

Marián Fabian¹

Motivated by an argument from [1], we use Stegall's variational principle to prove a well known fact:

Theorem. Given two distinct numbers $p, q \in [1, +\infty)$, then ℓ_q does not contain an isomorphic copy of ℓ_p .

 $\mathit{Proof.}$ Assume that there is a linear isomorphism $T:\ell_p\to\ell_q$ into. Thus there are a,b>0 so that

$$a||x||_p \le ||Tx||_q \le b||x||_p$$
 for every $x \in \ell_p$.

Here $\|\cdot\|_p$, $\|\cdot\|_q$ mean the canonical norms in ℓ_p and ℓ_q , respectively.

Let p < q. Consider the function $\varphi : \ell_p \to \mathbb{R}$ defined by

$$\varphi(x) = \|Tx\|_q^q - \|x\|_p^p, \quad x \in \ell_p.$$

Then $\varphi(x) \geq a^q || ||x||_p^q - ||x||_p^p$ for all $x \in \ell_p$, and hence $\varphi(x)/||x||_p > 1$ whenever $x \in \ell_p$ and $||x||_p$ is large enough. Moreover the space ℓ_p is reflexive and hence dentable. Thus, Stegall's variational principle, say [2, Corollary 5.22], applies and so we get a point $x \in \ell_p$ and a functional $\xi \in \ell_p^*$ such that

$$\varphi(x+h) - \varphi(x) - \langle \xi, h \rangle \ge 0 \quad \text{for every} \quad h \in \ell_p.$$

Hence

$$\varphi(x+h) + \varphi(x-h) - 2\varphi(x) \ge 0$$
 for every $h \in \ell_p$.

Taking here $h = te_i$, where t > 0 and e_i is the *i*-th element of the canonical basis in ℓ_p , and then reorganizing the above inequality, we get

$$\|Tx + tTe_i\|_q^q + \|Tx - tTe_i\|_q^q - 2\|Tx\|_q^q \ge \|x + te_i\|_p^p + \|x - te_i\|_p^p - 2\|x\|_p^p.$$

Letting here $i \to \infty$, we get $e_i \to 0$ weakly, $Te_i \to 0$ weakly, and hence the above inequality with some extra effort yield

$$(2t^q b^q \ge) 2t^q \liminf_{i \to \infty} ||Te_i||_q^q \ge 2t^p \text{ for every } t > 0,$$

which is impossible for t > 0 small enough.

Let p > q. Consider the function $\psi : \ell_p \to \mathbb{R}$ defined by

$$\psi(x) = ||x||_p^p - ||Tx||_q^q, \quad x \in \ell_p.$$

 1 Supported by Institutional Research Plan of the Academy of Sciences of Czech Republic AVOZ 101 905 03, and by GAČR 201/07/0394.

Then $\psi(x) \ge \|x\|_p^p - b^q \|x\|_p^q$ for all $x \in \ell_p$, and hence $\psi(x)/\|x\|_p > 1$ whenever $x \in \ell_p$ and $\|x\|_p$ is large enough. By Stegall's variational principle, there is a point $x \in \ell_p$ such that

$$\psi(x+h) + \psi(x-h) - 2\psi(x) \ge 0$$
 for every $h \in \ell_p$.

Taking here $h = te_i$, where t > 0 and e_i is the *i*-th element of the canonical basis in ℓ_p , and reorganizing, we have

$$\|x + te_i\|_p^p + \|x - te_i\|_p^p - 2\|x\|_p^p \ge \|Tx + tTe_i\|_q^q + \|Tx - tTe_i\|_q^q - 2\|Tx\|_q^q.$$

Letting here $i \to \infty$, we get

$$2t^{p} \ge 2t^{q} \limsup_{i \to \infty} \|Te_{i}\|_{q}^{q} (\ge 2t^{q}a^{q}) \text{ for every } t > 0,$$

which is impossible for t > 0 small enough.

Remarks. 1. The second case, when p > q, also follows from Pitt's theorem, which can also be derived from Stegall's variational principle. Indeed, $T(B_{\ell_p})$ is then a relatively compact set and hence $||Te_i|| \to 0$ as $i \to \infty$. But $||Te_i||_q \ge a$ (> 0), a contradiction.

2. The above theorem can be extended by replacing "copy of ℓ_p " by "copy of an infinitedimensional subspace of ℓ_p ". In fact. Let $Y \subset \ell_p$ be such. Since the origin belongs to the weak closure of the unit sphere of Y, and the weak topology on Y is metrizable, there is a sequence (y_i) of norm-one elements of Y such that $y_i \to 0$ weakly as $i \to \infty$. Then a slight adaptation of the above argument, where the e_i 's are replaced by y_i 's, works.

Acknowledgement. We thank Javier Meri who raised a question leading to write this note.

REFERENCES

[1] M. Fabian, V. Zizler, A "nonlinear" proof of Pitt's cmpactness theorem, Proc. Amer. Math. Soc. **131** (2003), 3693–3694.

[2] R.R. Phelps, *Convex functions, monotone operators, and differentiability*, Springer Verlag Lect. Notes No. 1364, Berlin 1989 and 1993.

[3] Ch. Stegall, Optimization of functions on certain subsets of Banach spaces, Math. Ann. **236**(1978), 171–176.

[4] Ch. Stegall, Optimization and differentiation in Banach spaces, J. Linear Algebra and Appl. **84**(1986), 191–211.