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1 Introduction, formulation of the problem

and main theorems

Shape optimization for the Neumann problem of the Laplace equation is
important for application and also from the numerical point of view. Math-
ematical analysis of such problem in the half space is not available. In this
paper we prove the shape differentiability of solutions in appropriate weighted
Sobolev spaces which describe the behavior of solutions at infinity. We will
consider two different perturbations of domain to get the existence of weak
Gateaux material derivative and in the second case the existence of Fréchet
material derivatives.
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4The works of C. A., Š. N. and J. S. were supported by the project between Czech
Academy and CNRS.

1

Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-20 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic



Firstly we give the description of the problem and introduce the appro-
priate functions spaces.

We consider the shape sensitivity analysis of the following model problem

−∆u = f in Ω,
∂u

∂n
= g on Γ, (1.1)

where Ω = RN
+ and Γ = RN−1.

The same analysis can be performed in an unbounded domain Ω.
We consider the mapping Tt : RN → RN associated with the velocity field

V (t, x) which is compactly supported with respect to the spatial variable x.
The mapping is given by the system of differential equations

d

dt
x(t) = V (t, x(t)), x(0) = X, (1.2)

with the solution denoted by x(t) = x(t,X), t ∈ (−δ, δ), X ∈ RN .
The variable domain Ωt = Tt(Ω) is defined in the usual way,

Ωt = {x ∈ RN |x = x(t,X), X ∈ Ω}.

In order to define the Fréchet derivatives, we also consider transformations
of the following type

Hξ = I + ξθ, (1.3)

where θ is a smooth vector field defined on RN such that

θ ∈ W k,∞(RN ,RN), (1.4)

with −δ < ξ < δ. This type of parametrization of domains is studied, e.g.
by Murat - Simon [12] and Pironneau [11].

By the first approach the so - called Gateaux shape derivatives are ob-
tained. The second approach leads directly to the Fréchet derivatives of
shape functionals. The both approaches are equivalent, see Delfour - Zolesio
[10].

1.1 Gateaux derivatives of solutions

We use the transformations Tt in order to define the perturbed domains Ωt.
Therefore, we consider the Neumann problem in Ωt, which is called (perturbed
problem)

−∆ut = ft in Ωt,
∂ut

∂nt

= gt on Γt. (1.5)
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We would like to introduce some compatibility conditions but we cannot
require that ft, gt satisfy compatibility condition∫

Ωt

ft dx =

∫
∂Ωt

gt dσ, (1.6)

since this condition doesn’t have meaning for arbitrary data. To avoid this
difficulty we suppose that for given elements f and g there are the extensions
which is denoted by f and g such that the extended functions are defined on
the sets Ωt, Γt, ∀t ∈ [0, ε0), ε0 > 0, respectively. Then we define

ft := f
∣∣∣
Ωt

− 1

|Ωt|

∫
Ωt

fdx,

gt := g
∣∣∣
Γt

− 1

|Γt|

∫
Γt

gdσ.

Remark 1.1 :
Let us point out that by such definitions of ft and gt we have the nontrivial
shape derivatives f ′ 6= 0 and g′ 6= 0 in general and also that by our definition∫

Ωt

ft dx = 0∫
Γt

gt dσ = 0,

hence (1.6) holds for such ft and gt.

The transported solution to the fixed domain is denoted by ut = ut ◦ Tt ,
f t = ft ◦ Tt, g

t = gt ◦ Tt and the transported solution satisfies the following
equation along with the boundary conditions

− 1
γ

div (A(t)∇ut) = f t in Ω

∇ut · ηt = gt on Γ,
(1.7)

where
A(t) = det(DTt)

∗DT−1
t DT−1

t , (1.8)

ηt = DT−1
t nt,

γ = det(DTt).
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Remark 1.2 : By nt we denote the external normal on Γt and ∂ut

∂nt
= ∇ut ·

nt = gt. The transport of the gradient is ∇ut ◦ Tt = ∗DT−1
t · ∇(ut ◦ Tt) =

∗DT−1
t · ∇ut, moreover

(∇ut · nt) ◦ Tt = gt ◦ Tt,

(∇ut ◦ Tt) · (nt ◦ Tt) = gt,

(∗DT−1
t · ∇ut) · nt ◦ Tt = gt,

(∇ut)T ·DT−1
t · nt = gt.

Now, the derivative of the latter equality leads to the relation

∇u̇ · n+∇u · (−DV ) · n+∇u · I · ṅ = ġ,

where u̇, ṅ, ġ denote material derivatives.
It implies that

∂u̇

∂n
= ∇u ·DV · n−∇u · ṅ+ ġ. (1.9)

The material derivative u̇ of the solutions to (1.7) satisfies the following
boundary value problem

∆u̇ = ḟ + div V f + div (A′(0)∇u) in Ω
∂u̇
∂n

= ġ −∇u · η̇ on Γ
(1.10)

Our first aim is to prove the existence of material derivative of weak type
for the general transformation Tt:

Main Theorem 1.
If f ∈ W 0,2

1 (R3
+) and g ∈ W

1/2,2
1 (R2) then the material derivative u̇ ∈

W 1,2
1 (RN

+ ) is given by a unique solution to problem (1.10).

1.2 Fréchet derivatives of solutions

We are also interested in Fréchet differentiability of solutions to (1.1) with
respect to perturbed domain. To this end we investigate the transformation
Hξ in order to define the perturbed domains Ωξ. We consider the problem
(1.1), its variational formulation is the following:

Find u ∈ W 1,2
0 (Ω) such that :
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∀w ∈ W 1,2
0 (Ω)

∫
Ω

∇u · ∇wdx =

∫
Ω

f w dx− 〈g, w〉
W

− 1
2 ,2

0 (Γ)×W
1
2 ,2

0 (Γ)
, (1.11)

see Section 2 for the definition of spaces W 1,2
) (Ω).

We describe the properties of transformation Hξ defined by (1.3) for the
vector field θ .

Let Θk be the space of vector fields from Ck(RN ,RN) and we denote ‖.‖k

the usual norm for k ≥ 1 and N = 2, 3. We denote

Dk := {θ ∈ Θk, ‖θ‖k < 1}.

For θ ∈ Dk the mapping I + θ is a Ck - diffeomorphism, where I is the
identity mapping.

Let θξ be a vector field in Θk. For simplicity we denote its norm in Θk as
|ξθ| = |ξ|‖θ‖Ck(RN ,RN ). For the transformation Hξ = I + ξθ we denote Ωξ =
Hξ(Ω). For |ξ| small enough, Hξ is an diffeomorphism. As a consequence,
there exists a solution uξ ∈ W 1,2

0 (Ωξ) of variational equation

∀v ∈ W 1,2
( Ωξ)

∫
Ωξ

∇uξ · ∇vdx =

∫
Ωξ

fξ v dx. (1.12)

After the transformation to the fixed domain, where uξ = uξ ◦Hξ ∈ W 1,2
0 (Ω)

we get the following variational formulation satisfying

∀w ∈ W 1,2
0 (Ω),

∫
Ω

(DHT
ξ )−1∇uξ ·(DHT

ξ )−1∇w qξ dx =

∫
Ω

f ξ w qξdx , (1.13)

where f ξ = fξ ◦Hξ, qξ is the Jacobian of the transformation Hξ, DHξ is the
Jacobian matrix:

DHξ = I + ξDθ (1.14)

qξ = det DHξ = 1 + ξ div θ + ξN detDθ. (1.15)

As in [14] the Taylor expansion for uξ leads to

uξ = u+ ξu1(θ) + ũ(ξθ), (1.16)
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where

‖uξ − u‖W 1,2
0 (Ω) ≤ c|ξ|‖θ‖,

‖ũ(ξθ)‖W 1,2
0 (Ω) = ‖uξ − u− u1(θ)‖W 1

0 (Ω) ≤ c|ξ|2‖θ‖2.
(1.17)

Let J and E are functionals associated to the equations (1.5) we can define

J(Ωξ) = E(ξ) = −1

2

∫
Ωξ

‖∇uξ‖2dy. (1.18)

We can prove that E(ξ) has the following expansion

E(ξ) = E(0) + ξE ′(0)(θ) + Ẽ(ξθ), (1.19)

with the estimate
|Ẽ(ξ)| ≤ c|ξ|2‖θ‖2. (1.20)

Formula (1.17) shows the Fréchet differentiability of the first order for solu-
tions and (1.19) for the energy functional.

Main Theorem 2.
If f ∈ W 0,2

1 (RN
+ ), g ∈ W 1/2,2

1 (RN−1) then the material derivative u̇ ∈ W 1,2
1 (RN

+ )
is given by a unique solution to problem (1.10), which is same as before, but
the strong convergence in the energy space.

Remark 1.3 : Comparison of notations from 1.1 and 1.2.

A(t) = det (DTt)
∗DT−1

t ·DT−1
t ,

A(ξ) = q−1
ξ (DHξ)

−1(DHT
ξ )−1,

DHξ = I + ξDθ,
DF T

ξ = (I + ξDθ)T = I + ξDθT ,
qξ = det (DHT

ξ ) = det (DHξ),
q−1
ξ = det [(DHT

ξ )−1].

A′(0) = lim
t→0

A(t)− A(0)

t
= div V (0)I − ∗DV (0)−DV (0)

We can also write

lim
|ξ|→0

A(ξ)− A(0)

|ξ|
= div θI − ∗Dθ −Dθ.

So it is clear that the both approaches result in the same formula for the
first order shape sensitivity analysis.
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2 Notation and Mathematical Preliminaries

We introduce a class of weighted spaces for the Neumann boundary value
problem and give some preliminary lemmas.

Let RN
+ = {(x′, xN) ∈ RN ; xN > 0} be the upper half-space of RN(N ≥ 2)

and denote by Γ = {(x′, 0); x′ ∈ RN−1} its boundary.
We denote by Lp(RN

+ ) the Lebesgue space, by W p,k(RN
+ ) the Sobolev

space. The Sobolev spaces with radial weight have been introduced and
studied by many authors : Hanouzet [6], Kudrjacev [21], Kufner [19], Kufner
and Opic [20]. The Sobolev spaces with logarithmic weight were studied
by Lizorkin [15], Leroux [16], Giroire [17], Girault [18], Amrouche and his
collaborators [1], [2], [8], Boulmezaoud [4],[5], etc.

Let Ω be an open set of RN and let us consider the basic weight

ρ(r) = (
√

1 + r2, lg ρ = ln (2 + r2).

with r =
( ∑N

i=1 x
2
i

)1/2
being the distance to the origin. Given an integer

m ∈ N and a real number α ∈ R, we define the weighted space
As usual, D(RN) denotes the space of indefinitely differentiable functions

with compact supports and D′
(RN) denotes its dual space, called the space

of distributions. For any nonnegative integers N and m , real numbers p > 1,
α and β and setting

k = k(m,N, p, α) = −1 if N
p

+ α /∈ {1, . . . ,m},
k = k(m,N, p, α) = m− N

p
− α if N

p
+ α ∈ {1, . . . ,m},

we define the following space:

Wm,p
α,β (Ω) = {u ∈ D′(Ω); 0 ≤ |λ| ≤ k, ρα−m+|λ|(lgρ)β−1Dλu ∈ Lp(Ω);

k + 1 ≤ |λ| ≤ m, ρα−m+|λ|(lgρ)βDλu ∈ Lp(Ω)}.
(2.1)

In the case β = 0, we simply denote the above space by Wm,p
α (Ω). Note that

Wm,p
α,β (Ω) is a reflexive Banach space equipped with its natural norm:

‖u‖W m,p
α,β (Ω) =

[ ∑
0≤|λ|≤k ‖ρα−m+|λ|(lgρ)β−1Dλu‖p

Lp(Ω)

+
∑

k+1≤|λ|≤m ‖ρα−m+|λ|(lgρ)βDλu‖p
Lp(Ω)

]1/p

.
(2.2)
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We also define the semi-norm:

|u|W m,p
α,β (Ω) =

( ∑
|λ|=m

‖ρα( lgρ)βDλu‖p
Lp(Ω)

)1/p

, (2.3)

and for any integer q, we denote by Pq the space of polynomials in N variables
of the degree smaller than or equal to q, with the convention that Pq is
reduced to {0} for negative q. The weights in definition (2.1) are chosen so
that the corresponding space satisfies two properties:

D(RN
+ ) is dense in Wm,p

α,β (RN
+ ), (2.4)

and the Poincaré-type inequality holds in Wm,p
α,β (RN

+ ).

Theorem 2.1. Let α and β be two real numbers and m ≥ 1 an integer not
satisfying simultaneously

N

p
+ α ∈ {1, . . . ,m} and (β − 1)p = −1. (2.5)

Then the semi-norm | · |W m,p
α,β (RN

+ ) defines on Wm,p
α,β (RN

+ )/Pq′ a norm which

is equivalent to the quotient norm, with q′ = inf (q,m − 1), where q is the
highest degree of the polynomials contained in Wm,p

α (RN
+ ).

Proof. see [1].

Now, we define the space

W̊m,p
α,β (RN

+ ) = D(RN
+ )

‖·‖
W

m,p
α,β

(RN
+ )

and the dual space of W̊m,p
α,β (RN

+ ) is denoted by W−m,p′

−α,−β(RN
+ ), where p′ is the

conjugate of p, i.e. 1
p

+ 1
p′

= 1.

Theorem 2.2. Under the assumptions of Theorem 1.1, the semi-norm (2.3)
is a norm on W̊m,p

α,β (RN
+ ) which is equivalent to the full norm (2.2).

Proof. see [1].

In the sequel, for any integer q ≥ 0, we shall use the following polynomial
spaces:
Pq (respectively P∆

q ) is the space of polynomials (respectively harmonic poly-
nomials) of degree ≥ q,

P ′
g is the subspace of the polynomials in Pq depending only on the N − 1

first variables x′ = (x1, ..., xN1),
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2.1 The spaces of traces

In order to define the traces of functions of Wm,p
α,β (RN

+ ), we introduce for any
σ ∈ ]0, 1[ the space:

W σ,p
0 (RN) = {u ∈ D′(RN); w−σu ∈ Lp(RN),∫

RN×RN

|u(x)−u(y)|p
|x−y|N+σp dxdy

)1/p

<∞},
(2.7)

where
w = ρ if N

p
6= σ,

w = ρ( lgρ)1/σ if N
p

= σ,

and e1, . . . , eN is a canonical basic of RN . W σ,p
0 (RN) is a reflexive Banach

space equipped with its natural norm:

‖u‖W σ,p
0 (RN ) =

(∥∥∥ u

wσ

∥∥∥p

Lp(RN )
+

∫
RN×RN

|u(x)− u(y)|p

|x− y|N+σp
dxdy

)1/p

. (2.8)

If u is a function defined on RN
+ , we denote its traces on Γ = RN−1 by:

x′ ∈ RN−1, γ0u(x
′) = u(x′, 0), . . . , γju(x

′) = ∂ju

∂xj
N

(x′, 0). In the same way

as in [3], we can prove the following trace lemma:

Lemma 2.3. For any integer m ≥ 1 and real number α, the mapping

γ : D(RN
+ ) →

∏m−1
j=0 D(RN−1)

u 7→ (γ0u, . . . , γm−1u)

can be extended by continuity to a linear and continuous mapping, still de-

noted by γ, from Wm,p
α (RN

+ ) onto
∏m−1

j=0 W
m−j− 1

p
,p

α (RN−1). Moreover

Ker γ = W̊m,p
α (RN

+ ).

Proof: see [3].

3 Neumann problem in the half space

In the section we recall the known results for the problem Neumann problem
in the half space see [2].

−∆u = f in RN
+ ,

∂u

∂xN

= g on RN−1. (3.1)
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Theorem 3.1. Let
N

p′
6= 1, (3.2)

let f ∈ W 0,p
1 (RN

+ ) satisfying the compatibility condition∫
Ω

f dx = 0, if p′ > N

then problem (3.1) with g = 0 has a unique solution u ∈ W 2,p
1 (RN

+ )/P∆
[1−N/p].

Remark 3.1 Let us note that W 0,p
1 (RN

+ ) ⊂ W−1,p
0 (RN

+ ) iff N
p′
6= 1. In the

case N
p′

= 1 the previous result holds provided f ∈ W−1,p
0 (RN

+ ) ∩W 0,p
1 (RN

+ )

without compatibility conditions and problem (3.1) has a unique solution in
W 2,p

1 (RN
+ )/P[1−N/p].

Theorem 3.2. Let N
p′
6= 1, f ∈ W 0,p

1 (RN
+ ), g ∈ W

−1/p,p
0 (Γ). We suppose the

following condition holds:∫
Ω

f = 〈g, 1〉
W

−1/p,p
0 (Γ)×W

1/p.p′
0 (Γ)

if p′ > N, (3.3)

then problem (3.1) has a unique problem v ∈ W 1,p
0 (RN

+ ))/P[1−N
p

].

Moreover if g ∈ W 1−1/p,p
0 (Γ) then there exists a unique solution v ∈ W 2,p

1 (RN
+ ).

Remark 3.2
In case p′ = N Remark 3.1 holds with g ∈ W 1−1/p,p

1 (Γ).

3.1 Mapping Tt

We consider the general case of constructing the transformation Tt. Let D
be a domain in RN with the boundary ∂D piecewise Ck for a given integer
k ≥ 0. Let Tt be a one - to - one mapping from D̄ onto D̄ such that

Tt and T−1
t belong to Ck(D̄; RN) (∗)

and
t→ Tt(x), t→ T−1

t ∈ C([0, ε)), ∀x ∈ D̄ (∗∗)
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thus (t, x) → Tt(x) ∈ C([0, ε);Ck(D̄; RN)) = C(0, ε;Ck(D̄; RN)). For any
X ∈ D̄ and t > 0 the point x(t) = Tt(X) moves along the trajectory x(.)
with the velocity

‖ d
dt
x(t)‖RN = ‖ ∂

∂t
Tt(X)‖RN . (3.5)

V (t, x) = (
∂

∂t
Tt) ◦ T−1

t (x). (3.6)

It is obvious that V (t, x) takes the form

V (t, x) = (
∂

∂t
Tt) ◦ T−1

t (x). (3.7)

From (3.5) and (3.6) the vector field V (t), defined as V (t)(x) = V (t, x),
satisfies the relation

V ∈ C(0, ε;Ck(D̄; RN)). (3.7)

If V is a vector field such that (3.7) holds, then the transformation Tt depend-
ing on V , and such that conditions (3.5) and (3.6) are satisfied, is defined
by (1.2).

Theorem 3.3. Let D be a bounded domain in RN with the piecewise smooth
boundary ∂D , and V ∈ C(0, ε;Ck(D̄,RN)) be a given vector field which
satisfies

V (t, x) · n(x) = 0 for a.e. x ∈ ∂D, (3.8)

and

if n = n(x) is not defined as a singular point x ∈ ∂D we set V (t, x) = 0.
(3.9)

Then there exists an interval I, 0 ∈ I, and the one - to - one transformation
Tt(V ) : RN → RN such that Tt(V ) maps D̄ onto D̄. Furthermore Tt(V )
satisfies conditions (3.2),(3.3),(1.2). In particular the vector field V can be
written in the form

V = ∂tTt(V ) ◦ Tt(V )−1.

On the other hand, if Tt is a transformation of D̄, Tt satisfies (3.2),(3.3)
and V is defined by the formula

V = ∂tTt ◦ T−1
t ,

then (3.10) holds for V . Furthermore V ∈ C(0, ε;Ck(D̄,RN)) and the trans-
formation Tt(X) = x(t,X) is defined as the local solution to the system of
ordinary differential equations (1.2), that Tt = Tt(V ).
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Now, we are interested in the case of unbounded domains D.

Definition 3.4. Let D be a domain in RN whose boundary ∂D is piecewise
Ck, k ≥ 1. It is supposed that the outward unit normal field n exists a.e. on
∂D, i.e. except for singular points x̄ of ∂D. The following notation is used

V k(D) = {V ∈ Dk(RN ; RN)|〈V, n〉RN = 0 on ∂D except for the singular points
x̄ of ∂D, V (x̄) = 0 for all singular points x̄}.

V k(D) is equipped with the topology induced by Dk(RN ; RN).

So, if V ∈ C(0, ε;V k(D)), then there exists a compact set Ō in RN such
that the support of V (t) is included in Ō for all 0 ≤ t ≤ ε. So, we have the
following theorem

Theorem 3.5. LetD be a bounded domain in RN with the piecewise smooth
boundary ∂D, and V ∈ C(0, ε;V k(D)) be a vector field. Then there exists
an interval I = [0, δ), 0 < δ ≤ ε and a one - to - one transformation Tt(V )
for each t ∈ I which maps D̄ onto D̄ and satisfies all properties of Theorem
3.3.

3.2 Sobolev spaces and boundary value problems. Trans-
ported and Perturbed Problems.

We already introduced the Sobolev weighted spaces in fixed domain. Now, we
are interested in the definition of Sobolev spaces with corresponding weights
in perturbed domain. The most important property is definition of the traces
and that the theorem of the traces should be satisfied. Since our mapping
is Ck we can define the Sobolev spaces with weights on perturbed domain
through the Sobolev spaces on fixed domain.

Definition 3.6. We say that ut ∈ W 1,2
0 (Ωt) iff ut = ut ◦Tt ∈ W 1,2

0 (Ω), where
the corresponding seminorm is defined by

( ∫
Ω

‖∇ut‖2dx
)1/2

=
( ∫

Ωt

‖DTt ◦ T−1
t · ∇ut‖2|γ(t)|−1dxt

)1/2
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and the corresponding norm is given by

‖ut‖W 1,2
0 (Ωt)

= {
∫

Ωt
‖DTt ◦ T−1

t · ∇ut‖2|γ(t)|−1 dxt+

+
∫

Ωt
‖ut ◦ T−1

t ‖2(ρ ◦ T−1
t )−2|γ(t)|−1dxt}1/2.

(3.11)

Now, we want to define the traces.

Definition 3.7. We say that gt ∈ W
1/2,2
0 (Γt) iff gt ◦ Tt = gt ∈ W

1/2,2
0 (Γ),

with the norm defined by∫
Γt×Γt

1

w2(t)

|gt(x
′
t)− gt(y

′(t)|2

|Stx′t − Sty′t|3
dx′tdy

′
t =

∫
Γ×Γ

|gt(x′)− gt(y′)|2

|x′ − y′|3
dx′dy′ <∞,

where w(t) = |det(DTt)
∗|‖DT−1 · n‖RN , x′t = Ttx

′, y′t = Tty
′, M(Tt) =

det(DTt)
∗DT−1 is the cofactor matrix of the Jacobian matrix DTt.

Remark 3.3 For description of change of variables in boundary integral see
[9], page 77.

Then we can give the definition of the dual spaces.

Definition 3.8. We define W−1,2
0 (Ωt) and W

−1/2,2
0 (Γt) by the following way:

W−1,2
0 (Ωt) = (W̊ 1,2

0 (Ωt))
∗

and

W
−1/2,2
0 (Γt) = (W

1/2,2
0 (Γt))

∗.

Very important is the property of a weak differentiability of Tt with re-
spect to t. We repeat here the part of the proof from our previous work see
[3].

We denote by D the following set

D = {(x′, xN) ∈ RN , xN > −a}, fixed a > 0, a sufficient large.
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Proposition 3.2. Let N ≥ 3, f ∈ W 0,2
1 (D) ⊂ W−1,2

0 (D). Let V ∈
C(0, ε,Dk(RN

+ ) be given, k ≥ 1, then the mapping t → f ◦ Tt is weakly

differentiable in the space W−1,2
0 (D).

Proof. Let ϕ ∈ W̊ 1,2
0 (D) ⊂ W 0,2

−1 (D) be given and we denote St = T−1
t ,

λ(t) = γ(t)−1 ◦ T−1
t = γ(t)−1 ◦ St.

We have

1

t

∫
D

(f ◦ Tt − f)ϕdx =
1

t

∫
D

f(λ(t)ϕ ◦ St − ϕ)dx.

Furthermore

1

t
(λ(t)ϕ ◦ St − ϕ) = λ(t)

1

t
(ϕ ◦ St − ϕ) +

1

t
(λ(t)− 1)ϕ),

the right-hand side of this equality converges to

−∇ϕ · V (0) + λ′(0)ϕ

strongly inW 0,2
−1 (D) as t→ 0. Moreover, it is evident that λ′(0) = − div V (0).

Since St is associated with the speed vector field −Vt, therefore∫
D

1

t
(f ◦Tt− f)ϕdx→ −

∫
D

f div (ϕV (0))dx = 〈f ·V (0), ϕ〉W−1,2
0 (D)×W̊ 1,2

0 (D)

as t→ 0; this proves the proposition.

Definition 3.9. Let ht ∈ W−1,2
0 (Ωt), ϕ ∈ W̊ 1,2

0 (Ω) then we define the fol-
lowing form

〈τht, ϕ〉W−1,2
0 (Ω)×W̊ 1,2

0 (Ω) = 〈ht, γ
−1(t)ϕ ◦ T−1

t 〉W−1,2
0 (Ωt)×W̊ 1,2

0 (Ωt)
, (3.12)

where by τht we mean ht ◦ Tt.
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Remark 3.4 Let ht ∈ W 0,2
1 (Ωt), then for all ϕ ∈ W̊ 1,2

0 (Ω), ϕ◦T−1
t ∈ W̊ 1,2

0 (Ωt)
and we have

〈ht, γ(t)
−1ϕ ◦ T−1

t 〉W−1,2
0 (Ωt)×W̊ 1,2

0 (Ωt)
=

∫
Ωt
ht(x) · γ(t)−1ϕ ◦ T−1

t (x)dx =∫
Ω
ht ◦ Tt(X)ϕ(X)dX = 〈ht ◦ Tt, ϕ〉W−1,2

0 (Ω)×W̊ 1,2
0 (Ω),

where τht = ht ◦ Tt and ht ∈ W 0,2
0 (Ωt).

Definition 3.10. Let gt ∈ W
−1/2,2
0 (Γt), ϕ ∈ W

1/2,2
0 (Γ) then we define the

following form

〈τgt, ϕ >
W

−1/2,2
0 (Γ)×W

1/2,2
0 (Γ)

= 〈gt, w(t)ϕ ◦ Tt〉W−1/2,2
0 (Γt)×W

1/2,2
0 (Γt)

.

Proposition 3.11. (i) Let ht ∈ W−1,2
0 (Ωt) then

ht = div F, F = (f1, ..., fN)

with fi ∈ L2(Ωt), i = 1, ..., N .

(ii) ht = γ(t)−1 div (DT−1
t F ◦ Tt) and

(iii) In particular if h ∈ W−1,2
0 (D), where Ω ⊂ D,Ωt ⊂ D then ht ∈

W−1,2
0 (D) and

h− ht

t
→ ḣ weakly in W−1,2

0 (D).

Proof. It was proved in our previous work see [3].

Proposition 3.12. Let there be given a vector field V ∈ C(0, ε;Dk(RN ; RN)),
k ≥ 1 and an element f ∈ W 2,1(RN). Then

1

t
[f ◦ Tt − f ] → ∇f · fV (0) strongly in W 1,1(RN)

as t→ 0, where W 2,1(RN) and W 1,1(RN) are classical Sobolev spaces.

Proof. see Proposition 2.37 in Sokolowski, Zolesio, [9] page 71.
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Proposition 3.13. Existence of strong differentiability of Hξ.
Let f ∈ L2(RN), θ ∈ C(0, ε;Dk(RN ,RN)) be given, then the mapping ξθ →
1
|ξ| [f ◦ Hξ − f ] is strongly differentiable in the space W−2,2(RN).

Proof. Applying the Proposition 3.12 and Proposition 3.2 we obtain that

‖qξφ ◦ Hξ − φ− div (φξθ)‖ ≤ c|ξ|2‖θ‖2,

for all φ ∈ W 2,2(RN).

By an application of the transport technique to our problem (1.1) defined
in Ωt , we get for all ψ ∈ W̊ 1,2

0 (Ωt)

〈∆ut, ψ〉W−1,2
0 (Ωt)×W̊ 1,2

0 (Ωt)
= 〈 div (A(t)∇ut ), ψ ◦ Tt〉W−1,2

0 (Ω)×W̊ 1,2
0 (Ω).

Let ϕ = ψ ◦ Tt ∈ W̊ 1,2
0 (Ω), then

〈∆ut, ϕ ◦ T−1
t 〉W−1,2

0 (Ωt)×W̊ 1,2
0 (Ωt)

= 〈 div (A(t)∇ut), ϕ〉W−1,2
0 (Ω)×W̊ 1,2

0 (Ω)

provided that
−∆ut = ht in Ωt

and

− div (A(t)∇ut) = γ(t)ht in Ω.

For problem (PP)
−∆ut = ft in Ωt

thus

− div (A(t)∇ut) = γ(t)f t in Ω.

Therefore, we will get the perturbed problem

−∆ut = ft in Ωt ,
∂ut

∂nt

= gt on Γt

and also transported problem

− div (A(t)∇ut) = γ(t)f t in Ω , ∇ut · ηt = gt on Γ,

where gt = gt ◦ Tt.
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4 Weak material derivatives

4.1 Transported problem(TRP)

We investigate the existence of the transported problem in the fixed domain
Ω satisfying the equations

− 1
β

div (A(t)∇ut) = f t in Ω

∇ut · ηt = gt on Γ.
(4.1)

where
A(t) = det(DTt)

∗DT−1
t DT−1

t . (4.2)

Theorem 4.1. Let N ≥ 3, suppose f t ∈ W 0,2
1 (RN

+ ) and gt ∈ W−1/2,2
0 (Γ) then

problem (TRP ) has a unique solution ut ∈ W 1,2
0 (RN

+ ) satisfying the following
estimate

‖ut‖W 1,2
0 (RN

+ ) ≤ c
(
‖f t‖W 0,2

1 (RN
+ ) + ‖gt‖

W
−1/2,2
0 (Γ)

)
.

Moreover if gt ∈ W 1/2,2
1 (Γ) then ut ∈ W 2,2

1 (RN
+ ) and the following estimates

‖ut‖W 2,2
1 (RN

+ ) ≤ c
(
‖f t‖W 0,2

1 (RN
+ ) + ‖gt‖

W
1/2,2
1 (Γ)

)
holds.

Proof. We define the bilinear form

B(ut, vt) =

∫
Ω

A(t)∇ut∇vt.

Since γ(0) = 1 then for sufficiently small δ we have γ(t) > 1/2 for all t ∈
(−δ, δ) and the bilinear form B is uniformly elliptic, i.e.

B(ut, ut) ≥ c‖∇ut‖2
2

for some positive constant c > 0 which implies the uniform ellipticity of the
form B. Then applying Theorem 3.2 with p = 2 we get the existence of
solution.
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4.2 Perturbed problem (PP)

Proposition 4.2. Let f ∈ W 0,2
1 (Ωt), g ∈ W 1/2,2

1 (Γ) then

F t − f

t
→ div V f + ḟweakly in W−1,2

0 (Ωt).

Proof. We have the following equalities and the convergence

1

t
〈F t − f, ϕ〉 − 〈ḟ − div V f, ϕ〉 =

=
1

t
< γ(t)f t − f, ϕ〉 =

=
1

t
〈− div (A(t)∇ut) + div ∇u, ϕ〉+ 〈 div V f, ϕ〉 =

=
1

t
〈(A(t)− I)∇ut,∇ϕ〉 − 1

t
〈∇(ut − u),∇ϕ〉+ 〈 div V f, ϕ〉

→ 〈A′(0)∇u,∇ϕ〉 − 〈∇u̇,∇ϕ〉+ 〈 div V f, ϕ〉 = 〈ḟ , ϕ〉+ 〈 div V f, ϕ〉.

For f ∈ W 0,2
1 (RN

+ ) it follows that ḟ ∈ W−1,2
0 (Ωt) and also

f t − f

t
− ḟ → 0 weakly in W−1,2

0 (Ωt).

For g ∈ W
1
2
,2

1 (Γ), with ġ ∈ W−1/2,2
0 (Γ) it follows that

gt − g

t
− ġ → 0 weakly in W

−1/2,2
0 (Γ).

Theorem 4.3. Let N ≥ 3, suppose ft ∈ W 0,2
1 (Ωt) and gt ∈ W−1/2,2

0 (Γt) then
problem (PP ) has a unique solution ut ∈ W 1,2

0 (Ωt) satisfying the following
estimate

‖ut‖W 1,2
0 (Ωt)

≤ c
(
‖ft‖W 0,2

1 (Ωt)
+ ‖gt‖W−1/2,2(Γt)

)
.

Moreover if gt ∈ W 1/2,2
1 (Γt) then ut ∈ W 2,2

1 (Ωt).
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Proof:
We have for ψ ∈1,2

0 (Ωt)

〈ft, ψ〉W−1,2
0 (Ωt)×W̊ 1,2

0 (Ωt)
= 〈γ(t)ft, γ

−1ϕ ◦ T−1
t 〉W−1,2

0 (Ωt)×W̊ 1,2
0 (Ωt)

=

= 〈γ(t)∆ut, γ
−1(t)ϕ ◦ T−1

t 〉W−1,2
0 (Ωt)×W̊ 1,2

0 (Ωt)
=

〈 div (A(t)∇ut, ϕ〉W−1,2
0 (Ω)×W̊ 1,2

0 (Ω) = 〈f t, ϕ〉W−1,2
0 (Ω)×W̊ 1,2

0 (Ω),

where ϕ = ψ ◦ Tt. Applying Theorem 4.1 it follows the existence of a unique
solution of (1.1) on the perturbed domain.

4.3 Proof of Main theorem 1

The aim of this section is to show the existence of material derivative as a
weak limit of

ut − u

t
→ u̇ ∈ W 1,2

0 (Ω) (4.3)

Denoting

wt =
ut − u

t
− u̇

we obtain the following equation

−∆wt = div
[A(t)−I

t
∇ut − A′(0)∇u

]
+ f t−f

t
− ḟ ] in Ω

∂wt

∂nt = gt−g
t
− ġ −∇u ·DV · n−∇u · ṅ on Γ.

(4.4)

The weak formulation of (4.4) is the following∫
RN

+
∇wt · ∇φ =∫

RN
+
[A(t)−I

t
∇ut · ∇φ− A′(0)∇u∇φ] +

∫
RN

+
[f t−f

t
− ḟ ] φ dx+

+
∫

Γ

(
gt−g

t
− ġ −∇u · V · n−∇u · ṅ

)
φdσ +

∫
Γ

(
A(t)−I

t
gt + A′(0)g

)
φ, ∀φ ∈ W 1,2

0 (RN
+ )

(4.4)′

where A′(0) = −DV − ∗DV + divV I.
The goal of this section is to prove the following convergence

wt =
ut − u

t
− u̇→ 0 as t→ 0, weakly in W 1,2

0 (RN
+ )
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and

∂wt

∂nt
=
gt − g

t
− ġ → 0 as t→ 0, t→ 0, weakly in W

−1/2,2
0 (RN−1).

To get the assertion it is sufficient to prove the weak convergence of the
following terms

A(t)− I

t
∇ut − A

′
(0)∇u→ 0, t→ 0, weakly in L2(RN

+ )N (4.5)

and

A(t)− I

t
gt − A′(0)g −∇u ·DV · n−∇u · ṅ→ 0 weakly in W

−1/2,2
0 (RN−1

+ )

(4.5)′.
since for the right hand side we have by our assumptions

f t − f

t
− ḟ → 0 with t→ 0 weakly in W−1,2

0 (RN
+ ), (4.6)

and

gt − g

t
− ġ → 0 with t→ 0 weakly in W

−1/2,2
0 (RN−1). (4.6)′

Let ϕ = ut − u be a test function in variational formulation, hence

∫
RN

+
A(t)|∇(ut − u)|2 − (A(t)− I)∇u · ∇(ut − u)+

+
∫

Γ
A(t)(gt − g)(ut − u) + (A(t)− I)g(ut − u) = 〈f t − f, ut − u〉+ 〈gt − g, ut − u〉.

Since the field V is compactly supported in RN , it follows that∫
RN

+
A(t)|∇(ut − u)|2 ≤

∫
RN

+
|(A(t)− I)∇u · ||∇(ut − u)|+

+‖f t − f‖W−1,2
0

‖ut − u‖W 1,2
0

+∫
Γ
A(t)(gt − g)(ut − u) + (A(t)− I)g(ut − u) + ‖gt − g‖

W
−1/2,2
0

‖ut − u‖W 1,2
0
≤

≤ c(t)‖∇u‖L2‖∇(ut − u)‖L2 + ‖f t − f‖W−1,2
0

‖ut − u‖W 1,2
0

+

c(t)‖gt − g‖
W

−1/2,2
0

‖ut − u‖W 1,2
0

+ c(t)‖ut − u‖W 1,2
0
‖g‖

W
−1/2,2
0

,

(4.7)

20



where c(t) we obtain from the estimation of A(t) :

1
2
‖ut − u‖W 1,2

0
≤ c(t)‖∇u‖L2 + c‖f t − f‖W−1,2

0
+ ‖g‖

W
−1/2,2
0

+ c‖gt − g‖
W

−1/2,2
0

.

Since f ∈ W−1,2
0 and we have shown that f t is strongly continuous with

respect to t i.e. f t → f in W−1,2
0 , gt → g in W

−1/2,2
0 , which implies ut →

u in W 1,2
1 (R3

+).
Since V is compactly supported it means supp V ⊂ B(R) for some R,

thus the first term in right hand side of (4.7) takes the form∫
Ω
(A(t)− I)∇u · ∇ϕ =

∫
B(R)

(A(t)− I)∇u · (∇ut −∇u) ≤
≤ c(t)‖∇u‖L2‖∇(ut − u)‖W−1,2

0

and it follows, in view of the properties of the mapping Tt(V ), that c(t) → 0,
which implies that (4.5) hold, similarly (4.5)’.
Therefore, we obtain the existence of material derivative u̇ ∈ W 1,2

1 (RN
+ ) which

is given by a unique solution to problem (1.10).

5 Fréchet material derivatives

5.1 Transported problem(TRP)

For the convenience of reader we repeat the results in the language of pertur-
bations of identity technique. Let us fix θ ∈ Θk and let ξ ∈ (−δ, δ), consider
Hξ = I + ξθ. We investigate the existence of the transported problem in the
fixed domain Ω satisfying the equations

− 1
β

div (A(ξ)∇uξ) = f ξ in Ω

∇uξ · ηξ = gξ on Γ.
(5.1)

where
A(ξ) = q∗ξDH−1

ξ DH−1
ξ , (5.2)

ηξ = H−1
ξ · nξ.

Theorem 5.1. Let N ≥ 3, suppose f ξ ∈ W 0,2
1 (RN

+ ) and g ∈ W
1/2,2
1 (Γ) then

problem (TRP ) has a unique solution uξ ∈ W 2,2
1 (RN

+ )and

‖uξ‖W 2,2
1 (RN

+ ) ≤ C(‖f ξ‖W 0,2
1 (RN

+ ) + ‖gξ‖
W

1/2,2
1 (Γ)

).
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Proof. Again we define the bilinear form

B(uξ, vξ) =

∫
Ω

Aξ∇uξ∇vξ

is the uniformly elliptic then applying Theorem 3.2 we get the existence of
the solution uξ.

5.2 Perturbed problem (PP)

Proposition 5.2. Let N ≥ 3, f ∈ W 0,2
1 (Ωξ), then for |ξ| → 0

F ξ − f

|ξ|
→ div θf + ḟstrongly in W−1,2

0 (Ωξ).

Theorem 5.3. Let N ≥ 3, suppose fξ ∈ W 0,2
1 (Ωξ), gξ ∈ W

1/2,2
1 (Γξ) then

problem (PP ) has a unique solution uξ ∈ W 2,2
1 (Ωξ).

Proof. We have for all ψ ∈1,2
0 (Ωξ)

〈fξ, ψ〉W−1,2
0 (Ωξ)×W̊ 1,2

0 (Ωξ) = 〈γ(t)fξ, q
−1
ξ ϕ ◦ H−1

ξ 〉W−1,2
0 (Ωξ)×W̊ 1,2

0 (Ωξ) =

= 〈qξ∆uξ, q
−1
ξ ϕ ◦ H−1

ξ 〉W−1,2
0 (Ωξ)×W̊ 1,2

0 (Ωξ) =

〈 div (Aξ∇uξ, ϕ〉W−1,2
0 (Ω)×W̊ 1,2

0 (Ω) = 〈f ξ, ϕ〉W−1,2
0 (Ω)×W̊ 1,2

0 (Ω).

Applying Theorem 5.1 we get the existence of solution of perturbed problem.

5.3 Proof of the Main theorem 2

The aim of this section is to prove the existence material derivative as a weak
limit of

uξ − u

|ξ|
→ u̇ ∈ W 1,2

0 (Ω) (5.3)

Denoting

wξ =
uξ − u

|ξ|
− u̇
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we obtain the following equation

−∆wξ = div
[A(ξ)−I

|ξ| ∇ut − A′(0)∇u
]
+ fξ−f

|ξ| − ḟ ] in Ω. (5.4)

and
∂wξ

∂nξ
=
gξ − g

|ξ|
− ġ −∇u ·DV · n−∇u · ṅ on Γ.

The weak formulation of (5.4) is the following∫
RN

+
∇wξ · ∇φ =∫

RN
+
[A(ξ)−I

|ξ| ∇uξ · ∇φ− A′(0)∇u∇φ] +
∫

RN
+
[fξ−f
|ξ| − ḟ ]φdx+

+
∫

Γ

(
gξ−g
|ξ| − ġ −∇u ·DV · n−∇u · ṅ

)
φdσ +

∫
Γ

(
A(ξ)−I
|ξ| gξ + A′(0)g

)
φ, ∀φ ∈ W 1,2

0 (RN
+ )

(5.5)
The goal of this section is to prove the following convergence

wξ =
uξ − u

|ξ|
− u̇→ 0 as |ξ| → 0, strongly in W 1,2

0 (RN
+ ),

and

∂wξ

∂nξ
=
gξ − g

|ξ|
− ġ → 0 as |ξ| → 0, weakly in W

1/2,2
0 (RN−1).

To get the assertion it is sufficient to prove the strong convergence of the
following terms

A(ξ)− I

|ξ|
∇uξ − A

′
(0)∇u→ 0, |ξ| → 0, strongly in W 0,2

0 (RN
+ )N , (5.6)

where A′(0) = div θI − ∗Dθ −Dθ and

A(ξ)− I

t
gξ − A′(0)g −∇u ·DV · n−∇u · ṅ→ 0 weakly in W

−1/2,2
0 (RN−1

+ )

(5.6)′.
We assume that

f ξ − f

|ξ|
− ḟ → 0 with |ξ| → 0 strongly in W−1,2

0 (RN
+ ), (5.7)
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and

gξ − f

|ξ|
− ġ → 0 with |ξ| → 0 strongly in W

−1/2,2
0 (RN−1). (5.7)′

Let ϕ = uξ − u be a test function in the variational formulation, hence

∫
RN

+
A(ξ)|∇(uξ − u)|2 − (A(ξ)− I)∇u · ∇(uξ − u)

+
∫

Γ
A(t)(gξ − g)(uξ − u) + (A(ξ)− I)g(uξ − u) = 〈f ξ − f, uξ − u〉+ 〈gξ − g, uξ − u〉.

From the properties of vector field θ it follows that∫
RN

+
A(ξ)|∇(uξ − u)|2 ≤

≤
∫

RN
+
|(A(ξ)− I)∇u||∇(uξ − u)|+ ‖f ξ − f‖W 0,2

0
‖uξ − u‖W 1,2

0
≤

∫
Γ
A(ξ)(gξ − g)(uξ − u) + (A(ξ)− I)g(uξ − u) + ‖gξ − g‖

W
1/2,2
1

‖uξ − u‖W 1,2
0

≤ c(ξ)‖∇u‖W 0,2‖∇(uξ − u)‖W 0,2 + ‖f ξ − f‖W 0,2
1
‖uξ − u‖W 1,2

0
+

c(ξ)‖gξ − g‖
W

1/2,2
1

‖uξ − u‖W 1,2
0

+ c(ξ)‖uξ − u‖W 1,2
0
‖g‖

W
1/2,2
1

.

(5.8)
From the properties of A(ξ) we have

1
2
‖uξ − u‖W 1,2

0
≤ c(ξ)‖∇u‖L2 + c‖f ξ − f‖W 0,2

1
+ c(ξ)‖g‖

W
1/2,2
1

+ c‖gt − g‖
W

1/2,2
1

.

Since f ∈ W 0,2
1 ⊂ W−1,2

0 and we consider that that f ξ is strongly continuous
with respect to ξ i.e. f ξ → f in W 0,2

0 , which implies uξ → u in W 1,2
0 (R3

+)
strongly.
Since θ is compactly supported supp θ ⊂ B(R) for some R, thus the first
term in right hand side of (5.8) takes the form∫

Ω

(A(ξ)−I)∇u·∇ϕ =

∫
B(R)

(A(ξ)−I)∇u·(∇uξ−∇u) ≤ c(ξ)‖∇u‖L2‖∇(uξ−u)‖L2

and it follows, in view of the properties of the mapping Hξ(ξ), that c(ξ) → 0,
which implies that (5.6) hold.
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Therefore, we get the material derivative u̇ ∈ W 1,2
1 (RN

+ ) which is given by
a unique solution to problem (1.10) which is same as before, but the strong
convergence in the energy space.

Remark 5.1 It is not difficult to extend our result to Lp theory.
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le Plan par une Méthode Variationnelle d’Element Fini, These, Univ. de
Rennes, 1974

[17] J. Giroire: Etude de quelques problémes aux Limité s Exterieur et Res-
olution par Equation Integrales, These de Doctorat, Univ. Pierre et Marier
Curie, 1987

[18] V. Girault: The gradient, divergence, curl and Stokes opertaors in weighted
Sobolev spaces of R3, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 39 (1992),
279–307

[19] A. Kufner: Weighted Sobolev spaces, Chichester, Wiley, 1985

[20] A. Kufner, B. Opic: Hardy- type Inequalities, New York, Wiley, 1990

[21] L. D. Kudrjavcev: Direct and inverse imbedding theorems.Application
to the solution of elliptic equations by variational method, Trudy Mat. Inst.
Steklov, 55, 1959,1–182

26


