
SPECIAL n-FORMS ON A 2n-DIMENSIONAL VECTOR SPACE

JIŘÍ VANŽURA

Abstract. The configuration of regular 3-forms in dimension 6 is generalized
to n-forms in dimension 2n. The algebras of complex, paracomplex, and dual

numbers are systematically used. The automorphism groups of all forms are
determined.

In the last decade there has arisen interest in exterior forms of higher degree,
first of all in forms of degree 3 (see [2] and [3]). It is known (see [4] and [1])
that on a 6-dimensional real vector space there are exactly three types (= orbits)
of regular 3-forms, and that these types are closely related with 2-dimensional
unital algebras. In this note we show that these forms can be generalized to higher
dimensions. Namely, using 2-dimensional unital algebras we construct n-forms on
a 2n-dimensional real vector space, and investigate their properties.

We shall consider all three 2-dimensional unital, associative and commutative
real algebras, namely

C = [1, i], i2 = −1 algebra of complex numbers,

D = [1, d], d2 = 1 algebra of paracomplex numbers,

E = [1, e], e2 = 0 algebra of dual numbers.

Let V be a 2n-dimensional real vector space, n ≥ 3. On this vector space we
shall consider consider three endomorphisms J , D, and E, respectively. We shall
assume that they satisfy

J2 = −I (complex structure)

D2 = I, dim ker(D − I) = dim ker(D + I) = n (product structure)

E2 = 0, dim im E = dim kerE = n (tangent structure).

If V is endowed with a complex structure J (resp. product structure D, resp.
tangent structure E), we can introduce on V a structure of a C-module (i. e.
complex vector space) (resp. D-module, resp. E-module) in the following way

(a + bi)v = av + bJv (resp. (a + bd)v = av + bDv, resp. (a + be)v = av + bEv).

On the other hand if V carries a structure of a C-module (resp. D-module, resp.
E-module), we can introduce on V a complex structure J (resp. product structure
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2 JIŘÍ VANŽURA

D, resp. tangent structure E) by the formula

Jv = iv, (resp. Dv = dv, resp. Ev = ev).

Writing V we shall always consider V as a real vector space. If we want to consider
V as a C-module (resp. D-module, resp. as a E-module), we shall write (V, C)
(resp. (V, D), resp. (V, E)). If there is no danger of confusion, we shall very often
abbreviate W = (V, C) (resp. W = (V, D), resp. W = (V, E)). Using the above
assumptions on J (resp. D, resp. E), we can easily see that W is an n-dimensional
free C-module (resp. D-module, resp. E-module).

We shall consider the group

GL∗(V ; C) = {A ∈ GL(V ; R);AJ = JA or AJ = −JA}.

We define also

GL+(V ; C) = {A ∈ GL(V ; R);AJ = JA} and

GL−(V ; C) = {A ∈ GL(V ; R);AJ = −JA}.

We have GL∗(V ; C) = GL+(V ; C) ∪GL−(V ; C), and

GL+(V ; C) ·GL+(V ; C) = GL+(V ; C),

GL+(V ; C) ·GL−(V ; C) = GL−(V ; C) ·GL+(V ; C) = GL−(V ; C)

GL−(V ; C) ·GL−(V ; C) = GL+(V ; C)

Along the same lines we introduce GL∗(V ; D) and GL∗(V ; E).
Let us consider a C-module (V, C) (resp. D-module (V, D), resp. E-module

(V, E)). A real form of this module is an n-dimensional real subspace V0 ⊂ V such
that

V0 + iV0 = V (resp. V0 + dV0 = V, resp. V0 + eV0 = V ).

Because the module W is free, it is easy to see that in all these three cases a real
form exists.

For a k-form ω on V , k ≥ 2, we can define a homomorphism

V → Λk−1V ∗, v 7→ ιvω = ω(v, ·, . . . , ·).

The form ω is called regular (or multisymplectic) if the above homomorphism is a
monomorphism.

Next for a k-form ω on V , k ≥ 3, we can consider all endomorphisms A of V
satisfying

ω(Av1, v2, . . . , vk) = ω(v1, Av2, . . . , vk) = · · · = ω(v1, v2, . . . , Avk).

It is easy to see that such endomorphisms constitute a unital associative real al-
gebra. This algebra is commutative (which can be very easily proved). We shall
denote it by the symbol Aω.

If A is an endomorphism of V and ω is a k-form, we define a k-form A∗ω in the
following way.

(A∗ω)(v1, . . . , vk) = ω(Av1, . . . , Avk)

Next we define the derivation DAω ∈ ΛkV ∗ by the formula

(DAω)(v1, . . . , vk) =
k∑

i=1

ω(v1, . . . , vi−1, Avi, vi+1, . . . , vk).
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1. Forms of the complex type

W is here an n-dimensional complex vector space, and e1, . . . , en is its basis.

Lemma 1.1. Let θ 6= 0 be a complex n-form. Then Aθ = [I, J ] = {cI; c ∈ C}.

Proof. Obviously J ∈ Aθ. If A ∈ Aθ, then AJ = JA, which means that A is a
complex endomorphism. Let A ∈ Aθ. Then we have

θ(e1, Ae1, e3, . . . , en) = θ(e1, e1, Ae3, . . . , en) = 0.

Let us write Aei =
∑n

j=1 aijej . From the above equality it follows that a12 = 0.
Along the same lines we can easily prove aij = 0 for i 6= j. Consequently, we have
Aei = aiiei for i = 1, . . . , n. From the equalities

θ(Ae1, e2, . . . , en) = θ(e1, Ae2, . . . , en) = · · · = θ(e1, e2, . . . , Aen)

we get a11 = a22 = · · · = ann. Therefore we have A = cI, where c ∈ C. This
finishes the proof. �

Let θ 6= 0 be a complex n-form on W . Then we define real n-forms ω− and ω̃−
on V by the formula

θ = ω̃− + iω−.

Lemma 1.2. The automorphism J belongs to the both algebras Aω− and Aω̃− .

Proof. We have

ω̃−(Jv1, v2, . . . , vn) + iω−(Jv1, v2, . . . , vn) =

= θ(Jv1, v2, . . . , vn) = iθ(v1, v2, . . . , vn) = θ(v1, Jv2, . . . , vn) =

= ω̃−(v1, Jv2, . . . , vn) + iω−(v1, Jv2, . . . , vn).

�

Further we have

−ω−(v1, v2, . . . , vn) + iω̃−(v1, v2, . . . , vn) =

= i[ω̃−(v1, v2, . . . , vn) + iω−(v1, v2, . . . , vn)] = iθ(v1, v2, . . . , vn) =

= θ(Jv1, v2, . . . , vn) = ω̃−(Jv1, v2, . . . , vn) + iω−(Jv1, v2, . . . , vn)

Hence we get

ω̃−(v1, v2, . . . , vn) = ω−(Jv1, v2, . . . , vn) and

ω−(v1, v2, . . . , vn) = −ω̃−(Jv1, v2, . . . , vn).

This result can be reformulated in the following way.

Lemma 1.3. ω̃− = 1
nDJω−, ω− = − 1

nDJ ω̃−.

Lemma 1.4. The forms ω− and ω̃− are regular.

Proof. Let us assume that ιvω− = 0. We have then

(ιvω̃−)(v1, v2, . . . , vn−1) = ω̃−(v, v1, v2, . . . , vn−1) =

= ω−(Jv, v1, v2, . . . , vn−1) = ω−(v, Jv1, v2, . . . , vn−1) =

= (ιvω−)(Jv1, v2, . . . , vn−1) = 0,

which proves that ιvω̃− = 0. Consequently ιvθ = 0, and this implies that v = 0.
We have thus proved that the form ω− is regular. Expressing ω̃− using ω− and J ,
we find easily that ω̃− is also regular. �
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Proposition 1.1. Aω− = Aω̃− = [I, J ].

Proof. Let A ∈ Aω− . We have

ω̃−(Av1, v2, . . . , vn) = (1/n)(DJω−)(Av1, v2, . . . , vn) =

= ω−(JAv1, v2, . . . , vn) = ω−(AJv1, v2, . . . , vn) =

= ω−(Jv1, Av2, . . . , vn) = (1/n)(DJω−)(v1, Av2, . . . , vn) =

= ω̃−(v1, Av2, . . . , vn),

which shows that Aω− ⊂ Aω̃− . The converse inclusion can be proved in a similar
way. For A ∈ Aω− we have

θ(Av1, v2, . . . , vn) = ω̃−(Av1, v2, . . . , vn) + iω−(Av1, v2, . . . , vn) =

= ω̃−(v1, Av2, . . . , vn) + iω−(v1, Av2, . . . , vn) = θ(v1, Av2, . . . , vn).

According to Lemma 1.1 we haveAω ⊂ [I, J ]. The converse inclusion is obvious. �

Let us consider now an automorphism A ∈ Aut(ω−). We have

ω−(AJA−1v1, v2, v3, . . . , vn) = ω−(JA−1v1, A
−1v2, A

−1v3, . . . , A
−1vn) =

= ω−(A−1v1, JA−1v2, A
−1v3, . . . , A

−1vn) = ω−(v1, AJA−1v2, v3, . . . , vn).

This shows that AJA−1 ∈ Aω− . Consequently, there are a, b ∈ R such that
AJA−1 = aI + bJ . Squaring this identity we get

−I = (a2 − b2)I + 2abJ.

Obviously there must be b 6= 0. Consequently we have a = 0, and then b = ±1.
This means that we have AJA−1 = ±J or equivalently AJ = ±JA. We have thus
proved the following lemma.

Lemma 1.5. Every automorphism of ω− is a complex linear or complex antilinear
mapping.

We define

Aut+(ω−) = Aut(ω−) ∩GL+(V ; J), Aut−(ω−) = Aut(ω−) ∩GL−(V ; J).

We have Aut(ω−) = Aut+(ω−) ∪Aut−(ω−).

Lemma 1.6. Aut+(ω−) = Aut+(ω̃−).

Proof. Let A ∈ Aut+(ω−). Then we have

ω̃−(Av1, Av2, . . . , Avn) = ω−(JAv1, Av2, . . . , Avn) = ω−(AJv1, Av2, . . . , Avn) =

= ω−(Jv1, v2, . . . , vn) = ω̃−(v1, v2, . . . , vn).

This shows that Aut+(ω−) ⊂ Aut+(ω̃−). The converse inclusion can be proved in
the same way. �

If A ∈ Aut+(ω−), then A ∈ Aut+(ω̃−), and we find easily

A∗θ = detC A · θ, A∗θ = A∗ω̃− + iA∗ω− = ω̃− + iω− = θ.

We have thus shown that if A ∈ Aut+(ω−), then detC A = 1. Conversely, it can be
easily seen that if A ∈ GL+(V ; C) and detC A = 1, then A ∈ Aut+(ω−).

Proposition 1.2. An automorphism A ∈ GL+(V ; C) belongs to Aut+(ω−) if and
only if detC A = 1. Consequently Aut+(ω−) = SL(V ; C) ∼= SL(n; C).
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Our next aim is to innvestigate the set Aut−(ω−). First of all we must see that
this set is not empty. We shall start with the following lemma.

Lemma 1.7. Let A ∈ Aut(ω−). Then A ∈ Aut−(ω−) if and only if one of the
following two equivalent conditions is satisfied.

(i) A∗ω̃− = −ω̃−,
(ii) A∗θ = −θ̄.

Proof. Let us assume first that A ∈ Aut−(ω−). Then we have

(A∗ω̃−)(v1, v2, . . . , vn) = ω̃−(Av1, Av2, . . . , Avn) = ω−(JAv1, Av2, . . . , Avn) =

= −ω−(AJv1, Av2, . . . , Avn) = −ω−(Jv1, v2, . . . , vn) = −ω̃−(v1, v2, . . . , vn).

On the other hand, let us suppose that A∗ω̃− = −ω̃−. Then we have

ω̃−(Av1, Av2, . . . , Avn) = −ω̃−(v1, v2, . . . , vn)

ω−(JAv1, Av2, . . . , Avn) = −ω−(Jv1, v2, . . . , vn)

ω−(A−1JAv1, v2, . . . , vn) = ω−(−Jv1, v2, . . . , vn).

Because the form ω− is regular, the last equality implies that A−1JA = −J , which
shows that A ∈ Aut−(ω−).

If A∗ω̃− = −ω̃−, then we have

A∗θ = A∗ω̃− + iA∗ω = −ω̃− + iω = −θ̄.

The converse direction is now obvious. This finishes the proof. �

Now we shall consider the complex conjugate W̄ of W . We recall that W̄ = W ,
and multiplivation by a complex number c in W̄ is defined by the formula c∗v = c̄v.
We have

θ̄(c ∗ v1, v2, . . . , vn) = θ̄(c̄v1, v2, . . . , vn) = cθ̄(v1, v2, . . . , vn),

which shows that θ̄ is a complex n-form on the complex vector space W̄ .
Because W and W̄ are n-dimensional vector spaces, there exists an isomorphism

B : W → W̄ such that B∗θ̄ = θ.

Lemma 1.8. Let A ∈ GL−(V ; J). Then A ∈ Aut−(ω−) if and only if detC(AB) =
−1.

Proof. Let A ∈ Aut−(ω−). This means that A∗ω− = ω−, and we can easily prove
that A∗ω̃− = −ω̃−. Then

A∗θ = A∗ω̃− + iA∗ω− = −ω̃− + iω− = −θ̄.

Next we get
(AB)∗θ = B∗A∗θ = −B∗θ̄ = −θ,

which proves that detC(AB) = −1.
Conversely, let us assume that detC(AB) = −1. We have

(AB)∗θ = −θ

B∗(A∗θ) = −θ

Because B was chosen in such a way that B∗θ̄ = θ, it is obvious that A∗θ = −θ̄.
Hence we get

A∗ω̃− + iA∗ω− = −ω̃− + iω−.
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We can see that A ∈ Aut(ω−), and according to the previous lemma there is
A ∈ Aut−(ω−). �

From this lemma we can easily see that Aut−(ω−) 6= ∅. Now it is obvious that

Aut+(ω−) ·Aut+(ω−) = Aut+(ω−),

Aut+(ω−) ·Aut−(ω−) = Aut−(ω−) ·Aut+(ω−) = Aut−(ω−),

Aut−(ω−) ·Aut−(ω−) = Aut+(ω−).

Summarizing, we have the following proposition.

Proposition 1.3. The automorphism group Aut(ω−) consists of two connected
components Aut+(ω−) and Aut−(ω−), where Aut+(ω−) is the connected compo-
nent of the unit. The group Aut+(ω−) = SL(V ; C) ∼= SL(n; C). Moreover,
dimR Aut(ω−) = 2(n2 − 1).

2. Forms of the product type

It is obvious that the elements ρ = (1/2)(1 + d) and σ = (1/2)(1 − d) form a
basis of D and that we have

ρ2 = ρ, ρσ = 0, σ2 = σ.

Let us choose a real form V0 of V . It is easy to see that every element v ∈ V can
be uniquely expressed in the form

v = ρx + σy, where x, y ∈ V0.

Lemma 2.1. Vectors w1 = ρu1 +σv1, . . . , wk = ρuk +σvk are linearly independent
in the D-module W if and only if the vectors u1, . . . , uk are linearly independent in
the vector space V0 and the vectors v1, . . . , vk are linearly independent in the same
vector space V0. If the vectors u1, . . . , uk are linearly independent in V0 and the
vectors v1, . . . , vk are linearly independent in V0, then the vectors w1, . . . , wk can be
completed to a basis of W .

Proof. Let us write

ci = aiρ + biσ, wi = ρui + σvi, i = 1, . . . , k.

We have

c1w1 + · · ·+ ckwk = ρ(a1u1 + · · ·+ akuk) + σ(b1v1 + · · ·+ bkvk).

We can easily see that the vectors w1, . . . , wk are linearly independent in the module
W if and only if the vectors u1, . . . , un are linearly independent in V0 and the vectors
v1, . . . , vn are linearly independent in V0. Moreover, it is obvious that if the vectors
w1, . . . , wk are linearly independent, they can be completed to a basis. �

Lemma 2.2. Let θ be a D-multilinear n-form on W with values in the algebra D.
Then Aθ = [I,D] = {cI; c ∈ D}.

Proof. The proof proceeds along the same lines as the proof of Lemma 1.1. �

We take now a non-zero n-form θ on the dual module W ∗ to the D-module W .
We introduce real valued R-multilinear n-forms ω+ and ω̃+ on V by the formula

θ = ω̃+ + eω+.

Lemma 2.3. The automorphism D belongs to the both algebras Aω+ and Aω̃+ .
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Proof. This proof is the same as the proof of Lemma 1.2. �

Lemma 2.4. The n-forms ω+ and ω̃+ satisfy the relations ω̃+ = 1
nDDω+ and

ω+ = 1
nDDω̃+.

Proof. Here it suffices to proceed in the same way as in the proof of Lemma 1.3. �

Lemma 2.5. The forms ω+ and ω̃+ are regular.

Proof. The proof is same as the proof of Lemma 1.4. �

Proposition 2.1. Aω+ = Aω̃+ = [I,D].

Proof. The proof follows the lines of the proof of Proposition 1.1. �

Let us assume now that A ∈ Aut(ω+). Then we have

ω+(ADA−1v1, v2, . . . , vn) = ω+(DA−1v1, A
−1v2, . . . , A

−1vn) =

= ω+(A−1v1, DA−1v2, . . . , A
−1vn) = ω+(v1, ADA−1v2, . . . , vn),

which shows that ADA−1 ∈ Aω+ . This implies that there are a, b ∈ R such that
ADA−1 = aI + bD. Taking the second power of this equality, we get

I = (a2 + b2)I + 2abD.

Obviously, there must be either a = 0 or b = 0. Let us assume first that b = 0.
Then we get I = a2I, which implies a = ±1. In this situation we have the following
two possibilities.

ADA−1 = I ADA−1 = −I

AD = A AD = −A

D = I D = −I

But according to the assumptions concerning D neither D = I nor D = −I is
possible. Consequently there must be a = 0 and b = ±1. Then ADA−1 = ±D, and
we have the following two possibilities.

ADA−1 = D ADA−1 = −D

AD = DA AD = −DA

We have thus proved the following lemma.

Lemma 2.6. Every automorphism of ω+ is a paracomplex linear or paracomplex
antilinear mapping.

We denote

Aut+(ω+) = {A ∈ Aut(ω+);AD = DA},
Aut−(ω+) = {A ∈ Aut(ω+);AD = −DA}.

We have obviously Aut(ω+) = Aut+(ω+) ∪Aut−(ω+).

Lemma 2.7. Aut+(ω+) = Aut+(ω̃+).

Proof. The proof follows the lines of the proof of Proposition 1.6. �

Proposition 2.2. An automorphism A ∈ GL+(V ; D) belongs to Aut+(ω+) if and
only if detD A = 1. Consequently Aut+(ω+) = SL(V ; D).

Proof. Here we proceed as in the proof of Proposition 1.2. �
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Every endomorphism Q of the D-module (V, D) can be uniquely expressed in the
form Q = ρR + σS, where R and S are real endomorphisms, i. e. endomorphisms
satisfying RV0 ⊂ V0 and SV0 ⊂ V0. Then it is obvious that

detD Q = ρ detR(R|V0) + σ detR(S|V0) =

=
1
2
(detR(R|V0) + detR(S|V0)) + d

1
2
(detR(R|V0)− detR(S|V0)).

We can see that detD Q = 1 if and only if detR(R|V0) = detR(S|V0) = 1. Now we
get easily the following proposition.

Proposition 2.3. The group Aut+(ω+) = SL(V ; D) is isomorphic with the group
SL(V0)× SL(V0) ∼= SL(n; R)× SL(n; R), and consequently is connected.

In the algebra D of paracomplex numbers we can introduce conjugation by the
standard formula a + db = a− db. This conjugation has moreless the same proper-
ties as the conjugation of complex numbers. If W is a D-module, we can introduce
the conjugate D-module W̄ by setting W̄ and c ∗ v = c̄v. If W is an n-dimensional
free D-module, then W̄ is also an n-dimensional free D-module. Consequently, there
exist a D-module isomorphism B : W → W̄ such that B∗θ̄ = θ. Now, along the
same lines as in the complex case, we get the following two lemmas.

Lemma 2.8. Let A ∈ Aut(ω+). Then A ∈ Aut−(ω+) if and only if one of the
following two equivalent conditions is satisfied.

(i) A∗ω̃+ = −ω̃+,
(ii) A∗θ = −θ̄.

Lemma 2.9. Let A ∈ GL−(V ;D). Then A ∈ Aut−(ω+) if and only if detD(AB) =
−1.

Now we can easily see that there is

Aut+(ω+) ·Aut+(ω+) = Aut+(ω+),

Aut+(ω+) ·Aut−(ω+) = Aut−(ω+) ·Aut+(ω+) = Aut−(ω+),

Aut−(ω+) ·Aut−(ω+) = Aut+(ω+).

Summarizing, we obtain the following proposition.

Proposition 2.4. The automorphism group Aut(ω+) consists of two connected
components Aut+(ω+) and Aut−(ω+), where Aut+(ω+) is the connected component
of the unit. The group Aut+(ω+) = SL(V0) × SL(V0) ∼= SL(n; R) × SL(n; R).
Moreover dimR Aut(ω+) = 2(n2 − 1).

According to our assumptions concerning the automorphism D of V we can write

V = V+ ⊕ V−, where V+ = {v ∈ V ;Dv = v}, V− = {v ∈ V ;Dv = −v}.

Lemma 2.10. Let v+ ∈ V+, v− ∈ V−, and v3, . . . , vn ∈ V . Then

ω+(v+, v−, v3, . . . , vn) = 0.

Proof. We get

ω+(v+, v−, v3, . . . , vn) = ω+(Dv+, v−, v3, . . . , vn) =

= ω+(v+, Dv−, v3, . . . , vn) = −ω+(v+, v−, v3, . . . , vn),

which shows that ω+(v+, v−, v3, . . . , vn) = 0. �
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If v1 = v1+ + v1−, . . . , vn = vn+ + vn−, then we obviously have

ω+(v1, . . . , vn) = ω+(v1+, . . . , vn+) + ω+(v1−, . . . , vn−).

Moreover it is easy to see that ω+|V+ and ω+|V− are regular forms. (Otherwise
the form ω+ would be singular.) Let π+ : V → V+ and π− : V → V− denote the
projections. We get the following proposition.

Proposition 2.5. For the form ω+ we have ω+ = π∗+(ω+|V+) + π∗−(ω+|V−).

3. Forms of the tangent type

In this section we shall consider an n-dimensional E-module (V, E) = W . First
we introduce the mapping

ρ : E → E/(e) ∼= R,

which is projection onto the quotient by the ideal (e). Now we are going to prove
the following lemma.

Lemma 3.1. The elements w1, . . . , wk are linearly independent in W if and only if
the vectors Ew1, . . . , Ewk are linearly independent in V . The elements w1, . . . , wn

constitute a basis of W if and only if the vectors Ew1, . . . , Ewn are linearly inde-
pendent in V .

Proof. Let us assume that the elements w1, . . . , wk are linearly independent in W .
Let a1, . . . , ak be real numbers such that a1Ew1 + · · ·+ akEwk = 0. Then there is
E(a1w1 + · · ·+ akwk) = 0, which means that we can find w ∈ W such that

a1w1 + · · ·+ akwk = ew

ea1w1 + · · ·+ eakwk = 0

Because the elements w1, . . . , wk are linearly independent in W , we have a1e =
· · · = ake = 0, which inplies a1 = · · · = ak = 0. We have thus proved that the
vectors Ew1, . . . , Ewk are linearly independent in V .

On the other hand, let us suppose that the vectors Ew1, . . . , Ewk are linearly
independent in V . Let c1, . . . , ck ∈ E be such that c1w1 + · · ·+ ckwk = 0. Writing
ci = c′i + ec′′i , i = 1, . . . , k, we get from the last equality c′1Ew1 · · · + c′kEwk = 0.
This implies that we have c′1 = · · · = c′k = 0. Consequently, we get

e(c′′1w1 + · · ·+ c′′kwk) = 0

c′′1Ew1 + · · ·+ c′′kEwk = 0,

which again implies c′′1 = · · · = c′′k = 0. We have thus proved that w1, . . . , wk are
linearly independent in the E-module W .

If w1, . . . , wn is a basis of W , then the elements w1, . . . , wn are linearly indepen-
dent in W , and consequently the vectors Ew1, . . . , Ewn are linearly independent in
V . Conversely, let us assume that the vectors Ew1, . . . , Ewn are linearly indepen-
dent in V . Then w1, . . . , wn are linearly independent in W . Finally, let w ∈ W .
Then we can find uniquely determined c′1, . . . , c

′
n ∈ R such that

Ew = c′1Ew1 + · · ·+ c′nEwn.

Consequently, E(w − c′1w1 − · · · − c′nwn) = 0, and there is w′′ ∈ W such that
w − c′1w1 − · · · − c′nwn = Ew′′. We can find uniquely determined c′′1 , . . . , c′′n ∈ R
such that Ew′′ = c′′1Ew1 + · · ·+ c′′nEwn. We can see that

w = (c′1 + ec′′1)w1 + · · ·+ (c′n + ec′′n)wn
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which proves that w1, . . . , wn is a basis of the E-module W . �

Let θ be a non-zero n-form on W . Then, proceeding as in the proof of Lemma
1.1 we get easily the following lemma.

Lemma 3.2. Let θ 6= 0 be an n-form on the n-dimensional E-module W . Then
Aθ = [I, E] = {cI; c ∈ E}.

We introduce real valued n-forms ω0 and ω̃0 by the formula

θ = ω̃0 + eω0.

Lemma 3.3. The automorphism E belongs to the both algebras Aω0 and Aω̃0 .

Proof. The proof follows the lines of the proof of Lemma 1.2. �

Lemma 3.4. The n-forms ω0 and ω̃0 satisfy the relation ω̃0 = 1
nDEω0 and

DEω̃0 = 0.

Proof.

θ(Ew1, w2, . . . , wn) = ω̃0(Ew1, w2, . . . , wn) + eω0(Ew1, w2, . . . , wn),

θ(Ew1, w2, . . . , wn) = eθ(w1, w2, . . . , wn) = eω̃0(w1, w2, . . . , wn),

which shows ω̃0(w1, w2, . . . , wn) = ω0(Ew1, w2, . . . , wn) and ω̃0(Ew1, w2, . . . , wn) =
0. In other words ω̃0 = (1/n)DEω0 and DEω̃0 = 0. �

Lemma 3.5. The form ω0 is regular.

Proof. This lemma can be proved in the same way as Lemma 1.4. �

Lemma 3.6. Aω0 = [I, E], [I, E] ⊂ Aω̃0 .

Proof. Let A ∈ Aθ. Then we have

ω̃0(Av1, v2, . . . , vn) + eω0(Av1, v2, . . . , vn) = θ(Av1, v2, . . . , vn) =

= θ(v1, Av2, . . . , vn) = ω̃0(v1, Av2, . . . , vn) + eω0(v1, Av2, . . . , vn),

which shows that Aθ ⊂ Aω0 and Aθ ⊂ Aω̃0 . Next, let us assume that A ∈ Aω0 .
Then according to Lemma 3.3 there is AE = EA. We have then

ω̃0(Av1, v2, . . . , vn) = ω0(EAv1, v2, . . . , vn) = ω0(AEv1, v2, . . . , vn) =

= ω0(Ev1, Av2, . . . , vn) = ω̃0(v1, Av2, . . . , vn),

which shows that A ∈ Aω̃0 . Consequently A ∈ Aθ, and we have Aω0 = Aθ =
[I, E]. �

In the same way as in the complex case we can prove that if A ∈ Aut(ω0), then
AEA−1 ∈ Aω0 . Consequently there are real numbers a, b such that AEA−1 =
aI + bE. Taking the square of this relation we get 0 = a2I + 2abE and this implies
a = 0. We obtain

Lemma 3.7. Every automorphism A ∈ Aut(ω0) satisfies the relation AE = κEA
with κ ∈ R∗ = R− {0}.

Lemma 3.8. Every automorphism A ∈ Aut(ω0) is a conformal automorphism of
the form ω̃0. More precisely, if A ∈ Aut(ω0) satisfies AE = κEA, then A∗ω̃0 =
(1/κ)ω̃0.
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Proof. We have

(A∗ω̃0)(v1, v2, . . . , vn) = ω̃0(Av1, Av2, . . . , Avn) =

= ω0(EAv1, Av2, . . . , Avn) = (1/κ)ω0(AEv1, Av2, . . . , Avn) =

= (1/κ)ω0(Ev1, v2, . . . , vn) = (1/κ)ω̃0(v1, v2, . . . , vn).

�

Lemma 3.9. For every κ ∈ R∗ there exists an automorphism A ∈ Aut(ω0) such
that AE = κEA.

Proof. We choose a basis β1, . . . , βn of W ∗ such that θ = β1 ∧ · · · ∧ βn and the
corresponding dual basis e1, . . . , en of W . Then e1, . . . , en, Ee1, . . . , Een is a basis
of the vector space V . We take the dual basis α1, . . . , αn, αn+1, . . . , α2n of the
vector space V ∗. We find easily that

β1 = α1 + eαn+1, . . . , βn = αn + eα2n.

Now we can see that

θ = α1 ∧ · · · ∧ αn + e
n∑

i=1

α1 ∧ · · · ∧ αi−1 ∧ αi+n ∧ αi+1 ∧ · · · ∧ αn.

We define now an automorphism of V by the following formulas.

A∗α1 =
1
κ

α1, A
∗α2 = α2, . . . , A

∗αn = αn,

A∗αn+1 = αn+1, A
∗αn+2 = καn+2, . . . , A

∗α2n = κα2n.

Now it is obvious that A∗ω0 = ω0 and A∗ω̃0 = 1
κ ω̃0. Hence we have AE = κEA. �

From the above considerations we get easily the following lemma.

Lemma 3.10. The n-form ω̃0 is decomposable.

We can now define an epimorphism K : Aut(ω0) → R∗. If A ∈ Aut(ω0), then
there is a unique κ ∈ R∗ such that AE = κEA. We set K(A) = κ. Using Lemma
3.9 we obtain the short exact sequence

1 → ker K → Aut(ω0)
K→ R∗ → 1

If A ∈ ker K, then AE = EA, A is an E-linear automorphism, A∗ω0 = ω0 and
A∗ω̃0 = ω̃0. Consequently,

A∗θ = A∗ω̃0 + eA∗ω0 = ω̃0 + eω0 = θ.

Hence we can see that ker K = SL(V ; E) ∼= SL(n, E). The above exact sequence
can now be written in the form

1 → SL(V ; E) → Aut(ω0)
K→ R∗ → 1.

Introducing the subsets

Aut+(ω) = {A ∈ Aut(ω);K(A) > 0},Aut−(ω) = {A ∈ Aut(ω);K(A) < 0},
we have an exact sequence

1 → SL(V ; E) → Aut+(ω0)
K→ R+ → 1.

Lemma 3.11. The group Aut(ω0) is a semidirect product SL(V ; E) n R∗. Analo-
gously, the group Aut+(ω0) is a semidirect product SL(V ; E) n R+.
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Proof. In the first case it suffices to find a splitting σ : R∗ → Aut(ω0). We use the
same bases as in Lemma 3.9. To κ ∈ R∗ we assign an automorphism σ(κ) defined
by the formulas

σ(κ)e1 =
1
κ

e1, σ(κ)e2 = e2, . . . , σ(κ)en = en,

σ(κ)en+1 = en+1, σ(κ)en+2 = κen+2, . . . , σ(κ)e2n = κe2n.

It can be immediately seen that σ is a splitting. It is also obvious that σ(R+) ⊂
Aut+(ω0), which means that the same splitting can be used also in the second
case. �

We shall now investigate the group SL(V ; E). Let A ∈ GL(V ; E). Because A is
E-linear, it preserves the subspace im A, and consequently induces an automorphism
Â of the quotient V̂ = V/ im E. We have the projection π : V → V̂ , which satisfies
π(av) = ρ(a)π(v). This projection induces also a projection

Λnπ : Λn
EV → Λn

RV̂ , v1 ∧E · · · ∧E vn 7→ π(v1) ∧R · · · ∧R π(vn).

We have

A∗(e1 ∧E · · · ∧E en) = detE A · e1 ∧E · · · ∧E en,

Â∗(π(e1) ∧R · · · ∧R π(en)) = detR Â · π(e1) ∧R · · · ∧R π(en),

Â∗(π(e1) ∧R · · · ∧R π(en)) = Â∗(Λnπ)(e1 ∧E · · · ∧E en) =

= (Λnπ)A∗(e1 ∧E · · · ∧E en) = (Λnπ)(detE A · e1 ∧E · · · ∧E en) =

= ρ(detE A) · (Λnπ)(e1 ∧E · · · ∧E en) = ρ(detE A) · π(e1) ∧R · · · ∧R π(en).

We have thus proved the formula

ρ(detE A) = detR Â.

We denote Q the homomorphism assigning to an automorphism A ∈ GL(V ; E) the
induced automorphism Â ∈ GL(V̂ ). It is easy to see that we get a short exact
sequence

1 → ker Q → GL(V ; E)
Q→ GL(V̂ ) → 1.

Let us denote first
B = {B ∈ gl(V ; E);BV ⊂ im E}.

If B ∈ B, then B(im E) = 0. Namely, if v ∈ im E, then v = ev′ for some v′ ∈ V .
Then Bv = B(ev′) = eB(v′) = 0. Consequently, if B,B′ ∈ B, then BB′ = 0.

Every A ∈ ker Q can be expressed in the form A = I + B, where B ∈ B. On the
other hand, every endomorphism of the form I+B with B ∈ B is an automorphism.
Namely,

(I + B)(I −B) = I −B + B −BB = I.

Moreover A = I + B obviously belongs to ker Q. If A = I + B and A′ = I + B′ we
have

(I + A)(I + B′) = I + B + B′ + BB′ = I + B + B′.

Hence we can see that kerQ is an abelian group isomorphic with B ∼= Rn2
.

Lemma 3.12. The group GL(V ; E) is a semidirect product B n GL(V̂ ).
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Proof. We use again the same bases as in the proof of lemma 3.9. Obviously the
classes [e1], . . . , [en] constitute a basis of the vector space V̂ . Any automorphism
ϕ ∈ GL(V̂ ) can be expressed in the form

ϕ[ei] =
n∑

j=1

aij [ej ],

where aij are real numbers. We define an automorphism A ∈ GL(V ; E) by the
formulas

Aei =
n∑

j=1

aijej .

Setting σ(ϕ) = A, we get a splitting σ : GL(V̂ ) → GL(V ; E). �

Let us remind that if v1, v2 ∈ im E, then θ(v1, v2, . . . , vn) = 0. Namely, we have
v1 = ev′1 and v2 = ev′2, and we get

θ(v1, v2, v3, . . . , vn) = θ(ev′1, ev
′
2, v3, . . . , vn) = e2θ(v′1, v

′
2, v3, . . . , vn) = 0.

Let A = I + B be again an element of kerQ. We obtain

(A∗θ)(v1, v2, . . . , vn) = θ(v1 + Bv1, v2 + Bv2, . . . , vn + Bvn) =

= θ(v1, v2, . . . , vn) +
n∑

i=1

θ(v1, . . . , vi−1, Bvi, vi+1, . . . , vn) =

= θ(v1, v2, . . . , vn) + tr(B)θ(v1, v2, . . . , vn) = (1 + tr(B))θ(v1, v2, . . . , vn).

We have thus proved that if A ∈ ker Q, then detE A = 1 + tr(B).
Using the formula ρ(detE A) = detR Â we get another short exact sequence

1 → ker q → SL(V ; E)
q→ SL(V̂ ) → 1,

where q = Q|SL(V ; E). Applying the last determinant formula we find easily that

ker q = B0 = {B ∈ B; tr(B) = 0} ∼= Rn2−1.

Lemma 3.13. The group SL(V ; E) is a semidirect product B0 n SL(V̂ ).

Proof. The proof follows the same lines as the proof of Prop. 3.12. �

Summarizing we have the following proposition.

Proposition 3.1. The automorphism group Aut(ω0) consists of two connected
components Aut+(ω0) and Aut−(ω0), where Aut+(ω0) is the connected component
of the unit. Moreover dimR Aut(ω0) = 2n2 − 1.

References

[1] Jaroĺım Bureš, Jǐŕı Vanžura, Unified Treatment of Multisymplectic 3-Forms in Dimension

6, arXiv:math/0405101

[2] Nigel Hitchin The geometry of three-forms in six dimensions, J. Diff. Geom., 55(3) (2000),
547-576

[3] Nigel Hitchin Stable forms and special metrics, Global differential geometry: the mathe-
matical legacy of Alfred Gray (Bilbao 2000), 70-89, Contemp. Math. 288, Amer. Math. Soc.,
Providence, RI, 2001
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