
UNIFORMLY CONVEX FUNCTIONS ON BANACH SPACES

J. BORWEIN1, A. J. GUIRAO2, P. HÁJEK3, AND J. VANDERWERFF

Abstract. We study the connection between uniformly convex functions f :

X → R bounded above by ‖ · ‖p, and the existence of norms on X with moduli

of convexity of power type. In particular, we show that there exists a uniformly
convex function f : X → R bounded above by ‖ · ‖2 if and only if X admits

an equivalent norm with modulus of convexity of power type 2.

1. Introduction

Uniformly convex functions on Banach spaces were introduced by Levitin and
Poljak in [13]. Their properties were studied in depth by Zălinescu [17], and then
later Azé and Penot [2] studied their duality with uniformly smooth convex func-
tions. The monograph [18] provides a systematic development of these topics. Ad-
ditionally, related properties of convex functions and their applications have been
studied in papers such as [3, 4, 5, 6]. In particular, [4] examines various properties
of ‖ · ‖r when ‖ · ‖ is a uniformly convex norm. In this note, we will present a
related result that determines when functions of the form f = ‖ · ‖r are uniformly
convex. We also examine a more general converse problem: if f : X → R is uni-
formly convex and bounded above by ‖ · ‖r, does X admit a norm with a modulus
of convexity of power type related to r?

We work with a real Banach space X with dual X∗, and let BX and SX denote
the closed unit ball and sphere respectively. The modulus of convexity of a norm
‖ · ‖ on X is defined for ε ∈ [0, 2] by

δ‖·‖(ε) = inf
{

1− 1
2
‖x + y‖ : x, y ∈ X, ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε

}
.

The norm ‖ · ‖ is uniformly convex if δ‖·‖(ε) > 0 for all ε ∈ (0, 2]; additionally, ‖·‖
has modulus of convexity of power type p if there exists C > 0 so that δ‖·‖(ε) ≥ Cεp

for ε ∈ [0, 2]. The modulus of smoothness of the norm ‖ · ‖ is defined for τ > 0 by

ρ‖·‖(τ) = sup
{
‖x + τy‖+ ‖x− τy‖

2
− 1 : ‖x‖ = ‖y = 1

}
.

A norm is uniformly smooth if limτ→0+ ρ‖·‖(τ)/τ = 0; additionally, ‖·‖ has modulus
of smoothness of power type p if there exists C > 0 such that ρ‖·‖(τ) ≤ Cτp for
τ > 0. See [7, Chapter IV] for more information on these notions.
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We now introduce the like-named concepts for convex functions whose definitions
are different from—but motivated by—the norm cases. Given a convex function f :
X → (−∞,+∞] we define its modulus of convexity as the function δf : (0,+∞) →
[0,+∞] given by

δf (t) := inf
{

1
2
f(x) +

1
2
f(y)− f

(
x + y

2

)
: ‖x− y‖ = t, x, y ∈ dom f

}
,

where the infimum over the empty set is +∞. We say that f is uniformly convex
when δf (t) > 0 for all t > 0; additionally f has a modulus of convexity of power
type p if there exists C > 0 so that δf (t) ≥ Ctp for all t > 0.

Similarly we consider the modulus of smoothness of the convex function f : X →
R as the function ρf : (0,+∞) → [0,+∞] defined by

ρf (t) := sup
{

1
2
f(x) +

1
2
f(y)− f

(
x + y

2

)
: ‖x− y‖ = t

}
.

We will say f is uniformly smooth if limt→0+ ρf (t)/t = 0; additionally f has a
modulus of smoothness of power type q if there is a constant C > 0, so that ρf (t) ≤
Ctq for all t > 0.

This terminology may cause some confusion, because, for example, f = ‖·‖ is
never uniformly convex as a function, even when ‖·‖ is a uniformly convex norm.
Therefore, it is important to note the context in which the terms are used. More-
over, the concepts of uniform smoothness and uniform convexity for functions are
sometimes defined using the gage of uniform convexity and gage of uniform smooth-
ness respectively as found in [18]; it is important to note that these alternate defini-
tions using the respective gages are equivalent to those just given; cf. [17, Remark
2.1] and [18, p. 205].

Finally, the Fenchel conjugate of f : X → (−∞,+∞] is the function f∗ : X∗ →
[−∞,+∞] defined by

f∗(x∗) = sup{x∗(x)− f(x) : x ∈ X}.

It is through this concept that duality between uniform convexity and uniform
smoothness is studied in the context of convex functions; see [2, 18].

2. Uniform Convexity of Functions and Norms

This section will demonstrate for 2 ≤ p < ∞ that f(·) = ‖ · ‖p is uniformly
convex if and only if the norm ‖ · ‖ has modulus of convexity of power type p.

Lemma 2.1. Let 0 < r ≤ 1, then |tr − sr| ≤ |t− s|r for all s, t ∈ [0,∞).

Proof. First, for x ≥ 0, (1 + x)r ≤ 1 + xr (see [16, Example 4.20]). Setting x =
(t− s)/s with t ≥ s > 0, and then multiplying by sr, we get tr ≤ sr +(t− s)r. The
conclusion follows from this. �

Theorem 2.2. For 1 < q ≤ 2, the following are equivalent in a Banach space
(X, ‖·‖).
(a) The norm ‖·‖ has modulus of smoothness of power type q.
(b) The derivative of f(·) = ‖·‖q satisfies a (q − 1)-Hölder condition.
(c) The function f(·) = ‖·‖q has modulus of smoothness of power type q.
(d) The function f(·) = ‖·‖q is uniformly smooth.
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Proof. (a) ⇒ (b): Assume that ‖·‖ has modulus of smoothness of power type q.
Given x ∈ X \ {0}, let φx denote a support functional of x, that is, φx ∈ SX∗

and φx(x) = ‖x‖. According to [7, Lemma IV.5.1], ‖·‖ has a (Fréchet) derivative
satisfying a (q− 1)-Hölder-condition on its sphere; this implies that each x 6= 0 has
a unique support functional, and there exists C > 0 such that

(2.1) ‖φx − φy‖ ≤ C‖x− y‖q−1 for all x, y ∈ SX .

Let f(·) = ‖·‖q. Then f ′(0) = 0, and f ′(x) = q ‖x‖q−1
φx for x 6= 0. Thus if x = 0

or y = 0, then ‖f ′(x)− f ′(y)‖ ≤ q ‖x− y‖q−1. Let x, y ∈ X \ {0}. Then

f ′(x)− f ′(y) = q ‖x‖q−1
φx − q ‖y‖q−1

φy

= q ‖x‖q−1 (φx − φy) +
(
q ‖x‖q−1 − q ‖y‖q−1 )

φy.(2.2)

Using Lemma 2.1 we also compute

(2.3)
∣∣∣q ‖x‖q−1 − q ‖y‖q−1

∣∣∣ ≤ q
∣∣ ‖x‖ − ‖y‖

∣∣q−1≤ q ‖x− y‖q−1
.

We now work on an estimate for q ‖x‖q−1 (φx − φy). We may and do assume
that 0 < ‖y‖ ≤ ‖x‖. If ‖y‖ ≤ ‖x‖ /2, then

(2.4) q ‖x‖q−1 ‖φx − φy‖ ≤ 2q ‖x‖q−1 ≤ q2q ‖x− y‖q−1
.

If ‖y‖ ≥ ‖x‖ /2, consider x′ = λx where λ = ‖y‖ / ‖x‖, so that ‖x′‖ = ‖y‖. Then

(2.5) ‖x′ − y‖ ≤ ‖x′ − x‖+ ‖x− y‖ = ‖x‖ − ‖y‖+ ‖x− y‖ ≤ 2 ‖x− y‖ .

Now let α = ‖y‖. Observe that φx and φy are also support functionals for α−1x′

and α−1y respectively. Applying (2.1), the fact that ‖x‖ ≤ 2α, and (2.5) we obtain

‖φx − φy‖ ≤ C‖α−1x′ − α−1y‖q−1 ≤ C

αq−1
‖x′ − y‖q−1

≤ C2q−1

‖x‖q−1 (2‖x− y‖)q−1 =
C4q−1

‖x‖q−1
‖x− y‖q−1.

Consequently, q ‖x‖q−1 ‖φx − φy‖ ≤ C4q−1q ‖x− y‖q−1. This inequality and (2.4)
show there exists K > 0 such that

(2.6) q ‖x‖q−1 ‖φx − φy‖ ≤ K ‖x− y‖q−1 for all x, y ∈ X \ {0}.

Combining (2.2), (2.3) and (2.6) shows that f ′ satisfies a (q − 1)-Hölder-condition.
(b) ⇒ (c) follows from [18, Corollary 3.5.7] (see also [7, Lemma V.3.5]) and

(c) ⇒ (d) is trivial, so we prove (d) ⇒ (a). Suppose ‖·‖ does not have modulus of
smoothness of power type q. Then using [7, Lemma IV.5.1] there are xn, yn ∈ SX

such that ‖xn − yn‖ → 0 while

‖φxn
− φyn

‖ ≥ n ‖xn − yn‖q−1
.
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Let δn = ‖xn − yn‖ and define un = 1
δn
√

n
xn and vn = 1

δn
√

n
yn. Then ‖un − vn‖ =

1√
n
→ 0. However

‖f ′(un)− f ′(vn)‖ =
∥∥∥q ‖un‖q−1

φun − q ‖vn‖q−1
φvn

∥∥∥
=

∥∥∥q ‖un‖q−1
φxn − q ‖vn‖q−1

φyn

∥∥∥
=

q

δq−1
n n

q−1
2

‖φxn − φyn‖

≥ q

δq−1
n n

q−1
2

(
nδq−1

n

)
= qn

3−q
2 →∞.

Consequently, f ′ is not uniformly continuous, and so [18, Theorem 3.5.6] (see also [7,
Lemma V.3.5]) shows that that f(·) = ‖·‖q is not a uniformly smooth function. �

The results in [2] enable us to derive the dual version of Theorem 2.2 for uniformly
convex functions.

Theorem 2.3. Let (X, ‖·‖) be a Banach space, and let 2 ≤ p < ∞. Then the
following are equivalent.
(a) The norm ‖·‖ on X has modulus of convexity of power type p.
(b) The function f(·) = ‖·‖p has modulus of convexity of power type p.
(c) The function f(·) = ‖·‖p is uniformly convex.

Proof. (a) ⇒ (b): Let us assume that ‖·‖ has modulus of convexity of power type
p, then the modulus of smoothness of the dual norm on X∗, which we denote in
this proof as ‖·‖∗, is of power type q where 1

p + 1
q = 1; see [7, Proposition IV.1.12].

By Theorem 2.2 the function g(·) = 1
q ‖·‖

q
∗ has modulus of smoothness of power

type q. The Fenchel conjugate of g is g∗(·) = 1
p ‖·‖

p, see [2, 18]. Now g∗—and
hence ‖·‖p—has a modulus of convexity of power type p according to [2] (see also
[18, Corollary 3.5.11]).

(b) ⇒ (c) is trivial, so we prove (c) ⇒ (a). Indeed, assuming that f(·) = ‖·‖p is
a uniformly convex function, then [2] shows that f∗, defined by

f∗(x∗) = sup
x∈X

{x∗(x)− f(x)}, for x∗ ∈ X∗

(and hence ‖·‖q
∗) is a uniformly smooth function. According to Theorem 2.2, ‖·‖∗

has modulus of smoothness of power type q; therefore ‖·‖ has modulus of convexity
of power type p, see [7, Proposition IV.1.12]. �

We conclude this section by confirming that the spaces with nontrivial uniformly
convex functions are those that admit equivalent uniformly convex norms.

Theorem 2.4. Let (X, ‖·‖) be a Banach space. Then the following are equivalent.
(a) There exists a l.s.c. uniformly convex function f : X → (−∞,+∞] that is
continuous at the origin.
(b) X admits an equivalent uniformly convex norm.
(c) There exist p ≥ 2 and an equivalent norm ‖·‖ on X so that the function f = ‖·‖p

is uniformly convex.

Proof. (a) ⇒ (b): By replacing f with the function x 7→ f(x)+f(−x)
2 we may and

do assume that f is centrally symmetric, and by shifting f we assume f(0) = 0. It
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then follows that f(x) ≥ 0 for all x ∈ X. Then for r > 1 and h ∈ X, with ‖h‖ = r,
we have

1
2
f(h) +

1
2
f(0)− f

(
h

2

)
≥ δf (r) ≥ δf (1) > 0;

and thus f(h) ≥ 2δf (1). Let us consider the norm |||·||| whose unit ball is B = {x :
f(x) ≤ δf (1)}. The continuity of f at 0 implies 0 ∈ intB, and from the above we
obtain that B ⊂ B(X,‖·‖). Thus, |||·||| is an equivalent norm on X.

Consider xn,yn ∈ X such that |||xn||| = |||yn||| = 1 and |||xn + yn||| → 2. Because f
is Lipschitz on B, we have that f

(
xn+yn

2

)
→ δf (1). Consequently 1

2f(xn)+ 1
2f(yn)−

f
(

xn+yn

2

)
→ 0. Thus, the uniform convexity of f ensures that ‖xn − yn‖ → 0 and

hence |||xn − yn||| → 0
(b) ⇒ (c): According to the Enflo-Pisier theorem ([9, 14]), there exist p ≥

2 and an equivalent norm ‖·‖ whose modulus of convexity is of power type p.
Consequently, Theorem 2.3 ensures the function f(·) = ‖·‖p is uniformly convex.

(c) ⇒ (a): This is trivial. �

3. Growth Rates of Uniformly Convex Functions and Renorming

In this section we will construct a uniformly convex norm whose modulus of
convexity is related to the growth rate of a given uniformly convex function on the
Banach space. We begin with some preliminary results.

Lemma 3.1. Let ‖·‖ be a norm on a Banach space X. Suppose ‖x‖ = ‖y‖ ≥ 1,
and ‖x− y‖ ≥ δ where 0 < δ ≤ 2 ‖x‖. Then inft≥0 ‖x− ty‖ ≥ δ/2.

Proof. Assume that ‖x− t0y‖ < δ/2 for some t0 ≥ 0. Then |1− t0| ‖y‖ < δ/2 and
so

‖x− y‖ ≤ ‖x− t0y‖+ |1− t0| ‖y‖ < δ.

which is a contradiction. �

The next lemma will be used later to estimate the modulus of convexity of a
norm constructed by using level sets of a symmetric uniformly convex function.

Lemma 3.2. Let {‖·‖n}n∈N be a family of norms on (X, ‖·‖) satisfying

cn ‖·‖ ≤ ‖·‖n ≤
1
2n

‖·‖ ,

for some constants cn > 0. For every n ∈ N, suppose there exists dn > 0 so that∥∥∥∥x + y

2

∥∥∥∥
n

≤ 1− dn, whenever ‖x‖n = ‖y‖n = 1 and ‖x− y‖ ≥ 1.

Let C =
∑

n∈N cn and |·| = 1
C

∑
n∈N ‖·‖n. Then, the modulus of convexity of the

norm |·| satisfies

δ|·|(t) ≥ dncn whenever 2−n ≤ C and (C2n−1)−1 ≤ t ≤ 2.

Proof. It is clear that the norm |·| satisfies

C |·| ≤ ‖·‖ ≤ |·| and c̃n |·| ≤ ‖·‖n where c̃n = cnC.

Suppose that |x| = |y| = 1 and x 6= y. Choose n ∈ N so that 2−n ≤ C and

(3.1)
1

C2n−1
≤ |x− y| .
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We may without loss of generality assume that ‖x‖n ≤ ‖y‖n. Now let us denote
a = ‖x‖−1

n and b = ‖y‖−1
n . Then 2n ≤ b ≤ a ≤ 1/c̃n, and therefore

|ax− ay| ≥ a

C2n−1
≥ 2

C
.

According to Lemma 3.1, |ax− by| ≥ 1
C , which in turn implies ‖ax− by‖ ≥ 1.

Thus we compute∥∥∥∥ax + ay

2

∥∥∥∥
n

≤
∥∥∥∥ax + by

2

∥∥∥∥
n

+
1
2
(a− b) ‖y‖n

≤ 1
2
‖ax‖n +

1
2
‖by‖n +

1
2
(a− b) ‖y‖n − dn

=
a

2
(‖x‖n + ‖y‖n)− dn.

This inequality implies

(3.2)
∥∥∥∥x + y

2

∥∥∥∥
n

≤ 1
2
‖x‖n +

1
2
‖y‖n −

dn

a
.

Thus, using (3.2), and the triangle inequality for ‖·‖j when j 6= n, we obtain∣∣∣∣x + y

2

∣∣∣∣ ≤ 1
2C

∑
j∈N

‖x‖j +
1

2C

∑
j∈N

‖y‖j −
dnc̃n

C
= 1− dncn,

which, according to (3.1), finishes the proof. �

We will also use the following important fact from [18] concerning growth rates
of uniformly convex functions.

Lemma 3.3. [18, Proposition 3.5.8] Suppose f : X → (−∞,+∞] is a l.s.c. uni-
formly convex function. Then lim inf‖x‖→∞

f(x)

‖x‖2 > 0.

Theorem 3.4. Let (X, ‖·‖) be a Banach space and let F : [0,+∞) → [0,+∞) be
a convex function satisfying F (0) = 0. Suppose that f : X → R is a continuous
uniformly convex function satisfying f(x) ≤ F 2(‖x‖) for all x ∈ X. Then X admits
an equivalent norm |·| so that

δ|·|(t) ≥
R

F (Mt−1)F 2 (SF (Mt−1))
, for 0 < t ≤ 2

with some positive constants R, M , and S.

Proof. As before, we may and do assume f is centrally symmetric. According to
Lemma 3.3 we choose N ∈ N and K > 0 so that f(x) ≥ K2 ‖x‖2 whenever ‖x‖ ≥ N .
Thus we have

K2 ‖x‖2 ≤ f(x) ≤ F 2(‖x‖) whenever ‖x‖ ≥ N.

For n ≥ N , let |·|n have unit ball Bn = {x : f(x) ≤ F 2(2n)}. For any x ∈ X \ {0},
f(x/ |x|n) = F 2(2n). Hence F (‖x‖ / |x|n) ≥ F (2n). Since F is a nonnegative
convex function with F (0) = 0, F is nondecreasing. This implies that ‖x‖ ≥ 2n |x|n.
Analogously, using that K2 ‖x/|x|n‖2 ≤ f(x/ |x|n) one obtains F (2n) |x|n ≥ K ‖x‖.
Consequently,

K

F (2n)
‖x‖ ≤ |x|n ≤

1
2n

‖x‖ .
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Now suppose |x|n = |y|n = 1, and ‖x− y‖ ≥ 1. Letting δf denote the modulus of
convexity of f with respect to ‖·‖, the uniform convexity of f ensures δf (1) > 0. Let
Mn = sup{f ′+(u, v) : |u|n = 1, ‖v‖ = 1}. Then denoting z = x+y

2 and z′ = z/|z|n
we obtain f(x) = F 2(2n) = f(y) = f(z′), and so

δf (1) ≤ 1
2
f(x) +

1
2
f(y)− f

(
x + y

2

)
= f(z′)− f(z) ≤ f ′+ (z′, z′ − z)

= ‖z′ − z‖ f ′+

(
z′,

z′ − z

‖z′ − z‖

)
≤ Mn ‖z′ − z‖ .(3.3)

Because f is convex and f(u) ≥ 0 when |u|n = 1, we obtain

f ′+(u, v) ≤ f(u + tv)− f(u)
t

≤ f(u + tv)
t

where t =
F (2n)

K
, |u|n = 1, ‖v‖ = 1.

Then because F is nondecreasing, we obtain

(3.4) Mn ≤ F 2

(
2
F (2n)

K

)/
F (2n)

K
.

Consequently, using |·|n ≥
K

F (2n) ‖·‖, (3.3) and then (3.4), we obtain∣∣∣∣x + y

2

∣∣∣∣
n

= 1− |z′ − z|n ≤ 1− ‖z′ − z‖ K

F (2n)
≤ 1− δf (1)

Mn
· K

F (2n)

≤ 1− δf (1)
F 2

(
2
K F (2n)

) .(3.5)

Applying Lemma 3.2, we find an equivalent norm |·| and a constant C > 0 such
that

δ|·|(t) ≥
K

F (2n)
δf (1)

F 2
(

2
K F (2n)

) ,

for all n satisfying C ≥ 2−n, n ≥ N and (C2n−1)−1 ≤ t < (C2n−2)−1. Therefore,
since F is nondecreasing, we obtain the result. �

Corollary 3.5. Let (X, ‖·‖) be a Banach space and f : X → R a continuous
uniformly convex function satisfying f(x) ≤ ‖x‖p for some p ≥ 2 and for all x ∈ X.
Then X admits an equivalent norm with modulus of convexity of power type p

2 (p+1).

Proof. Applying Theorem 3.4 for F (t) = t
p
2 we obtain an equivalent norm |·| and

positive constants R, M and S such that for every t > 0

δ|·|(t) ≥
R

(Mt−1)
p
2

(
S(Mt−1)

p
2
)p =

R

SpM
p
2 (p+1)

t
p
2 (p+1),

i.e., there exists a positive constant K such that δ|·|(t) ≥ Kt
p
2 (p+1). �

4. A Sharp Result for p = 2

In this section, we will sharpen the result from Corollary 3.5 in the case p = 2
by proving the following optimal result.

Theorem 4.1. Let X be a Banach space and f : X → R a continuous uniformly
convex function satisfying f(x) ≤ ‖x‖2 for all x ∈ X. Then X admits an equivalent
norm with modulus of convexity of power type 2.
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Before proving this theorem, we will present a preliminary lemma, and we also
refer the reader to [8] for some related information about this case.

Lemma 4.2. Let X be a Banach space. Suppose {‖·‖n}n∈N are norms on (X, ‖·‖)
so that

(4.1) K ‖·‖ ≤ ‖·‖n ≤ ‖·‖ ,

for some K > 0 and all n ∈ N. Then, there exists an equivalent norm |·| such that

δ|·|(t) ≥ lim inf δ‖·‖n
(t), for 0 < t < 2.

Proof. Let us consider a free (non-principal) ultrafilter U on N. Then limU ‖x‖n

exists for each x ∈ X, where limU ‖x‖n = L means for each ε > 0, there exists
A ∈ U such that | ‖x‖n − L| < ε for all n ∈ A. Now define |·| : X → [0,+∞) by

|x| = lim
U
‖x‖n , for all x ∈ X.

The definition of |·| together with (4.1) ensure |·| is an equivalent norm on X.
If proceed by reductio ad absurdum, we find t ∈ (0, 2) such that δ|·|(t) <

lim inf δ‖·‖n
(t). Since δ|·| is continuous — see [12]— there exists t′ ∈ (t, 2) such

that δ|·|(t′) < lim inf δ‖·‖n
(t). Then, there exist x, y ∈ X and a constant a > 0 such

that |x| = |y| = 1, |x− y| ≥ t′ and 1 − |(x + y)/2| < a < lim inf δ‖·‖n
(t). For this

x and y, let xn = x/ ‖x‖n and yn = y/ ‖y‖n. By the definition of |·|, there exists
A ∈ U such that ‖xm − ym‖m ≥ t and 1 − ‖(xm + ym)/2‖m < a for all m ∈ A.
Therefore δ‖·‖m

(t) < a < lim inf δ‖·‖n
(t) for all m ∈ A, which yields a contradiction,

since U is free and then A is infinite. �

Proof. (Theorem 4.1) Again, we may and do assume that the function f is sym-
metric. According to Lemma 3.3 we may choose N ∈ N and K > 0 so that
f(x) ≥ K2 ‖x‖2 whenever ‖x‖ ≥ N . Thus we have

K2 ‖x‖2 ≤ f(x) ≤ ‖x‖2 whenever ‖x‖ ≥ N.

For n ≥ N , let |·|n have unit ball Bn = {x : f(x) ≤ 22n}.
Fix for a while any n ≥ N . For any x ∈ X \ {0}, f(x/ |x|n) = 22n. Hence, using

f(x) ≤ ‖x‖2, we obtain ‖x‖ ≥ 2n |x|n. Analogously, using that K2 ‖x/ |x|n‖
2 ≤

f(x/ |x|n) one obtains 2n |x|n ≥ K ‖x‖. Consequently,

K

2n
‖x‖ ≤ |x|n ≤

1
2n

‖x‖ .

We shall proceed as in the proof of Theorem 3.4, where now we take F (t) = t,
t ≥ 0. Consider x,y ∈ X such that |x|n = |y|n = 1 and |x− y|n ≥ 1/2n; note that
then f(x) = f(y) = 22n. Then ‖x− y‖ ≥ 1, and letting z = x+y

2 , z′ = z/|z|n and
Mn = sup{f ′+(u, v) : |u|n = 1, ‖v‖ = 1}, as in (3.3) in the proof of Theorem 3.4 one
has

(4.2) 0 < δf (1) ≤ Mn ‖z′ − z‖

and (3.4) has form

(4.3) Mn ≤
(

2 · 2n

K

)2
/

2n

K
=

4(2n)
K

.
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and (3.5) has form ∣∣∣∣x + y

2

∣∣∣∣
n

≤ 1− δf (1)
K

2n+2
· K

2n
= 1− C

22n
.

where C = δf (1)K2/4. This implies that

δ|·|n

(
1
2n

)
≥ C

(
1
2n

)2

.

According to [10, Corollary 11] there is a universal constant L > 0 such that

δ|·|n(2−n)
(2−n)2

≤ 4L
δ|·|n(η)

η2
for 2−n ≤ η ≤ 2.

Let R = C
4L ; then the previous two inequalities imply

(4.4) δ|·|n(t) ≥ Rt2 for t ≥ 2−n.

For each n ≥ N , let us consider the new norm ‖·‖n = 2n |·|n. These new norms
satisfy K ‖·‖ ≤ ‖·‖n ≤ ‖·‖ and δ|·|n(·) = δ‖·‖n

(·). Applying Lemma 4.2 and then
(4.4) we obtain

δ|·|(t) ≥ lim inf
n→∞

δ‖·‖n
(t) = lim inf

n→∞
δ|·|n(t) ≥ Rt2 for 0 < t ≤ 2,

which finishes the proof. �
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2. Dominique Azé and Jean-Paul Penot, Uniformly convex and uniformly smooth convex func-
tions, Ann. Fac. Sci. Toulouse Math. (6) 4 (1995), no. 4, 705–730. MR MR1623472 (99c:49015)

3. Heinz H. Bauschke, Jonathan M. Borwein, and Patrick L. Combettes, Essential smoothness,

essential strict convexity, and convex functions of Legendre type in Banach spaces, Commu-
nications in Contemporary Mathematics 3 (2001), 615–648.

4. Dan Butnariu, Alfredo N. Iusem, and Elena Resmerita, Total convexity for powers of the norm
in uniformly convex Banach spaces, J. Convex Anal. 7 (2000), no. 2, 319–334. MR MR1811683

(2001m:46013)
5. Dan Butnariu, Alfredo N. Iusem, and Constantin Zălinescu, On uniform convexity, total
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17. C. Zălinescu, On uniformly convex functions, J. Math. Anal. Appl. 95 (1983), no. 2, 344–374.

MR MR716088 (85a:26018)
18. , Convex Analysis in General Vector Spaces, World Scientific Publishing Co. Inc.,

River Edge, NJ, 2002. MR MR1921556 (2003k:49003)

Computer Science Faculty, 325, Dalhousie University, Halifax, NS, Canada, B3H 1W5

E-mail address: jborwein@cs.dal.ca
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