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Abstract. Let T be a bounded linear Banach space operator such that
∑∞

n=1
1

‖T n‖ <

∞. Then T is orbit-reflexive. In particular, every Banach space operator with spectral
radius different from 1 is orbit-reflexive. Better estimates are obtained for operators in
Hilbert spaces.

We also exhibit an example of a reflexive but non-orbit-reflexive operator and a
simple example of a non-orbit-reflexive Hilbert space operator.

1. Introduction

Let X be a Banach space. Denote by B(X) the set of all bounded linear opera-
tors acting on X. All Banach spaces are considered to be complex unless it is stated
otherwise.

The notion of orbit-reflexive operators on a Hilbert space was introduced and
studied in [HNRR]. While the reflexivity of operators is connected to the invariant
subspace problem, its natural analogue of orbit-reflexivity is in the same way connected
to the problem of existence of closed invariant subsets.

We say that T is reflexive if every A ∈ B(X) belongs to the closure of {p(T ) :
p polynomial} in the strong operator topology, whenever Au ∈ {p(T )u : p polynomial}−
for each u ∈ X. Analogously, T is orbit-reflexive if every A ∈ B(X) belongs to the
closure of the set {Tn : n ∈ N} in the strong operator topology, whenever Au ∈ {Tnu :
n ∈ N}− for each u ∈ X.

Many operators are known to be reflexive: e.g.

• subnormal operators on a Hilbert space [OT] (in particular, normal operators and
isometries),

• compact operators,

• Hilbert space contractions with isometrical H∞-calculus, see [BC].

The orbit-reflexivity of many classes of Hilbert space operators was shown in
[HNRR], e.g. for normal operators, contractions, algebraic operators, weighted shifts
and compact operators. Among others, each operator whose spectrum does not inter-
sect the unit circle is orbit-reflexive.

In this paper, we improve this result and show that each Banach space operator T
satisfying

∑ ‖Tn‖−1 < ∞ is orbit-reflexive. In particular, if the spectral radius of T is
different from 1, then T is orbit-reflexive.

Better estimates are obtained for Hilbert space operators.
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On the other hand, it is much more difficult to find operators that are not orbit-
reflexive. In fact, up till recently the only known example of a non-orbit-reflexive
operator was the Read operator [R]. We construct an operator which is not orbit-
reflexive but in the same time it is reflexive. Note that it is very easy to find an
orbit-reflexive operator that is not reflexive, since all Hilbert space contractions are
orbit-reflexive.

The first example of a non-orbit-reflexive Hilbert space operator was given recently
in [GR]. The operator is obtained by a modified Read-type construction and it is quite
complicated. We exhibit a relatively simple example of a non-orbit-reflexive Hilbert
space operator. Moreover, our operator T ∈ B(H) satisfies infn ‖Tnx‖ = 0 for each
x ∈ H, but there are two points u, v ∈ H with infn(‖Tnu‖ + ‖Tnv‖) > 0, which is of
independent interest. In particular, it gives a negative answer to Question 3 of [HNRR].

2. Orbit-reflexive operators

Our basic tool in this section will be the following solution to the plank problem.

Proposition 1. (K. Ball [1]) Let X be a (real or complex) Banach space, y ∈ X any
vector and f1, f2, . . . ∈ X∗ unit functionals. For each n ∈ N, let αn ≥ 0 be such that∑∞

n=1 αn < 1. Then there is a point x ∈ X such that ‖x− y‖ ≤ 1 and |〈x, fn〉| ≥ αn

for every n.

A stronger result is known for operators on a complex Hilbert space.

Proposition 2. (K. Ball [2]) Let X be a complex Hilbert space and f1, f2 . . . ∈ X unit
vectors. For each n ∈ N, let αn ≥ 0 be such that

∑∞
n=1 α2

n < 1. Then there is a point
x ∈ X such that ‖x‖ = 1 and |〈x, fn〉)| ≥ αn for every n.

First we show that the conditions in Propositions 1 or 2 imply the existence of a
dense set of vectors whose orbits tend to infinity. This improves the results of [MV].

Theorem 3. Let X be a (real or complex) Banach space and Sn ∈ B(X), n ∈ N. If

∞∑
n=1

1
‖Sn‖ < ∞,

then the set {x ∈ X : ‖Snx‖ → ∞} is dense in X.

Proof. Let u ∈ X and ε > 0. We find x ∈ X such that ‖x− u‖ ≤ ε and ‖Snx‖ → ∞.
There are positive real numbers βn (n ∈ N) tending to infinity such that

s :=
∞∑

n=1

βn

‖Sn‖ < ∞.

Let

αn :=
1

(s + 1)
βn

‖Sn‖ .
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Then
∑∞

n=1 αn < 1.
For each n ∈ N find yn ∈ X∗ such that ‖yn‖ ≤ 1 and ‖S∗nyn‖ ≥ 1

2 ‖S∗n‖ = 1
2 ‖Sn‖.

Consider the unit functionals S∗nyn

‖S∗nyn‖ .

By Theorem 1, there is an x′ ∈ X with
∥∥x′ − u

ε

∥∥ ≤ 1 such that
∣∣∣
〈
x′, S∗nyn

‖S∗nyn‖
〉∣∣∣ ≥ αn

for every n. Let x := εx′. Then ‖x− u‖ ≤ ε and

‖Snx‖ ≥ ε ‖Snx′‖ ≥ ε |〈Snx′, yn〉|

= ε |〈x′, S∗nyn〉| ≥ εαn ‖S∗nyn‖ ≥ εαn‖Sn‖
2

=
εβn

2(s + 1)

for all n. Hence ‖Snx‖ → ∞.

The analogous assertion holds also for complex Hilbert spaces. However, the com-
plex plank theorem (Theorem 2) is valid only for planks centered at the origin (“y = 0”),
so that we don’t obtain the density directly. To this end, we introduce one additional
plank that places the obtained point z into the given ball.

Theorem 4. Let X be a complex Hilbert space and Sn ∈ B(X), n ∈ N. If

∞∑
n=1

1

‖Sn‖2 < ∞,

then the set {x ∈ X : ‖Snx‖ → ∞} is dense in X.

Proof. Choose any point u ∈ X with ‖u‖ = 1 and any number ε with 0 < ε < 1.
By linearity, it is sufficient to prove that there is an x ∈ X such that ‖x− u‖ ≤ ε and
‖Snx‖ → ∞.

Set δ := 1− ε2

2 . Using the condition from the theorem, there is a sequence (βn) of
positive real numbers tending to infinity such that

s :=
∞∑

n=1

βn

‖Sn‖2 < ∞.

Thus the sequence of coefficients

αn :=

(
1− δ2

s + 1

)1/2
β

1/2
n

‖Sn‖

satisfies both

δ2 +
∞∑

n=1

α2
n < 1 and αn ‖Sn‖ → ∞.

Now consider the adjoint operators S∗n. For each n ∈ N find yn ∈ X such that
‖yn‖ ≤ 1 and ‖S∗nyn‖ ≥ 1

2 ‖S∗n‖ = 1
2 ‖Sn‖. At this point, we apply the complex

plank theorem, using the points u,
S∗1 y1

‖S∗1 y1‖ ,
S∗2 y2

‖S∗2 y2‖ , . . . as the functionals and numbers

3



δ, α1, α2, . . . as the coefficients. Thus, there is an x′ ∈ X with ‖x′‖ = 1 such that
|〈x′, u〉| ≥ δ and |〈x′, S∗nyn〉| ≥ αn ‖S∗nyn‖ for every n. Therefore

‖Snx′‖ ≥ |〈Snx′, yn〉| = |〈x′, S∗nyn〉|
≥ αn ‖S∗nyn‖ ≥ αn

2
‖Sn‖ → ∞, as n →∞.

Moreover, |〈x′, u〉| ≥ δ. Let x := 〈u,x′〉
|〈x′,u〉| · x′. Then ‖Snx‖ → ∞ and

〈x, u〉 =
〈u, x′〉
|〈u, x′〉| 〈x

′, u〉 = |〈x′, u〉| ≥ δ,

and therefore

‖x− u‖2 = ‖x‖2 + ‖u‖2 − 2Re 〈x, u〉 ≤ 2− 2δ = ε2.

Hence ‖x− u‖ ≤ ε.

Remark 5. (i) Note that in Theorems 3 and 4 we have proved the existence of a dense
set of points x ∈ X such that ‖Snx‖ → ∞ and infn ‖Snx‖ 6= 0.

(ii) Note that in general, the results proved in Theorems 3 and 4 are not true with
bigger exponents, i.e., for Banach space operators satisfying

∑ 1
‖Sn‖1+ε < ∞ or Hilbert

space operators with
∑ 1

‖Sn‖2+ε < ∞ for ε > 0, see [MV].

Let us turn now to the orbit-reflexivity. First, a simple observation shows that
operators with spectral radius less than 1 are orbit-reflexive. In fact, we obtain more.

Theorem 6. Let T ∈ B(X). Then T is orbit-reflexive in any of the following cases:
(i) the orbit {Tnx : n = 0, 1, . . .} is closed for each x ∈ X;

(ii) ‖Tnx‖ → ∞ for all x ∈ X;
(iii) ‖Tnx‖ → 0 for all x ∈ X.

Proof. (i) Let A ∈ B(X) satisfy Au ∈ {Tnu : n = 0, 1, . . .}− = {Tnu : n = 0, 1, . . .}
for each u ∈ X. Then Au = Tnu for some n and

⋃∞
n=0 ker(A− Tn) = X. By the Baire

category theorem, there exists m such that ker(A−Tm) has a nonempty interior. Since
ker(A− Tm) is a linear subspace, we have ker(A− Tm) = X, and so A = Tm.

(ii) follows from (i) and (iii) can be proved similarly.

Theorem 7. Suppose that T ∈ B(X) satisfies
∑∞

n=1
1

‖T n‖ < ∞. Then T is orbit-
reflexive. In case X is a complex Hilbert space, then it is sufficient to assume that∑∞

n=1
1

‖T n‖2 < ∞.

Proof. Let
∑∞

n=1
1

‖T n‖ < ∞. Let A ∈ B(X) be such that Au ∈ {Tnu : n ∈ N}− for
each u ∈ X and suppose for contradiction that A 6= Tn for all n ∈ N. Observe that

∞∑
n=1

1
‖Tn −A‖ < ∞.
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Indeed, since ‖Tn‖ → ∞ we have ‖Tn −A‖ ≥ ‖Tn‖ − ‖A‖ ≥ 1
2 ‖Tn‖ for all n large

enough. So for certain n0 ∈ N we have

∞∑
n=n0

1
‖Tn −A‖ ≤

∞∑
n=n0

1
‖Tn‖ − ‖A‖ ≤

∞∑
n=n0

2
‖Tn‖ < ∞.

Therefore, the operators Sn := Tn − A satisfy the conditions in Theorem 3. So
there exists (in fact a dense set of points) x ∈ X with ‖(Tn −A)x‖ > 0 for all n
and ‖(Tn −A)x‖ → ∞, cf. Remark 5. Thus there is a constant C > 0 such that
infn ‖(Tn −A)x‖ ≥ C > 0 and we have a contradiction with the assumption that
Ax ∈ {Tnx : n ∈ N}−.

The second statement can be proved similarly by using Theorem 4 for the operators
Tn −A.

Corollary 8. Every operator T ∈ B(X) with r(T ) 6= 1 is orbit-reflexive.

Proof. If r(T ) < 1 then limn→∞ ‖Tn‖ = 0. Now apply Theorem 6.
If r(T ) > 1 then ‖Tn‖ > n2 for all n large enough, since otherwise r(T ) =

infn→∞ ‖Tn‖1/n ≤ 1. Now apply Theorem 7.

Denote by {T}′ the commutant of an operator T ∈ B(X), i.e., the set of all
operators S ∈ B(X) commuting with T . Denote by {T}′′ the bicommutant of T , i.e.,
the set of all operators commuting with all operators in {T}′.

Proposition 9. Let T ∈ B(X). Suppose that there is a nonzero x ∈ X such that the
closure of its orbit {Tnx : n ∈ N}− has cardinality less than continuum. Then either T
has a nontrivial closed hyperinvariant subspace or each operator A ∈ B(X) satisfying
Au ∈ {Tnu : n ∈ N}− for each u ∈ X belongs to {T}′′.
Proof. Let x 6= 0 be a point such that the cardinality of the set W := {Tnx : n ∈ N}−
is less than 2ω.

Set M := {Bx : B ∈ {T}′}. If M is a proper subspace of X, then it is a nontrivial
closed hyperinvariant subspace.

Suppose that M = X.
Let A ∈ B(X) be such that Au ∈ {Tnu : n ∈ N}− for every u ∈ X. Let B ∈ {T}′.

We will prove that BAx = ABx.
Fix any α ∈ %(B) (the resolvent set of B). According to our assumption on A, we

have A(αI − B)x ∈ {Tn(αI − B)x : n ∈ N}−. But since αI − B commutes with Tn

and is an invertible operator, we can rewrite the latter set as (αI −B)W . In this way,
we can assign to each α ∈ %(B) a point wα ∈ W for which A(αI −B)x = (αI −B)wα.
Since the cardinality of W is smaller than the cardinality of %(B), there are two distinct
complex numbers α, β ∈ %(B) with wα = wβ =: w, i.e.,

A(αx−Bx) = αw −Bw,

A(βx−Bx) = βw −Bw,

which yields the identities

(α− β)Ax = (α− β)w,

(β − α)ABx = (β − α)Bw.
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So Ax = w, ABx = Bw and BAx = Bw = ABx.
Therefore, for each C ∈ {T}′ we have ABCx = BCAx = BACx. Since the set

{Cx : C ∈ {T}′} is dense in X, we have AB = BA and so A ∈ {T}′′.

3. Reflexive operator that is not orbit-reflexive

Example 10. There exists a reflexive operator on `1 which is not orbit-reflexive.

Construction. For N = 1, 2, 3 . . . let εN := 1/
√

N . Let ak, k = 1, 2, 3 . . ., be an
increasing sequence of positive integers such that ak+1 > 6a2

k.
The underlying space will be the `1-direct sum

X = Z ⊕
∞⊕

k=1

Yk

where Z is the `1 space with standard basis {ej , fj : j = 0, 1, 2 . . .} and Yk are the `1

spaces with standard bases {uk,i, vk,i : i = 1, 2, . . . , 5a2
k}.

We construct inductively integers kN , N = 0, 1, 2 . . ., and elements wk ∈ Z,
k = 1, 2, 3 . . ., in the following way. Set formally k0 := 0 and a0 := 0. Write
for short bN := akN

. Let N ≥ 1 and suppose that the integer kN−1 and elements
w1, . . . , wkN−1 have already been defined. Let ZN := Span{ej , fj : j = 0, . . . , bN−1}
and let wkN−1+1, . . . , wkN be an ε2

N -net in the closed unit ball of ZN .
Using induction, we continue the construction in the above described way.
Now we define the operator T ∈ B(X) by:

Teak
:= eak+1 + 1

a2
k

∑a2
k

i=1 uk,i,

T eak+3a2
k

:= εNeak+3a2
k
+1,

T ej := ε
−1/a2

k

N ej+1,

T ej := ej+1,

T fak
:= fak+1 + 1

a2
k

∑a2
k

i=1 vk,i,

T fak+3a2
k

:= εNfak+3a2
k
+1

Tfj := ε
−1/a2

k

N fj+1

(kN−1 < k ≤ kN , ak + 3a2
k < j ≤ ak + 4a2

k),
T fj := fj+1

(kN−1 < k ≤ kN ),

otherwise.

Thus T acts on the standard basis of Z as a pair of weighted shifts, up to the
points of the form eak

and fak
.

Further, let

Tuk,5a2
k

:= 0,
Tuk,i := uk,i+1,

Tvk,5a2
k

:= 0,
T vk,i := vk,i+1 (1 ≤ i < 2a2

k or 2a2
k < i < 5a2

k).

It remains to define T on Span{uk,2a2
k
, vk,2a2

k
}. Since wk ∈ ZN for kN−1 < k ≤ kN ,

we have wk =
∑bN−1

i=0 (α(k)
i ei + β

(k)
i fi) for some complex coefficients α

(k)
i , β

(k)
i . For

i = 0, . . . , bN−1 we have T ak−iei = µieak
and T ak−ifi = µifak

for some µi ∈ C
satisfying |µi| ≤ ε−1

N . Set α(k) =
∑bN−1

i=0 µiα
(k)
i and β(k) =

∑bN−1

i=0 µiβ
(k)
i . Without loss

of generality we may assume that |α(k)| 6= |β(k)|.
If |α(k)| < |β(k)| then set Tuk,2a2

k
:= uk,2a2

k
+1 and Tvk,2a2

k
:= −α(k)

β(k) uk,2a2
k
+1. If

|α(k)| > |β(k)| then set Tvk,2a2
k

:= vk,2a2
k
+1 and Tuk,2a2

k
:= −β(k)

α(k) vk,2a2
k
+1. Note that in

both case we have T (α(k)uk,2a2
k

+ β(k)vk,2a2
k
) = 0.
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Let Y =
⊕∞

k=1 Yk. Denote by PZ , PY , PZN
and PYk

the natural projections onto
the corresponding subspace of X.

It is easy to check that ‖T‖ ≤ 2. Note also that for each k ∈ N, we have
T ak−ak−1eak−1 = eak

since PY T ak−ak−1eak−1 = 0 while by definition

PZT ak−ak−1eak−1 = εN ·
ak+4a2

k∏

j=ak+3a2
k
+1

ε
−1/a2

k

N eak
= eak

.

Similarly T ak−ak−1fak−1 = fak
.

We prove now that T is not orbit-reflexive. On one hand we show that

‖Tne0‖+ ‖Tnf0‖ ≥ 1

for all n = 0, 1, 2 . . . On the other hand, for each x ∈ X and ε > 0 there is a j ∈ N
such that

∥∥T jx
∥∥ < ε. A proof of these two statements will automatically yield that T

is not orbit-reflexive. Indeed, the zero operator satisfies 0x ∈ {Tnx : n = 0, 1, 2 . . .}−
for each x by the second statement, but it is not in {Tn : n = 0, 1, 2 . . .}−SOT by the
first statement.

To prove the first statement, let n ∈ N. If n /∈ ⋃∞
k=1{ak + 3a2

k + 1, . . . , ak + 4a2
k}

then PZTne0 = en, and so ‖Tne0‖+ ‖Tnf0‖ ≥ ‖PZTne0‖ = 1.

Let ak + 3a2
k < n ≤ ak + 4a2

k for some k. Recall that wk =
∑bN−1

i=0 (α(k)
i ei + β

(k)
i fi),

α(k) =
∑bN−1

i=0 µiα
(k)
i and β(k) =

∑bN−1

i=0 µiβ
(k)
i , where T ak−iei = µieak

and T ak−ifi =
µifak

. First suppose that
∣∣α(k)

∣∣ <
∣∣β(k)

∣∣ so that T is a shift on uk,i. It is then easy to
show that

PYk
Tne0 =

1
a2

k

n−ak+a2
k−1∑

i=n−ak

uk,i,

and so ‖Tne0‖ ≥ 1. If
∣∣α(k)

∣∣ >
∣∣β(k)

∣∣, then we obtain in the same way that ‖Tnf0‖ ≥ 1.
Hence ‖Tne0‖+ ‖Tnf0‖ ≥ 1 for all n.

To prove the second statement, suppose that x ∈ X is of norm 1 and 0 < ε < 1.
There exists M ≥ 2 such that ‖(PZ − PZM

)x‖ < ε
18 . There exists N > M such

that
ε

1/2
N <

εεM

9
,

bN−1εN >
18
ε

,

∞∑

k′=kN−1+1

∥∥PYk′x
∥∥ <

ε

9
,

∥∥PZN+1x− PZN
x
∥∥ < ε2

N .

(1)

Indeed, the first three conditions of (1) are satisfied for all N sufficiently large. Suppose
on the contrary that ‖PZN+1x− PZN

x‖ ≥ ε2
N for all N ≥ N0. Then

1 = ‖x‖ ≥
∞∑

N=N0

∥∥PZN+1x− PZN
x
∥∥ ≥

∞∑

N=N0

ε2
N = ∞,

7



a contradiction. Fix N with properties (1).
Find k, kN−1 < k ≤ kN such that ‖PZN

x− wk‖ ≤ ε2
N . Set j = ak + 3a2

k + 1. We
have

∥∥T jx
∥∥ ≤

∥∥∥
kN−1∑

k′=1

T jPYk′x
∥∥∥ +

∥∥∥
∞∑

k′=kN−1+1

T jPYk′x
∥∥∥ + ‖PZT jPZM

x‖

+ ‖PZT j(PZN
− PZM

)x‖+ ‖PZT j(PZN+1 − PZN
)x‖+ ‖PZT j(PZ − PZN+1)x‖

+
∥∥PY T j(PZ − PZN+1)x

∥∥ +
∥∥PY T j(PZN+1 − PZN

)x
∥∥

+ +
∥∥PY T j(PZN

x− wk)
∥∥ +

∥∥PY T jwk

∥∥ .

Since k > kN−1 and j > ak > 5a2
kN−1

, we have
∑kN−1

k′=1 T jPYk′x = 0.

For k′ > kN−1 we have ‖T j |Yk′‖ ≤ 1, and so

∥∥∥
∞∑

k′=kN−1+1

T jPYk′x
∥∥∥ ≤

∥∥∥
∞∑

k′=kN−1+1

PYk′x
∥∥∥ <

ε

9
.

It is easy to see that

‖PZT jPZM ‖ ≤ ε−1
M εNε

−bM−1/a2
k

N < ε−1
M ε

1/2
N <

ε

9
,

and so ‖PZT jPZM
x‖ ≤ ε

9‖PZM
x‖ ≤ ε

9 .
Similarly,

‖PZT j(PZN − PZM )‖ = max{‖PZT jei‖ : bM−1 < i ≤ bN−1} ≤ 2,

‖PZT j(PZN+1 − PZN
)‖ = max{‖PZT jei‖ : bN−1 < i ≤ bN} ≤ ε−1

N

and
‖PZT j(PZ − PZN+1)‖ = max{‖PZT jei‖ : bN < i} ≤ 2.

Thus
‖PZT j(PZN − PZM )x‖ ≤ 2‖(PZN − PZM )x‖ <

ε

9
,

‖PZT j(PZN+1 − PZN
)x‖ ≤ ε−1

N ε2
N = εN <

ε

9

and
‖PZT j(PZ − PZN+1)x‖ ≤ 2‖(PZ − PZN+1)x‖ <

ε

9
.

We have

‖PY T j(PZ − PZN+1)‖ = max{‖PY T jei‖, ‖PY T jfi‖ : i > bN}
≤ max{‖PZT j′ei‖, ‖PZT j′fi‖ : j′ ≤ j, i > bN} ≤ ε

−j/a2
kN +1

N+1 ≤ 2

and similarly

‖PY T jPZN+1‖ ≤ max{‖PZT j′ei‖, ‖PZT j′fi‖ : j′ ≤ j, i ≤ bN} ≤ ε−1
N .

8



Thus
‖PY T j(PZ − PZN+1)x‖ ≤ 2‖(PZ − PZN+1)x‖ ≤ ε

9
,

∥∥PY T j(PZN+1 − PZN
)x)

∥∥ ≤ ε−1
N

∥∥(PZN+1 − PZN
)x

∥∥ < ε−1
N ε2

N = εN <
ε

9

and ∥∥PY T j(PZN x− wk)
∥∥ ≤ ε−1

N ‖PZN x− wk‖ ≤ ε−1
N ε2

N <
ε

9
.

It remains to estimate ‖PY T jwk‖. We have

‖PY T jwk‖ = ‖PYk
T jwk‖

=
∥∥∥T 3a2

k

bN−1∑

i=0

(µiα
(k)
i

a2
k

a2
k∑

i′=1

uk,i+i′ +
µiβ

(k)
i

a2
k

a2
k∑

i′=1

vk,i+i′
)∥∥∥

=
1
a2

k

∥∥∥T 3a2
k

(
µ0α

(k)
0 uk,1 + µ0β

(k)
0 vk,1 + (µ0α

(k)
0 + µ1α

(k)
1 )uk,2

+ (µ0β
(k)
0 + µ1β

(k)
1 )vk,2 + · · ·+

a2
k∑

s=bN−1+1

(α(k)uk,s + β(k)vk,s) + · · ·

· · ·+ µbN−1α
(k)
bN−1

uk,a2
k
+bN−1

+ µbN−1β
(k)
bN−1

vk,a2
k
+bN−1

)∥∥∥

≤ 1
a2

k

· 2ε−1
N (bN−1 + 1)‖wk‖ ≤ 2

εNak
≤ 2

εNbN−1
<

ε

9
.

Hence ‖T jx‖ < ε. This implies that T is not orbit-reflexive.

We show now that T is reflexive. Suppose that an operator A ∈ B(X) leaves
invariant all the closed subspaces which are invariant for T . Without loss of generality
we may assume that ‖A‖ = 1. We have to show that A is a limit of polynomials of T
in the strong operator topology.

Let k ∈ N and let y ∈ Yk, y 6= 0. Let s satisfy T sy 6= 0 and T s+1y = 0. Since
Span{y, Ty, . . . , T sy} is invariant for A, there are numbers λ0, . . . , λs ∈ C such that
Ay =

∑s
i=0 λiT

iy.
Fix any natural numbers l > k such that |α(l)| < |β(l)| (so that T is a shift on ul,i;

such a number certainly exists) and consider the spaces invariant for T generated by
the vectors ul,1 and y + ul,1, respectively. Since these subspaces are invariant for A,
there are complex numbers ξi and ηi such that

Aul,1 =
5a2

l−1∑

i=0

ξiT
iul,1

and

A(y + ul,1) =
5a2

l−1∑

i=0

ηiT
i(y + ul,1).

9



Thus

s∑

i=0

ηiT
iy +

s∑

i=0

ηiT
iul,1 +

5a2
l−1∑

i=s+1

ηiT
iul,1 =

s∑

i=0

λiT
iy +

s∑

i=0

ξiT
iul,1 +

5a2
l−1∑

i=s+1

ξiT
iul,1.

Since the vectors T iy (0 ≤ i ≤ s) and T iul,1 (0 ≤ i ≤ 5a2
l − 1) are linearly indepen-

dent, we have λi = ξi = ηi (0 ≤ i ≤ s) and Ay =
∑5a2

k−1
i=0 ξiT

iy. Note that this equal-

ity does not depend on y ∈ Yk. Note also
∑5a2

k−1
i=0 |ξi| ≤

∥∥∥∑5a2
k−1

i=0 ξiT
iul,1

∥∥∥ ≤ ‖Aul,1‖ ≤
‖A‖ = 1. Moreover, if Ay =

∑5a2
l−1

i=0 ξ′iT
jy for all y ∈ Yl then ξi = ξ′i (0 ≤ i ≤ 5a2

k−1).

Thus there are numbers ξ0, ξ1, . . . such that
∑∞

i=0 |ξi| ≤ 1 and Ay =
∑5a2

j−1
i=0 ξiT

iy
for all j ∈ N and y ∈ Yj .

For k ∈ N let pk(z) :=
∑5a2

k−1
i=0 ξiz

i. Then ‖pk(T )|Y ‖ ≤ 1, and so we have Ay =
limk→∞ pk(T )y for all y ∈ Y .

Let E := Span{ej : j ≥ 0} and F := Span{fj : j ≥ 0}. Let x1, . . . , xn ∈ E and
xn+1, . . . , xm ∈ F be unit vectors, q ∈ N and let 0 < ε < 1. It is sufficient to show that
there is a k ≥ q such that ‖pk(T )xi −Axi‖ < ε (i = 1, . . . , m). This will show that A
belongs to the closure of polynomials of T in the strong operator topology.

As above, it is possible to show that there is an N such that

εN <
ε

8
,

kN+1∑

j=kN +1

|ξj | < ε2
N ,

‖(I − PZN+1)xi‖ <
ε

16
(i = 1, . . . , m),

‖(PZN+1 − PZN
)xi‖ < ε2

N (i = 1, . . . , m),

∥∥∥
(
I − PZN

−
kN∑

k′=1

PYk′

)
Axi

∥∥∥ <
ε

4
(i = 1, . . . , m).

(2)

Set k = kN . Fix i ∈ {1, . . . , n} (for n + 1 ≤ i ≤ m the proof will be similar). Let xi =∑∞
j=j0

γjej with γj0 6= 0. Clearly j0 ≤ bN−1. Let s = 5a2
k+ak−j0. Let Q be the natural

projection onto the space Span{e0, . . . , e5a2
k
+ak

, Yk′ (k′ ≤ k), vk+1,1, . . . , vk+1,s+1}.
Consider the vectors xi, vk+1,1 and xi + vk+1,1. We have

QAvk+1,1 =
s∑

j=0

ξjT
jvk+1,1

and there are complex numbers νj , ηj such that

QAxi = Q

s∑

j=0

νjT
jxi

10



and

QA(xi + vk+1,1) = Q

s∑

j=0

ηjT
j(xi + vk+1,1).

As above, we have νj = ξj = ηj (0 ≤ j ≤ s). So QAxi = Q
∑s

j=0 ξjT
jxi.

We have

‖(A− pk(T ))xi‖ ≤ ‖(I −Q)Axi‖+ ‖Q(A− pk(T ))xi‖+ ‖(I −Q)pk(T )xi‖.

By (2), ‖(I −Q)Axi‖ < ε/4 and

‖Q(A− pk(T ))xi‖ =
∥∥∥Q

s∑

j=5a2
k

ξjT
jxi

∥∥∥ ≤
∥∥∥

s∑

j=5a2
k

ξjT
jxi

∥∥∥

≤
s∑

j=5a2
k

|ξj | ·max{‖T j‖ : 5a2
k ≤ j ≤ s} ≤ ε2

N · 2ε−1
N = 2εN < ε/4.

Furthermore, since (I −Q)pk(T )PZN xi = 0, we have

‖(I −Q)pk(T )xi‖
≤ ‖(I −Q)pk(T )(I − PZN+1)xi‖+ ‖(I −Q)pk(T )(PZN+1 − PZN

)xi‖
≤ ‖pk(T )(I − PZN+1)xi‖+ ‖pk(T )(PZN+1 − PZN

)xi‖,

where

‖pk(T )(I − PZN+1)xi‖ =
∥∥∥

5a2
k−1∑

j=0

ξjT
j(I − PZN+1)xi

∥∥∥

≤
(5a2

k−1∑

j=0

|ξj |
)

max{‖T j(I − PZN+1)‖ : 0 ≤ j ≤ 5a2
k − 1} · ‖(I − PZN+1)xi‖ ≤ 4ε

16
=

ε

4

and
‖pk(T )(PZN+1 − PZN )xi‖ ≤ ‖pk(T )‖ · ‖(PZN+1 − PZN )xi‖
≤ max{‖T j‖ : 0 ≤ j ≤ 5a2

k − 1} · ε2
N ≤ 2ε−1

N ε2
N = 2εN < ε/4.

Hence ‖(A− pk(T ))xi‖ < ε for each i, 1 ≤ i ≤ n, and similarly, for n + 1 ≤ i ≤ m.
This implies that A is a limit of polynomials of T in the strong operator topology and
hence, T is reflexive.

4. A non-orbit-reflexive Hilbert space operator

The example constructed in the previous section can be modified to the Hilbert
space setting. However, we are not able to prove the reflexivity of the operator.

Denote by m the normalized Lebesgue measure on the unit circle T. Denote by
‖ · ‖2 and ‖ · ‖∞ the norms in the Hardy spaces H2(m) and H∞(m), respectively.

11



Lemma 11. Let p, q be polynomials, ‖p‖2 ≤ 1, ‖q‖2 ≤ 1 and let 0 < ε < 1/3.
Then there exist polynomials r, s such that ‖rp + sq‖2 < ε, ‖r‖∞ ≤ 1, ‖s‖∞ ≤ 1 and
max{‖r‖2, ‖s‖2} ≥ 1/3.

Proof. Let M1 := {z ∈ T : |p(z)| ≥ |q(z)|}, M2 = T \M1. Without loss of generality
we can assume that m(M1) ≥ 1/2. Define functions g, h : T→ C by

h(z) :=

{−1 (z ∈ M1)
0 (z ∈ M2)

g(z) :=

{
q(z)
p(z) (z ∈ M1)
0 (z ∈ M2)

(if p(z) = q(z) = 0 then set g(z) := 0). Note that ‖g‖∞ ≤ 1, ‖h‖∞ ≤ 1 and pg+qh = 0.
Let K = max{1, ‖p‖∞, ‖q‖∞}. There exist continuous functions g1, h1 : T → C

such that ‖g1 − g‖2 < ε
4K and ‖h1 − h‖2 < ε

4K .

Define g2, h2 : T → C by g2(z) := g1(z)
max{1,|g1(z)|} , h2(z) := h1(z)

max{1,|h1(z)|} . Clearly
g2, h2 are continuous, ‖g2‖∞ ≤ 1, ‖h2‖∞ ≤ 1, ‖g2 − g‖2 < ε

4K and ‖h2 − h‖2 < ε
4K .

There exist trigonometric polynomials g3, h3 such that ‖g3 − g2‖∞ < ε/4K, ‖h3 −
h2‖∞ < ε/4K. Moreover, we may assume that ‖g3‖∞ ≤ 1, ‖h3‖∞ ≤ 1.

Choose l ∈ N such that r := zlg3 and s := zlh3 are polynomials. Then ‖r‖∞ ≤ 1,
‖s‖∞ ≤ 1 and

‖rp + qs‖2 = ‖zlg3p + zlh3q‖2 ≤ ‖zlgp + zlhq‖2 + ‖zl(g3 − g)p‖2 + ‖zl(h3 − h)q‖2

≤ K‖g3 − g‖2 + K‖h3 − h‖2

≤ K(‖g3 − g2‖2 + ‖g2 − g‖2) + K(‖h3 − h2‖2 + ‖h2 − h‖2) < ε.

Finally,
‖s‖2 = ‖h3‖2 ≥ ‖h‖2 − ‖h3 − h‖2 ≥ 1/2− ε/2K ≥ 1/3.

If m(M1) < 1/2 then m(M2) ≥ 1/2 and we can proceed similarly. At the end we obtain
‖r‖2 ≥ 1/3.

Example 12. There exists a Hilbert space X and an operator T ∈ B(X) such that
(i) infn ‖Tnx‖ = 0 for all x ∈ X;

(ii) there are points e0, f0 ∈ X such that infn(‖Tne0‖+ ‖Tnf0‖) > 0.
Consequently, T is not orbit-reflexive.

Construction. The construction is similar to the `1 case. For N = 1, 2, 3 . . . let
εN := N−1/3 .

The underlying Hilbert space will be

X = Z ⊕
∞⊕

k=1

Yk,

where Z is the Hilbert space with an orthonormal basis {ej , fj : j = 0, 1, 2 . . .} and Yk

are finite-dimensional Hilbert spaces (they will be determined in the construction).
We construct inductively integers kN , N = 0, 1, 2 . . ., integers ak, spaces Yk and

elements wk ∈ Z, k = 1, 2, 3 . . ., in the following way. Set formally k0 := 0 and a0 := 0.

12



Let N ≥ 1 and suppose that the integers kN−1, ak, spaces Yk and elements wk ∈ Z
have already been defined for 1 ≤ k ≤ kN−1. Write for short bN−1 := akN−1 . Let
ZN := Span{ej , fj : j = 0, . . . , bN−1} and let wkN−1+1, . . . , wkN

be an ε2
N -net in the

closed unit ball of ZN .
For k = kN−1 + 1, . . . , kN we can write wk =

∑bN−1

i=0 (α(k)
i ei + β

(k)
i fi) with complex

coefficients α
(k)
i , β

(k)
i . We define numbers µi (0 ≤ i ≤ bN−1) in the following way. If

1 ≤ M ≤ N − 1, kM−1 < l < kM and al < i ≤ 2al then set µi = ε−1
M . If 2al < i < 3al

then µi = ε
−(3al−i)

al

M . Set µi = 1 otherwise.

Consider the polynomials pk, qk defined by pk(z) :=
∑bN−1

i=0 µiα
(k)
i zi and qk(z) :=∑bN−1

i=0 µiβ
(k)
i zi. We have ‖pk‖2 ≤ ε−1

N−1 and ‖qk‖2 ≤ ε−1
N−1.

By Lemma 11 for the polynomials εN−1pk, εN−1qk, there exist mk ∈ N and poly-
nomials rk(z) =

∑mk

i=0 γ
(k)
i zi, sk(z) =

∑mk

i=0 δ
(k)
i zi such that ‖rk‖∞ ≤ 1, ‖sk‖∞ ≤ 1,

max{‖rk‖2, ‖sk‖2} ≥ 1/3 and ‖rkpk + skqk‖2 < εN .
Choose numbers ak (kN−1 + 1 ≤ k ≤ kN ) such that aj+1 > a2

j + 3aj + mj (j =
kN−1, . . . , kN − 1).

Let Yk be the finite-dimensional Hilbert space with an orthonormal basis uk,j (j =
0, . . . , mk + 2ak − 1).

Using induction, we continue the construction in the above described way.
Now we define the operator T ∈ B(X) by:

Tuk,i := uk,i+1 (k ∈ N, 0 ≤ i ≤ mk + 2ak − 2),

Tuk,mk+2ak−1 := 0,

T eak
:= εNeak+1 +

mk∑

i=0

γ
(k)
i uk,i (kN−1 < k ≤ kN ),

Tfak
:= εNfak+1 +

mk∑

i=0

δ
(k)
i uk,i (kN−1 < k ≤ kN ),

T ej := ε
−1/ak

N ej+1 (kN−1 < k ≤ kN , 2ak ≤ j < 3ak),

Tfj := ε
−1/ak

N fj+1 (kN−1 < k ≤ kN , 2ak ≤ j < 3ak),

T ej := ej+1 and Tej = fj+1 otherwise.

That is, T acts on the standard basis of Z as a pair of weighted shifts, up to the
points of the form eak

and fak
. It is easy to see that T defines a bounded linear operator

on X.
Let E := Span{ei : i = 0, 1, . . .}, F := Span{fi : i = 0, 1, . . .} and Y :=

⊕∞
k=1 Yk.

For a closed subspace M ⊂ X denote by PM the orthogonal projection onto M .

To prove (ii), let j ∈ N. If j /∈ ⋃∞
k=1{ak + 1, . . . , 3ak} then ‖T je0‖ ≥ ‖PZT je0‖ =

‖ej‖ = 1. So we may assume that ak + 1 ≤ j ≤ 3ak for some k. Then

‖T je0‖+ ‖T jf0‖ ≥ ‖PYk
T je0‖+ ‖PYk

T jf0‖
=‖PYk

T j−akeak
‖+ ‖PYk

T j−akfak
‖ = ‖PYk

Teak
‖+ ‖PYk

Tfak
‖

=
∥∥∥

mk∑

i=0

γ
(k)
i uk,i

∥∥∥ +
∥∥∥

mk∑

i=0

δ
(k)
i uk,i

∥∥∥ = ‖rk‖2 + ‖sk‖2 ≥ 1/3.
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So ‖T je0‖+ ‖T jf0‖ ≥ 1/3 for all j.

To prove (i), suppose that x ∈ X is of norm 1 and 0 < ε < 1
2 .

There exists M ≥ 1 such that ‖(PZ − PZM
)x‖ < ε

18 . There exists N > M such
that

ε
1/2
N <

εεM

9
,

∥∥∥
∞∑

k′=kN−1+1

PYk′x
∥∥∥ <

ε

9
,

∥∥PZN+1x− PZN
x
∥∥ < ε

3/2
N .

Indeed, the first two conditions are satisfied for all N sufficiently large. Suppose on the
contrary that ‖PZN+1x− PZN

x‖ ≥ ε
3/2
N for all N ≥ N0. Then

1 = ‖x‖2 ≥
∞∑

N=N0

∥∥PZN+1x− PZN
x
∥∥2 ≥

∞∑

N=N0

ε3
N = ∞,

a contradiction. Fix N with these properties.
Find k, kN−1 < k ≤ kN such that ‖PZN x− wk‖ ≤ ε2

N . Set j = 2ak + 1. We have

∥∥T jx
∥∥ ≤

∥∥∥
kN−1∑

k′=1

T jPYk′x
∥∥∥ +

∥∥∥
∞∑

k′=kN−1+1

T jPYk′x
∥∥∥ + ‖PZT jPZM x‖

+ ‖PZT j(PZN
− PZM

)x‖+ ‖PZT j(PZN+1 − PZN
)x‖+ ‖PZT j(PZ − PZN+1)x‖

+
∥∥PY T j(PZ − PZN+1)x

∥∥ +
∥∥PY T j(PZN+1 − PZN

)x
∥∥

+ +
∥∥PY T j(PZN x− wk)

∥∥ +
∥∥PY T jwk

∥∥ .

All the terms but the last one can be estimated analogously to the `1 case. We
show the estimates only briefly without details.

Since k > kN−1 and j > ak > 2akN−1 + mkN−1 , we have
∑kN−1

k′=1 T jPYk′x = 0.
For k′ > kN−1 we have ‖T j |Yk′‖ ≤ 1, and so

∥∥∥
∞∑

k′=kN−1+1

T jPYk′x
∥∥∥ ≤

∥∥∥
∞∑

k′=kN−1+1

PYk′x
∥∥∥ < ε/9.

The next four terms can be estimated by ε/9 exactly as in Example 10. Therefore we
omit the proof.

We show that ‖PYk
T jPZ‖ ≤ 2ε−1

N . Clearly ‖PYk
T jPE‖ = ‖PYk

T jPEk
‖ where

Ek = Span{e0, . . . , eak
}. Let y =

∑ak

i=0 λiei, ‖y‖ = 1. There are numbers µi ≤
ε−1
N (0 ≤ i ≤ ak) such that T ak−iei = µieak

. We have

‖PYk
T jy‖ =

∥∥∥r(z) ·
mk∑

i=0

λiµiz
i
∥∥∥

2
≤ ‖r‖∞ ·

∥∥∥
mk∑

i=0

λiµiz
i
∥∥∥

2

≤
( mk∑

i=0

|λiµi|2
)1/2

≤ ε−1
N

( mk∑

i=0

|λi|2
)1/2

= ε−1
N .
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So ‖PYk
T jPE‖ ≤ ε−1

N and similarly, ‖PYk
T jPF ‖ ≤ ε−1

N . Hence

‖PYk
T jPZ‖ ≤ ‖PYk

T jPE‖+ ‖PYk
T jPF ‖ ≤ 2ε−1

N .

It is easy to show that for k′ > k we have ‖PYk′T
jPZ‖ ≤ 2 and ‖PY T jPZ‖ =

supk′≥1 ‖PYk′T
jPZ‖ ≤ 2ε−1

N . Furthermore,

‖PY T j(PZ − PZN+1)‖ = sup
k′>kN

‖PYk′T
j(PZ − PZN+1)‖ ≤ 2.

So
‖PY T j(PZ − PZN+1)x‖ ≤ 2‖(PZ − PZN+1)x‖ ≤ ε

9
,

∥∥PY T j(PZN+1 − PZN
)x

∥∥ ≤ 2ε−1
N

∥∥(PZN+1 − PZN
)x

∥∥ < 2ε−1
N ε

3/2
N = 2ε

1/2
N <

ε

9
and ∥∥PY T j(PZN x− wk)

∥∥ ≤ 2ε−1
N ‖PZN x− wn‖ ≤ 2ε−1

N ε2
N = 2εN <

ε

9
.

Finally,

‖PY T jwk‖ = ‖rkpk + skqk‖2 ≤ εN <
ε

9
.

Hence ‖T jx‖ < ε. Consequently, T is not orbit-reflexive since the zero operator is not
in the strong operator topology closure of polynomials of T but 0 ∈ {Tnx : n ∈ N}−
for each x ∈ X.
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