Proof. Let 1 < p < oo. Denote by
1 1
M::Bp(sup— fly dy>,
' ‘ ’ t>2r |B(l’,t)| B(x,t)‘ ( )|
Mz = |[fz,e5)-

Applying Holder’s inequality, we get

1 1 ’
Mgl (s ([ ).
t>2r |B(.1" t) | P B(z,t)
On the other hand,

1 1 %
Bl7 - rq
5] <p o (). 1w y)>

> |B|7 (Sup

— | Ifllz,2B) = Ma.
t>2r \B(%t)fp>

Since by Lemma 3.2
M fllz,8) < Mi+ My,
we arrive at (3.5).
Let p = 1. The inequality (3.6) directly follows from (3.3).
]

Theorem 3.4. Let p € [1,00) and (wi,w2) € Zp,(R™). Then forp > 1 M
is bounded from M, ., to M,,, and for p = 1 M is bounded from M, to
WM -

Proof. By Lemma 3.3 and Theorem 3.1 we get

_1 n _n
M fll iy, @y S sup  walz,r) Pre (Supt prHLp(B(:c,t)))
zeR™,r>0 t>r

_1
S osup wi(@, ) 7| fllzy e = 11 mpw, @),
zER™,r>0
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if p € (1,00) and

IV fllwats ey S sUp walarsr) " (supt—”||f||Ll<B<x,t»)
z€R™ r>0 t>r

S sup wi(@, ) T e = 1 v, @),
z€R™ r>0

if p=1. 0

Corollary 3.5. Letp € [1,00] andw : (0,00) — (0,00) is an increasing function.
Assume that the mapping t — “i—nt
¢ such that for s < t, we have % > c%) Then there exists a constant C > 0
such that

is almost decreasing (there exists a constant

1M fllm, @y < Cllfllmpo@ny, if 1 <p < oo,
and
M fllwaty w@ny < Cllfllamy o @e)-

4. SINGULAR INTEGRALS AND HARDY OPERATOR

In this section we are going to use the following statement on the boundedness
of the Hardy operator

(Hg)(t) == %/0 g(r)dr, 0 <t < oo.

Theorem 4.1. ([7]) The inequality

esssupw(t)Hg(t) < cesssupv(t)g(t) (4.1)
t>0 t>0

holds for all non-negative and non-increasing g on (0,00) if and only if

t) [* d
A :=sup w(t) / i < 00, (4.2)
t>0 U Jo €SSSUPg.yc v(y)

and c = A.

Sufficient conditions on w for the boundedness of T" in generalized Morrey
spaces M, ,(R") have been obtained in [3], [10], [11], [13], [16].

The following Lemma has been proved in [10]. For the sake of completeness
we give the proof.

Lemma 4.2. Let p € [1,00), f € LY(R") and for any xy € R"

/ t_%+1|’f”Lp(B(xg,t))dt < 0.
1



9

Then Calderon-Zygmund singular integral T f(x) exists for a.a. x € R™ and for
any xo € R", r >0 and p € (1,00)

Ity < 7 [ €51 it (43)

2r

where constant C' > 0 does not depend on xq, v and f.
Moreover, for any xog € R™ and r > 0

NT fllw e, (Bzory) < CT"/ N ey (Bo.y) AL, (4.4)
2r

where constant C' > 0 does not depend on xq, v and f.

Proof. Let p € (1,00). For arbitrary zo € R", set B = B(x,r) for the ball
centered at xy and of radius r. Write f = fi + fo with fi = fxep and fo =
fxrm\@2p). Since fi € L,(R"), Tfi(x) exists for a.a. z € R™ and from the
boundedness of T"in L,(R™) ([9]) it follows that:

IT fillz,8) < 1T fillL,@ny < Cllfillz, @ = CllfllL,es),

where constant C' > 0 is independent of f.
Let us prove that the non-singular integral T fo(x) exists for all x € B.
It’s clear that « € B, y € R"\(2B) implies i|zg—y| < |z —y| < 3|z —y|. We
get
i< [ W,
re\(28) 1To — Y|"

By Fubini’s theorem we have

1f(v)] / <o dt
———dy = f(y dy
/Rn\(zg) |20 — y|" Rn\@B)‘ Wl jwo—yl 1"
dt
y)|dy
/ Lr<|a:0 y|<t it
|f(y)ldy
/ /:ﬂot tn+1

Applying Holder’s inequality, we get

fly dt
JR = e A T PR
R™\(2B) lzo — 2r tr

Therefore T f5(x) exists for all z € B. Since R" = J,., B(wo,r), we get existence
of Tf(x) for a.a. g € R"™.
Moreover, for all p € [1,00) the inequality

n dt
Il 7 [ 1 iatann 557 (45)
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is valid. Thus

n [ dt
Iy S Uflsm + 73 | eocotaom =i
On the other hand,
n > dt
1oy = 75 1 louem / s
2r tr

n [ dt
5“’/2 ||f’|Lp(B($07t))F'

r

Thus

o0 dt
HfHLp(B(zo,t))tgﬁ~

I7flssien S 7% [

2r

Let p = 1. From the weak (1,1) boundedness of T' (]9]) it follows that:

HTleWLl(B) < HTf1HWL1(R") < CHleLl(R") = C”fHL1(2B)7

where the constant C' > 0 is independent of f.
Then by (4.5) we get the inequality (4.4). O

Theorem 4.3. Let p € [1,00) and (wy,w2) € Z,,. Then Calderdn-Zygmund
singular integral T f(x) exists for a.a. © € R™ and for p > 1 the operator T is
bounded from M, ., (R") to M, .,(R™) and for p =1 the operator T is bounded
from M, (R™) to WM, ,(R™). Moreover, for p >1

HTfHMp,uJQ 5 ||f||Mp,w17
and forp=1
1T fllwat ey S 1Mo, -

Proof. By Lemma 4.2 and Theorem 4.1 we have for p > 1

_1 n & dt
1Tty S sUD (e, )30 / 1l 500 s
zER™, >0 r tr

1 n "
~ sup wy(x,r) Pre _pdt
xERnE>O 2(2,7) /0 “fHL”(B(Z’t ")

I3

ya

el [T
:m€§3}3>0w2($,r ") p;/o HfHLp(B(x’r%))dt

< —5)w — .
~ ze?&tﬂlg>0wl($’ r ) P HfHLp(B(:):,r_%)) ||f||Mp,w1(R )
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and for p=1

“1n dt
7 lwanpeny S s waleer)s® [ 1 oo s

z€R™, r>0

N
~  sup wg(a:,r)lr"/ TR
0

z€ER™ r>0
1
= su w l‘ T ” _1
a:E]R”I:>O ? / ||f||L1 @tm)
< swp (e A, ))—||f||Mwl<Rn>
z€R™ r>0

O

Corollary 4.4. Let p € [1,00) and (wi,ws) € Zpn(R™). Then forp > 1 T is
bounded from M, ., (R™) to M, ., (R™) and for p =1 T is bounded from M,
to WMl,wg-

Note that Theorem 2.7 and Corollary 4.4 coincide.

5. ESTIMATES FOR UNIFORMLY ELLIPTIC OPERATORS ON GENERAIZED
MORREY SPACES

In this section we consider uniformly elliptic operators

Za ai;(2)0;) + V(x)

i,7=1

with non-negative potentials V' on R™ (n > 3) which belong to certain reverse
Holder class. We show several estimates for VL™, V3VL™' and V2L~! on
generalized Morrey spaces under certain assumptions on a;;(z), V and p. Our
results generalize some results of K. Kurata and S. Sugano [12].

For the Schrodinger operators —A + V(z) with nonnegative polynomials V,
several authors ([20], [23], [24]) studied L, boundedness for 1 < p < oo of
V(A + V)2, (=A+ V)2V, and V(=A 4+ V)V, V2V(=A + V)7L, and
V2(—=A + V)=l In particular, J. Zhong [24] proved that if V' is a non-negative
polynomial, V2(—A + V)™, V(=A + V)2, and V(=A + V)~'V are Calderén-
Zygmund operators. Recently, Z. Shen [19] generahzed these results. He proved
that V(—A+V)~2, (tA+ V) 2V, and V(—A + V)~V are Calderén-Zygmund
operators, if V' belongs to the reverse Holder class B,, (see Definition 6.1), which
includes non-negative polynomials and allows some non-smooth potentials. More-
over, Z. Shen also showed L, boundedness for V(—A+ V)™ and V*(-A+V)!

when V € B,y and ViV(—A 4 V)~! when V € B,.
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In this section we consider uniformly elliptic operators

L=1Lo+V(z 28 aij(x Vi(x)

i,7=1

with certain non-negative potentials V' on R" (n > 3), where a;;(z) is a measur-
able function satisfying the conditions:
(A1) There exists a constant A € (0, 1] such that

ay () = a5 Ar£|2<2au (2)&&; < ATEP, @ € e RY

i,7=1
(A2) There exist constants a € (0,1] and K > 0 such that
laijllca@n < K.
Throughout this section we use the following notation:

0
8J:V]:ijzaxj |VU Z|VU

The purpose of this section is to show boundedness of the operators T} = VL1,
Ty = V2VL~! and T3 = V2L! from one generalized Morrey space M,,,, to
another M, ,,,. Although it is known 7} and T3 are Calderén-Zygmund operators
for the case L = —A + V' with non-negative polynomials V', it is not known
that whether T} (j = 1,2,3) are Calderén-Zygmund operators or not under the
general condition V' € B,. We show, under the same conditions as in [19]
for V , boundedness of T} = VL' and Ty = V2VL™! on generalized Morrey
spaces M, ,(R™). Actually, we used pointwise estimates of T} f(z), k = 1,2, by
the Hardy-Littlewood maximal function (see [12], Theorem 1.3). We also show
boundedness of T3 = V2L™! on generalized Morrey spaces under the additional
assumption

(Ag) There exist a constant o € (0, 1] such that

aij € C'T*(R™), ai;(x + 2) = a;(z), for all z € R, for all 2z € Z",

and
> 0iaii(x)) =0, j=1,...,n.

Here L~! is the integral operator with the fundamental solution (or the minimal
Green function (see e. g. [15])) of L as its integral kernel. We can also define L™ f
for f € C5°(R™) as the unique solution of Lu = f on certain generalized Morrey
space Ms,(R™), and can see it is a bounded operator on certain generalized
Morrey spaces My ,(R") (see e. g. [20]).
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Definition 5.1. Let V(z) > 0.

(1) A nonnegative locally L, integrable function V on R™ is said to belong to
the reverse Hélder class B, (1 < g < 00) if there exists C > 0 such that the
reverse Holder inequality

L v(e)de L C V(z)da
1Bl /s 1Bl /5

holds for every ball B in R™.
(2) We say V € By, if there exists a constant C > 0 such that

C
< — d
Wl < 7 | Viwda
holds for every ball B in R™.

Clearly, B, C B, for 1 < ¢ < oo. But it is important that the B, class has a
property of ”self-improvement”; that is, if V' € B,, then V' € B, for some ¢ > 0
(see [17]).

K. Kurata and S. Sugano [12] proved the following pointwise estimate for T} and
T, which generalize the results in [24], Lemma 3.2 to uniformly elliptic operators
with general potentials V € B..

Theorem A. Suppose that A(z) satisfies (A1) for Ty, (A1) — (Az) for Ty, and
V € By. Then there exist positive constants Cy, k = 1,2 such that

T f(x)] < Mf(x), feCERY), k=1,2.
Hence Theorem A and Theorem 3.4 in Section 2 imply

Corollary 5.2. Let A(x) and V(x) satisfy the same assumptions as in Theorem
A.

(1) Suppose 1 < p < oo, and (w1,ws) € Zy,. Then VL' and ViVL! are
bounded from M, ., to M, ..

(2) Suppose 1 < p < o0, (w1,wq) € 2o, and (As) for A(z). Then VL' is
bounded from M, ., to M, ..

Theorem B. (1) Suppose A(z) satisfies (A1) and V € B,, ¢ > n/2. Then
there exist a positive constant C' such that

T3 f(a)] < CM(|f19) (2), f e CFRM,

where 1/q+1/¢ = 1.
(2) Suppose A(x) satisfies (A1) — (Az). When V € B, withn > q > n/2 we
have
T3 fl)] < CM(IF™) " (@), f € (R,
where 1/py = 1+ (1/n) — (3/2q).
When V' € B, with ¢ > n we have

IT5 f(x)| < CM(|f1P) P (), feCERY,
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where 1/p1 =1 — (1/2q).
Hence Theorem B and Theorems 3.4 and 4.3 imply

Corollary 5.3. (1) Suppose A(x) satisfies (Ay1). Suppose V € B, with ¢ > n/2,
and (wy,w2) € Zy, and ¢ < p < oo. Then Ty is bounded from M, ,, to M, .,.
(2) Suppose A(x) satisfies (A1) — (Az). Suppose V € B, with n/2 < q < n,
pL<p<oo,l/pr =14 (1/n)—(3/2q) and (wi,ws) € Zy,,. Then Ty is bounded
from M, ., to My, .
(3) Suppose A(x) satisfies (A1) — (Az). Suppose V € B, with g >n, p1 <p <

oo,

1/p1 =1—(1/2q) and (w1,w2) € Zo,. Then Ty is bounded from M, ., to

My, -
(4) Suppose A(x) satisfies (A1) — (As), 1 <p < o0 and (wy,ws) € Z,,. Then
V2L is bounded from M, to M,.,.
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