Fluorescence Correlation Spectroscopy

Jana Humpolíčková ÚFCH JH AV ČR, v.v.i.

Principles of confocal Fluorescence Correlation Spectroscopy (FCS)

• signal: **fluorescence** (auto or *labeled*)

•confocal microscope ⇒ volume element in fl range • dye concentration in nM

range \rightarrow single molecule

- Large fluctuations in fluorescence signal by **small volume** and **low concentration**
- Monitored: **time evolution of fluorescence fluctuations (in our case due to diffusion)**

Principles of FCS

Principles of FCS

If the size of the volume element is known*:

- A) $\tau_{\rm D}$ Diffusion coefficient D
- B) N \longrightarrow Concentration C

Further read out parameter: C) Count rate **Fluorescence** intensity

***usually determined by calibration experiments using a sample with known D and c**

Classic confocal FCS instrument setup

Single photon avalanche diode (SPAD)

Characterisation of DNA condensation induced by bivalent cations or positively charged amphiphiles (in vitro experiments)

DNA-size: several µ**m**

Nanoparticle: down to 50 nm

Background: Condensed plasmids (DNA Nanoparticles) are used in targeted drug delivery systems (Non-Viral Gene Therapy)

Characterisation of DNA condensation induced by bivalent cations or positively charged amphiphiles

Aim: Establishing with FCS a technique which directly monitors the condensation process on a single molecule level

Used plasmids: different sizes: 13 kbp, 10 kbp, 5 kbp, and 3 kbp **Used dyes:** Propidium iodide, ethidium bromide, PicoGreen **Used condensing agents:** Spermine, hexadecyltrimethyl ammonium bromide (HTAB),… Newly developed lipopolyamines **Ideal Nanoparticle Formation**

PicoGreen does not influence the DNA conformation (In opposite to propidium iodide, ethidium bromide)

Typical Condensation Experiment: Labeled plasmid (10 kbp) induced by spermine (water, pH 7.6)

FCS is extremly sensitive to DNA condensation

-Spermine-DNA nanoparticle is diffusing much faster than DNA with a length of several μ m

-PN before condensation much larger than PN calculated from used DNA Concentration– Why??

FCS is detecting fluctuations: only if particle is much smaller than volume, fluctuation equals concentration

Summary to "DNA condensation"

- Condensation process: dramatic decrease in τ_{D} and decrease in N
- If number of fluctuation equals number of particles, ideal DNA-nanoparticle is formed

• Perfect Condenser: *N*4,*N*9-dioleoylspermine (spermine conjugated with two chains of C18 fatty acid, with two positive charges at physiological pH)

Summary to "DNA condensation"

• FCS gives information on conformation and aggregation state of a DNA molecule

Selected Literature: Kral T, Hof M, Langner M: Effect of spermine on the plasmid condensation and dye release observed by fluorescence correlation spectroscopy. Biol. Chem 383, 331- 335 (2002)

Dual-color FCS

Designed for multicomponent diffusional analysis

Components must have different spectral properties

Autocorrelation functions: Parallel monitoring of concentrations and diffusion characteristics Cross-correlation function: Interaction of the components

Dual-beam or two-photon excitation setup with several detectors

Schwille, P.; MeyerAlmes, F. J.; Rigler, R., *Biophysical Journal* **1997,** 72, (4), 1878-1886.

Dual-color FCS x FLCS

Designed for similar purpose Different principle and realization

Immense advantage of FLCS SINGLE DYE LABELING

Chemical, conformational or microenvironmental change can

Schematic setup for FLCS measurements

Upgraded Confocor 1 (Carl Zeiss, PicoQuant), MicroTime 200 (Olympus, PicoQuant)

Data storage: microtime vs macrotime

FLCS mathematics

- **Provided that** $I_i(t) = \sum w^{(i)}(t)p_i^{(i)}$ j N $i = \lambda$ $I_j(t) = \sum_{i=1}^{n} w^{(i)}(t) p^{i}$ = =
- **2) We can find a filter function** *f* j i **, which gives the most likely values of** *w*(i) **for every particular macrotime.**

$$
\sum_{j=1}^{L} f_j^{(i)} I_j(t) = w^{(i)}(t)
$$

6) Calculated by
$$
f_j^{(i)} = \left(\left[M \cdot diag\langle I_j(t) \rangle_t^{\cdot} \cdot M^T \right]^{\cdot} \cdot M \cdot diag\langle I_j \rangle^{\cdot} \right)_{ij}
$$

$$
\hat{M}_{ij} = p_j^{(i)}
$$

4) Orthonormal with fluorescence patterns

$$
\sum_{j=1}^{L} f_j^{(i)} p_j^{(k)} = \begin{cases} \lambda, & i = k, \\ \lambda, & i \neq k. \end{cases}
$$

5) Auto- and crosscorelation functions can be calculated

FLCS correlation functions

$$
g^{(ij)}(\tau) = \left\langle w^{(i)}(t) w^{(j)}(t + \tau) \right\rangle_{t}
$$
\n
$$
= \left\langle \left(\sum_{k=1}^{L} f_{k}^{(i)} I_{k}(t) \right) \left(\sum_{l=1}^{L} f_{l}^{(k)} I_{l}(t + \tau) \right) \right\rangle_{t}
$$
\n
$$
= \sum_{k=1}^{L} \sum_{l=1}^{L} f_{k}^{(i)} f_{l}^{(k)} \left\langle I_{k}(t) I_{l}(t + \tau) \right\rangle_{t}
$$
\n
$$
= \sum_{k=1}^{SUS} \sum_{l=1}^{SUS} f_{k}^{(i)} f_{l}^{(k)} \left\langle I_{k}(t) I_{l}(t + \tau) \right\rangle_{t}
$$
\n
$$
= \sum_{k=1}^{SUS} \sum_{l=1}^{SUS} f_{l}^{(i)} f_{l}^{(k)} \left\langle I_{k}(t) I_{l}(t + \tau) \right\rangle_{t}
$$
\n
$$
= \sum_{k=1}^{SUS} \sum_{l=1}^{SUS} f_{l}^{(i)} f_{l}^{(k)} \left\langle I_{k}(t) I_{l}(t + \tau) \right\rangle_{t}
$$
\n
$$
= \sum_{k=1}^{SUS} \sum_{l=1}^{SUS} f_{l}^{(i)} f_{l}^{(k)} \left\langle I_{k}(t) I_{l}(t + \tau) \right\rangle_{t}
$$
\n
$$
= \sum_{k=1}^{SUS} \sum_{l=1}^{SUS} f_{l}^{(i)} f_{l}^{(k)} \left\langle I_{k}(t) I_{l}(t + \tau) \right\rangle_{t}
$$
\n
$$
= \sum_{k=1}^{SUS} \sum_{l=1}^{SUS} f_{l}^{(i)} f_{l}^{(k)} \left\langle I_{k}(t) I_{l}(t + \tau) \right\rangle_{t}
$$
\n
$$
= \sum_{k=1}^{SUS} \sum_{l=1}^{SUS} f_{l}^{(i)} f_{l}^{(k)} \left\langle I_{k}(t) I_{l}(t + \tau) \right\rangle_{t}
$$
\n
$$
= \sum_{k=1}^{SUS} \sum_{l=1}^{SUS} f_{k}^{(i)} f_{l}^{(
$$

Examples

- Mixture of BODIPY 630/650 and $DIC_{18}(5)$ in methanol – 639 nm laser
- Mixture of BODIPY 493/503 and eGFP in water – 470 nm laser
- Small and large unilamellar vesicles in water labeled with BODIPY 630/650 and DiIC₁₈(5), respectively –

Simultaneous Measurement of Lifetime and FCS for DNA Condensation

Lifetime change during the condensation Middle point – coexistence of condensed and uncondensed DNA Can **FLCS** separate the signal for condensed and uncondensed DNA?

FLCS at the "point of coexistence"

Autocorrelation curves correspond to the ACFs for condensed and uncondensed DNA measured separately **Crosscorelation curves** correspond to the intramoleculardynamics on the milisecond scale

How to determine lateral diffusion coefficients in membranes by confocal FCS

Background: Recent Studies (e.g. Webb PNAS 99) show large standard deviations of 40 % to 100 % in diffusion coefficient

Only 3 publications on this topic till 2002

Confocal FCS not established for lipid diffusion within bilayers

How to determine lateral diffusion coefficients in membranes by confocal FCS

Investigated model system: Supported Phospholipid Bilayers (SPB's)

Aim: Reproducible and accurate confocal FCS results on planar lipid systems

Reason for "bad" results: surface localization

problem

Radius *w* of sample illuminated area strongly depends on a mutual position of sample and focus planes

The intensity distribution of the excitation beam can be described as a z-symmetric Lorentz-Gauss profil

Direct influence on PN (c) and $\tau_{\rm D}$ (D)

=>

- how to place the sample in a defined z-position relative to the focus ? -**how to measure** *w* **?**

Solution: "Z-scan"

PN and <mark>τ_ρ are <u>functions</u> of the <u>relative position <mark>∆z </mark>of sample and focus planes</u></mark>

Application of Z-scan in living cells

OLN-93 labeled with dye DiD (lipid-like molecule present in liquid disordered phase) – cross-section

Advantages of Z-scan

• **D** in cell membranes with z-scan **10 times lower error than by standard way!**

• unspecific signals (e.g. by immobile dye molecules) are easy to identify and to separate from the lipid diffusion

Single waist versus "out-offocus" FCS

 -0.8

z-position (μm)

What`s going on in the cellular membranes: "FCS diffusion laws"

FCS diffusion law in general:

$$
\tau_{\rm D}^{\rm app} = t_{\rm .} + \frac{1}{\epsilon D_{\rm eff}} \omega^{\rm v}
$$

 $t_0 = 0$ free diffusion

- $t_{0} > 0$ presence of domains – rafts
- t_{0} < 0 interaction with meshwork

• increasing size of the illuminated spot reveals restrictions on the diffusion behavior \rightarrow need of a beam expander

• performing z-scan enables to increase the illuminated area

• number of particles in the spot is directly proportional to the spot`s size

Wawrezinieck, L., H. Rigneault, D. Marguet and P. F. Lenne. 2005. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. *Biophys. J.* 89: 4029-4042.

Achievements of Z-scan

• Z-scan allows the accurate determination of D in model membranes

• Recent studies on living cells show that zscan is a must when determining D in membranes

Selected Literature:

Benda A, Beneš M, Mareček V, Lhotský A, Hermens W, Hof M:

How to Determine Diffusion Coefficients in Planar Phospholipid Systems by Confocal Fluorescence Correlation Spectroscopy.

Langmuir 19, 4120-4126 (2003).

Potential accesibility of cellular processes to **FCS** B: binding of ligands to

E: 2-D diffusion in cell membranes gives information on membrane organization (microdomain formation)

Problems of cellular FCS

•Self- or Unspecific aggregation of labeled species leading to large highly fluorescent aggregates \rightarrow distortion of FCS curves

- •Association of labeled species with $\text{immobile structures} \rightarrow \text{photobleaching}$
- •Measurement time (several seconds up to minutes) too long for cellular process of interest
- •Photobleaching
	- FCS alone is strongly limited in cellular application \rightarrow Solution: Combination of detection modalities: intensity and lifetime imaging, time-resolved fluorescence, FRET (energy transfer), photobleaching recovery

