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Abstract

A projectional skeleton in a Banach space is a σ-directed family of projections onto
separable subspaces, covering the entire space. The class of Banach spaces with
projectional skeletons is strictly larger than the class of Plichko spaces (i.e. Banach
spaces with a countably norming Markushevich basis). We show that every space
with a projectional skeleton has a projectional resolution of the identity and has a
norming space with similar properties to Σ-spaces. We characterize the existence
of a projectional skeleton in terms of elementary substructures, providing simple
proofs of known results concerning weakly compactly generated spaces and Plichko
spaces.

We prove a preservation result for Plichko Banach spaces, involving transfinite
sequences of projections. As a corollary, we show that a Banach space is Plichko if
and only if it has a commutative projectional skeleton.
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1 Introduction

It is well known that a Banach space in which every closed subspace is complemented
is necessarily isomorphic to a Hilbert space (Lindenstrauss & Tzafriri [30]). On the
other hand, there exist Banach spaces in which only finite-dimensional and co-finite-
dimensional subspaces are complemented (Gowers & Maurey [11]). There even ex-
ist (necessarily, non-separable) C(K) spaces with no nontrivial bounded projections
(Koszmider [21] and Plebanek [33]). In the positive direction, one has to mention the
work of Heinrich & Mankiewicz [15] where, using substructures of ultrapowers of Banach
spaces, the authors show in particular the existence of non-trivial bounded projections
in every dual Banach space of density greater than the continuum (see [38] for an
elementary proof).

We are interested in Banach spaces which have “many” projections onto separable
subspaces. Perhaps one of the most general classes of this sort would be the class of
Banach spaces with the separable complementation property (SCP): a space X has the
SCP if, by definition, for every countable set S ⊆ X there is a bounded projection
P : X → X such that imP is separable and S ⊆ imP . It turns out that this property is
general enough in order to include somewhat pathological spaces. For a survey on the
complementation property and its variations we refer to [37].

Another possible class of Banach spaces with many projections are spaces with the
projectional resolution of the identity (PRI), notion introduced by Lindenstrauss [28,29],
defined to be a well ordered continuous chain of projections onto smaller subspaces. This
property together with transfinite induction allows proving various properties of a non-
separable Banach space, e.g. a locally uniformly rotund/Kadec renorming [42,6] and
the existence of a linear injection into c0(Γ) [1,41]. See [10] or [7] for more information
concerning the PRI method. Unfortunately, the existence of a PRI in a Banach space
is good enough only for density ℵ1, otherwise it does not even imply the SCP.

We propose a natural class of Banach spaces which have a family of projections onto
separable subspaces, indexed by a σ-directed partially ordered set and satisfying some
natural conditions, similar to a PRI. We call it a “projectional skeleton”. It turns out
that a Banach space with a projectional skeleton looks “almost” like a Plichko space, i.e.
a Banach space with a countably norming Markushevich basis (see [34,35,36] and [40]).
In fact, we essentially know only one basic example distinguishing those two classes:
the space C(K), where K is the ordinal ω2 + 1, endowed with the interval topology.
This was shown by Kalenda in [19]. Banach spaces with a projectional skeleton can be
characterized by a property involving norming sets and countable elementary submod-
els. We explain how to use elementary submodels of (some initial part of) set theory
for constructing bounded projections and we show that the existence of a projectional
skeleton is equivalent to some natural model-theoretic property of a suitable norming
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space, similar to the existence of the so-called projectional generator. As an application,
we get short proofs of some well known results, like the existence of a PRI in every
weakly compactly generated space. Our characterization allows us to show that the
class of Banach spaces with a projectional skeleton of norm one is stable under arbi-
trary c0- and `p-sums (1 6 p <∞). We apply elementary submodels for constructing a
PRI from a projectional skeleton.

The main part (Section 5) is devoted to Plichko spaces. We prove a preservation result
for inductive limits of certain projective sequences of Plichko spaces, similar in spirit to
Gul′ko’s results on subspaces of Σ-products [12,13,14]. As an application, we show that
a Banach space is Plichko if and only if it has a commutative projectional skeleton.

Finally, we discuss retractional skeletons in compact spaces – a notion dual to projec-
tional skeleton. We characterize this class of compacta by means of elementary submod-
els and we state a preservation property for Valdivia compacta, dual to the correspond-
ing result for Banach spaces. Retractional skeletons were introduced in [25]. It is proved
there that Valdivia compacta are precisely those compact spaces which have a commu-
tative retractional skeleton. For more information and recent results concerning Valdivia
compacta and their spaces of continuous functions we refer to [17,20,25,26,3,23].

2 Preliminaries

We shall consider Banach spaces over the field of real numbers, although the results are
true also for the complex case. Below we recall most relevant notions, definitions and
notation.

By a projection in a Banach space X we mean a bounded linear operator P : X → X
such that P ◦ P = P . In this case imP = {x ∈ X : x = Px} and kerP = {x− Px : x ∈
X} = im(idX −P ), where idX is the identity map. Recall that a space X has the
separable complementation property (SCP for short) if for every countable set S ⊆ X
there is a projection P : X → X such that PX is a separable space containing S. Given
B ⊆ X∗, we write ⊥(B) = {x ∈ X : (∀ b ∈ B) b(x) = 0}. The right annihilator (A)⊥ is
defined similarly.

Let λ be a limit ordinal. A projectional sequence of length λ in a Banach space X is a
sequence of projections {Pξ}ξ<λ satisfying the following conditions:

(1) ξ < η =⇒ Pξ = Pη ◦ Pξ = Pξ ◦ Pη,
(2) PδX = cl(

⋃
ξ<δ PξX) for every limit ordinal δ < λ,

(3) X = cl(
⋃

ξ<λ PξX).

A special case is a projectional resolution of the identity (PRI): this is a projectional
sequence {Pξ}ξ<λ such that ‖Pξ‖ = 1 and dens(PξX) 6 |ξ| + ℵ0 for each ξ < λ, where
|ξ| denotes the cardinality of ξ.
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All topological spaces are assumed to be completely regular. The closure of a set A in
a space X will be denoted by cl(A) or, more precisely, by clX(A). If X is a dual to a
Banach space then cl∗ will denote the weak∗ closure, i.e. the closure with respect to the
weak∗ topology on X.

A space X is countably tight if for every A ⊆ X and for every p ∈ clA there exists A0 ∈
[A]ℵ0 with p ∈ clA0. Let Γ be a set. Given x ∈ RΓ, we denote by suppt(x) the support
of x, i.e. suppt(x) = {α ∈ Γ: x(α) 6= 0}. The set Σ(Γ) = {x ∈ RΓ : | suppt(x)| 6 ℵ0} is
called a Σ-product.

A Valdivia compact is a compact space homeomorphic to K ⊆ [0, 1]κ satisfying K =
cl(K ∩ Σ(κ)). A Corson compact is, by definition, a compact subset of Σ(κ) for some
κ. Given a compact K, D ⊆ K is called a Σ-subset of K if there is a homeomorphic
embedding h : K → [0, 1]κ such that D = h−1[Σ(κ)].

Let 〈X, ‖ · ‖〉 be a Banach space. A set D ⊆ X∗ is norming if the formula

(*) |x| = sup{|ϕ(x)|/‖ϕ‖ : ϕ ∈ D \ {0}}

defines an equivalent norm on X. More precisely, we say that D is r-norming if ‖x‖ 6
r|x| for every x ∈ X. D is 1-norming if | · | = ‖ · ‖. The following fact is well known.

Proposition 1 Let D be a norming subset of X∗. Then D is 1-norming with respect
to the norm | · | defined by equation (*).

PROOF. Let D′ be the linear span of D and let D1 := {ϕ ∈ D′ : ‖ϕ‖ 6 1}. Then
|x| = supϕ∈D1

|ϕ(x)|. Thus, it remains to notice that D1 = {ϕ ∈ D′ : |ϕ| 6 1}. Indeed,
if ϕ ∈ D1 then |ϕ(x)| 6 1 whenever |x| 6 1, so |ϕ| 6 1. Clearly, |x| ≤ ‖x‖ for x ∈ X
and therefore for dual norms we have the inverse inequality, i.e., ‖ϕ‖ ≤ |ϕ| for ϕ ∈ X∗.

Recall that a Banach space X is called Plichko if there exists a one-to-one weak∗ contin-
uous linear operator T : X∗ → Rκ such that T−1[Σ(κ)] is norming for X. Equivalently:
there are a linearly dense set A ⊆ X and a norming set D ⊆ X∗ such that for every
y ∈ D the set {a ∈ A : y(a) 6= 0} is countable. If additionally D is linear, we shall say
that 〈X,D〉 is a Plichko pair. More generally, we say that 〈Y,D〉 is a Plichko pair in
a space X if Y is a closed linear subspace of X and 〈Y,D′〉 is a Plichko pair, where
D′ = {y � Y : y ∈ D}. Given A ⊆ X, the set suppt(y, A) = {a ∈ A : y(a) 6= 0} will be
called the A-support of y ∈ X∗. The space D = {y ∈ X∗ : | suppt(y, A)| 6 ℵ0} is called
a Σ-space.

A particularly interesting subclass of Plichko spaces is the class of weakly Lindelöf
determined spaces, introduced by Valdivia [39]. A Banach space X is weakly Lindelöf
determined (WLD for short) if 〈X,X∗〉 is a Plichko pair, i.e. X∗ is a Σ-space. This is
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equivalent to saying that the dual unit ball with the weak∗ topology is Corson compact
(see [31, Prop. 4.1]).

3 Elementary submodels and projections

In this section we introduce the method of elementary submodels, which will be used
extensively throughout the paper. In the context of retractions – topological coun-
terparts of linear projections – elementary submodels turned out to be an important
tool in [23,25]. We refer to the survey article of Dow [8], where several applications of
elementary submodels in set-theoretic topology are explained.

Let N be a fixed set. The pair 〈N,∈〉, where ∈ is restricted to N ×N , is a structure of
the language of set theory. Given a formula ϕ(x1, . . . , xn) with all free variables shown
and given a1, . . . , an ∈ N one defines the relation “〈N,∈〉 satisfies ϕ(a1, . . . , an)” (briefly
“〈N,∈〉 |= ϕ(a1, . . . , an)” or just “N |= ϕ(a1, . . . , an)”) in the usual way, by induction
on the length of the formula. Namely, N |= a1 ∈ a2 iff a1 ∈ a2 and N |= a1 = a2

iff a1 = a2. It is clear how “satisfaction” is defined for conjunction, disjunction and
negation. Finally, if ϕ is of the form (∃ y)ψ(x1, . . . , xn, y) then N |= ϕ(a1, . . . , an) iff
there exists b ∈ N such that N |= ψ(a1, . . . , an, b).

As an example, if s = {a, b, c} and s, a, b ∈ N while c /∈ N , then N satisfies “s has at
most two elements”, because for every x ∈ N if x ∈ s then either x = a or x = b.

Instead of the above definition, some authors use relativization, see e.g. Kunen’s book
[27]. Given a formula ϕ, the relativization of ϕ to N is a formula ϕN which is built from
ϕ by replacing each quantifier of the form “∀ x” by “∀ x ∈ N” and each quantifier of
the form “∃ x” by “∃ x ∈ N”. By this way, N |= ϕ(a1, . . . , an) iff ϕN(a1, . . . , an) holds
(of course, a1, . . . , an must be elements of N).

Given a set x, we define the transitive closure of x to be tc(x) =
⋃

n∈ω tcn(x), where
tc1(x) = x ∪ ⋃

x and tcn+1(x) = tc1(tcn(x)). In other words: y ∈ tc(x) iff there are
x0 ∈ x1 ∈ · · · ∈ xk such that y ∈ x0 and xk ∈ x. Thanks to the Axiom of Regularity,
these two definitions of transitive closure are equivalent and every set of the form tc(x)
is transitive, i.e. y ∈ tc(x) implies y ⊆ tc(x).

Given a cardinal θ, we denote by H(θ) the class of all sets whose transitive closure has
cardinality < θ. It is well known that H(θ) is a set, not a proper class. It is clear that
H(θ) is transitive. We shall consider elementary substructures of 〈H(θ),∈〉. It is well
known that for a regular uncountable cardinal θ, the structure 〈H(θ),∈〉 satisfies all
the axioms of set theory, except possibly the Power Set Axiom, see [27, IV.3].

Recall that a substructure M of 〈H(θ),∈〉 is called elementary if for every formula
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ϕ(x1, . . . , xn) with all free variables shown, for every a1, . . . , an ∈M , we have that

M |= ϕ(a1, . . . , an) ⇐⇒ H(θ) |= ϕ(a1, . . . , an).

The fact that M is an elementary submodel of 〈H(θ),∈〉 is denoted by M � 〈H(θ),∈〉.
In order to illustrate elementarity, let us come back to the simple example described
above: let s = {a, b, c} ∈ N , a, b ∈ N and now assume that N � H(θ) and that a, b, c
are pairwise distinct. Since N ⊆ H(θ), we see that s ∈ H(θ) and consequently also
c ∈ H(θ). Clearly, H(θ) |= c ∈ s, therefore H(θ) satisfies “there is x ∈ s such that
neither x = a nor x = b ”. By elementarity, N satisfies the same statement, which
means that there exists d ∈ N such that N |= (d ∈ s ∧ d 6= a ∧ d 6= b). This is a
conjunction of atomic formulas and their negations, so indeed d ∈ s and d /∈ {a, b}. But
we have assumed that s ∩ N = {a, b}, which is a contradiction. This example shows
that elementary substructures of H(θ) “keep” elements of a finite set. In general, if
N � H(θ) then s ∈ N does not necessarily imply that s ⊆ N , unless s is countable or
N contains a sufficiently big initial interval of ordinals, see Proposition 2(c) below or
[8, Thm. 1.6].

The reason for using elementary submodels of H(θ) is that these structures satisfy most
of the axioms of set theory: if θ > ℵ0 is regular then H(θ) satisfies all the axioms except
possibly the power-set, because it may happen that 2λ > θ for some λ < θ. Moreover,
in practice it is usually easy to point out a cardinal θ such that H(θ) satisfies given
finitely many formulas with parameters, needed for applications. Another useful feature
of H(θ) with θ regular is the fact for every formula ϕ(x1, . . . , xn) in which all quantifiers
are bounded (i.e. of the form “∀ x ∈ y” or “∃ x ∈ y”) and for every a1, . . . , an ∈ H(θ),
ϕ(a1, . . . , an) holds if and only if H(χ) |= ϕ(a1, . . . , an). For more information, see [27,
IV.3]. Since in most cases we indeed use formulas with bounded quantifiers, one can
simply “check” their validity by looking at a sufficiently large H(θ).

One can also use Reflection Principle, which says that given a formula of set theory
ϕ(x1, . . . , xn) and given sets a1, . . . , an such that ϕ(a1, . . . , an) holds, there exists θ such
that the structure 〈H(θ),∈〉 satisfies ϕ(a1, . . . , an). In some cases θ may not be regular,
although it may be arbitrarily big and it may have arbitrarily big cofinality. More
precisely: the class of cardinals θ with the above property is closed and unbounded.
Thus, when considering finitely many formulas and parameters, we can “check” their
validity by restricting attention to H(θ), where θ is a “big enough” cardinal, meaning
that the cofinality of θ is greater than a prescribed cardinal and all relevant formulas
are satisfied in 〈H(θ),∈〉.
Summarizing: assume we would like to use in our arguments formulas ϕ1, . . . , ϕn and
parameters from a finite set S. We then find a cardinal θ so that S ⊆ H(θ) and, by
Reflection Principle, all valid formulas ϕ1, . . . , ϕn with suitable parameters are satisfied
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in H(θ). Finally, we shall use elementary substructures of H(θ) which contain S. If the
formulas ϕ1, . . . , ϕn have only bounded quantifiers (which happens in most cases), then
we do not really need to use Reflection Principle, since the formulas will be satisfied in
every H(θ) with θ “big enough”, i.e. every regular θ greater than some fixed cardinal
θ0.

A particular case of the Löwenheim-Skolem Theorem (for the language of set theory)
says that for every infinite set S ⊆ H(θ) there existsM � 〈H(θ),∈〉 such that |M | = |S|.
This theorem can be viewed as the “ultimate” closing-off argument and its typical proof
indeed proceeds by “closing-off” the given set S, by adding elements which witness
“satisfaction” of all suitable formulas of the form (∃ x) ψ.

Important for applications is the fact that, thanks to the Löwenheim-Skolem theorem,
we may consider countable elementary substructures of an arbitrarily large H(θ).

Proposition 2 Let θ be an uncountable cardinal and let M � 〈H(θ),∈〉.
(a) Assume u ∈ H(θ), a1, . . . , an ∈M and ϕ(y, x1, . . . , xn) is a formula such that u is

the unique element of H(θ) for which H(θ) |= ϕ(u, a1, . . . , an). Then u ∈M .
(b) Let s ⊆M be a finite set. Then s ∈M .
(c) If S ∈M is a countable set then S ⊆M .

PROOF. (a) Since H(θ) |= (∃ u) ϕ(u, a1, . . . , an), by elementarity there exists v ∈M
such that M |= ϕ(v, a1, . . . , an). Using elementarity backwards, we see that H(θ) |=
ϕ(v, a1, . . . , an). By uniqueness, u = v.

(b) Let s = {a1, . . . , an} ⊆ M . Since θ is infinite, s ∈ H(θ). Thus s is the unique
element of H(θ) satisfying the formula ϕ(s, a1, . . . , an), where ϕ(x, y1, . . . , yn) is

(∀ t) t ∈ x⇐⇒ t = y1 ∨ t = y2 ∨ · · · ∨ t = yn.

Applying (a), we see that s ∈M .

(c) By induction and by (a), we see that all natural numbers are in M . Also by (a), the
set of natural numbers ω is an element of M , being uniquely defined as the minimal
infinite ordinal. Notice that H(θ) satisfies “there exists a surjection from ω onto S”.
By elementarity, there exists f ∈ M such that M satisfies “f is a surjection from ω
onto S”. Again using (a), we see that f(n) ∈ M for each n ∈ ω. Finally, it suffices
to observe that f is indeed a surjection, i.e. for every x ∈ S there is n such that
x = f(n). This follows from elementarity, because assuming f [ω] 6= S, the formula
“(∃ x ∈ S)(∀ n ∈ ω) x 6= f(n)” would be satisfied in M , contradicting that f is a
surjection.

Fix a Banach space X and choose a cardinal θ, so that X ∈ H(θ). Take an elementary
substructure M of 〈H(θ),∈〉 such that X ∈M . Note that M may be countable, by the
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Löwenheim-Skolem Theorem. What can we say about the set X∩M? In order to answer
this question, we need to say more precisely what we mean by saying “a Banach space X
is an element of M”. Traditionally, we have in mind structure of the form 〈X,+, · , ‖·‖〉,
although we omit predicates +, · and the norm symbol ‖ · ‖, assuming implicitely that
they are fixed. Thus, saying “X ∈ M” we really mean “〈X,+, · , ‖ · ‖〉 ∈ M”. By this
reason, we conclude that X ∩M is closed under addition, because given u, v ∈ X ∩M ,
the vector u+v is uniquely defined and parameters u, v,+ are elements of M . Similarly,
t · u ∈ X ∩M whenever t ∈ R∩M and u ∈ X ∩M . Notice that, by Proposition 2(a),
the field of rationals is contained in M , therefore X ∩M is a Q-linear subspace of X.
More precisely, notice that R ∈ M as a uniquely determined object; hence R ∩M is a
subfield of R and X ∩M is an R ∩M -linear space. Consequently, the norm closure of
X ∩M is a Banach subspace of X. In particular, the weak closure of X ∩M equals the
norm closure of X ∩M . We shall write XM instead of cl(X ∩M) and we shall call XM

the subspace induced by M .

In case of some typical Banach spaces, we can describe the subspace XM . For instance,
let X = `p(Γ), where 1 6 p <∞ and Γ is an uncountable set. Then XM can be identified
with `p(Γ ∩M). Indeed, identify x ∈ `p(Γ ∩M) with its extension x′ ∈ `p(Γ) defined
by x′(α) = 0 for α ∈ Γ \M . Let x ∈ X ∩M . Then suppt(x) = {α ∈ Γ: x(α) 6= 0}
is a countable set and hence, by elementarity, it belongs to M . By Proposition 2(c),
suppt(x) ⊆M . Thus x ∈ `p(Γ∩M). On the other hand, if x ∈ `p(Γ∩M) then arbitrarily
close to x we can find y ∈ `p(Γ∩M) such that s = suppt(y) is finite. Moreover, we may
assume that y(α) ∈ Q for α ∈ s. By Proposition 2(b), y � s ∈M and consequently also
y ∈M . Hence x ∈ cl(X ∩M) = XM .

Given a compact space K ∈ H(θ) and M � 〈H(θ),∈〉, define the following equivalence
relation ∼M on K:

x ∼M y ⇐⇒ (∀ f ∈ C(K) ∩M) f(x) = f(y).

We shall write K/M instead of K/∼M and we shall denote by qM (or, more precisely,
qM
K ) the canonical quotient map. It is not hard to check that K/M is a compact Haus-

dorff space of weight not exceeding the cardinality of M . This construction has been
used by Bandlow [4,5] for characterizing Corson compacta in terms of elementary sub-
structures.

Lemma 3 Let K be a compact space, let θ be a big enough cardinal and let M �
〈H(θ),∈〉 be such that K ∈M . Then

cl(C(K) ∩M) = {ϕ ◦ qM : ϕ ∈ C(K/M)},

where cl denotes the norm closure in the above formula.
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PROOF. Let Y denote the set on the right-hand side. Then Y is a closed linear
subspace of C(K). Given ψ ∈ C(K) ∩M , by the definition of ∼M , there exists a (nec-
essarily continuous) function ψ′ such that ψ = ψ′ ◦ qM . Thus C(K) ∩ M ⊆ Y . Let
R = {ϕ ∈ C(K/M) : ϕ ◦ qM ∈ M}. Then R is a subring of C(K/M) which separates
points and which contains all rational constants. By the Stone-Weierstrass Theorem, R
is dense in C(K/M), which implies that C(K) ∩M is dense in Y .

Observe that, under the assumptions of the above Lemma, the norm closure of C(K)∩M
is pointwise closed. Indeed, if f ∈ C(K) \ cl(K ∩M) then there are x, y ∈ K such that
x ∼M y while f(x) 6= f(y). Consequently, V = {g : g(x) 6= g(y)} is a neighborhood of
f in the pointwise convergence topology, disjoint from cl(K ∩M).

3.1 Projections induced by elementary substructures

Next we show how to use elementary submodels for constructing bounded projections.
This idea has already been applied, in case of WCG spaces, by Koszmider [22].

Lemma 4 Assume X is a Banach space, D ⊆ X∗ is r-norming and M is an elementary
substructure of a big enough 〈H(θ),∈〉 such that X,D ∈M . Then

(a) XM ∩ ⊥(D ∩M) = {0};
(b) the canonical projection P : XM ⊕ ⊥(D ∩M) → XM has norm 6 r.

PROOF. Fix x ∈ X ∩M , y ∈ ⊥(D ∩M) and fix ε > 0. Since D is r-norming, there
exists d ∈ D such that r|d(x)|/‖d‖ > ‖x‖ − ε. Since x ∈ M , by elementarity we may
assume that d ∈M . Thus d ∈ D ∩M and d(y) = 0. It follows that

‖x‖ 6 r|d(x)|/‖d‖+ ε = r|d(x+ y)|/‖d‖+ ε 6 r‖x+ y‖+ ε.

By continuity, we see that ‖x‖ 6 r‖x + y‖ whenever x ∈ XM and y ∈ ⊥(D ∩M). In
particular, XM∩⊥(D ∩M) = {0}, because if x ∈ XM∩⊥(D ∩M) then −x ∈ ⊥(D ∩M)
and ‖x‖ 6 r‖x− x‖ = 0.

Note that, in the above lemma, the subspace XM ⊕ ⊥(D ∩M) is closed in X.

It may happen that ⊥(D ∩M) = 0 (consider X = `∞) and in that case the above
statement is meaningless. We are going to discuss Banach spaces for which Lemma 4
provides a way to construct full projections.
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3.2 WCG spaces and Plichko pairs

We demonstrate the use of elementary submodels for finding projections in weakly
compactly generated spaces. Recall that a Banach space is weakly compactly generated
(briefly: WCG) if it contains a linearly dense weakly compact set.

Proposition 5 Let X be a weakly compactly generated Banach space and let θ be a big
enough cardinal. Further, let M � 〈H(θ),∈〉 be such that X ∈ M . Then there exists a
norm one projection PM : X → XM such that ker(PM) = ⊥(X∗ ∩M).

PROOF. Let K be a linearly dense weakly compact subset of X. By Lemma 4, it
suffices to check that XM ∪ ⊥(X∗ ∩M) is linearly dense in X.

Suppose ϕ ∈ X∗ \ {0} is such that (X ∩ M) ⊆ ker(ϕ) and ⊥(X∗ ∩M) ⊆ ker(ϕ).
The latter inclusion implies that ϕ ∈ cl∗(X

∗ ∩M), because X∗ ∩M is Q-linear. Fix
p ∈ K such that ϕ(p) 6= 0. Let U0, U1 ⊆ R be disjoint open rational intervals such that
0 ∈ U0 and ϕ(p) ∈ U1. Let K0 be the weak closure of K ∩M . Note that ϕ � K0 = 0,
because ϕ is weakly continuous. Using the fact that ϕ ∈ cl∗(X

∗ ∩M), for each x ∈ K0

choose ψx ∈ X∗ ∩M such that ψx(x) ∈ U0 and ψx(p) ∈ U1. By compactness, there are
x0, x1, . . . , xn−1 ∈ K0 such that

(∗) K0 ⊆
⋃
i<n

ψ−1
xi

[U0].

Note that U0, U1 ∈ M . Let Ψ = {ψxi
: i < n}. By Proposition 2(b), also Ψ ∈ M .

Further, p ∈ K witnesses the validity of

(∃ x ∈ K)(∀ ψ ∈ Ψ) ψ(x) ∈ U1.

All parameters in the above formula are in M , therefore by elementarity there exists
x ∈ K ∩M ⊆ K0 such that ψxi

(x) ∈ U1 for each i < n. This contradicts (∗).

Fix a Banach space X and a norming set D ⊆ X∗. We shall say that D generates
projections inX if there exists θ0 such that for every cardinal θ > θ0, for every countable
elementary substructure M � 〈H(θ),∈〉 with D ∈M it holds that

X = XM ⊕ ⊥(D ∩M).

Note that if D ∈ M then also X ∈ M , being the common domain of all functionals
from D. We shall say that the projection P : X → X such that imP = XM and
kerP = ⊥(D ∩M) is induced by the triple 〈X,D,M〉 (X is actually uniquely determined
by D, but it is convenient to emphasize it). Proposition 5 says that X∗ generates
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projections in X whenever X is WCG. The class of Banach spaces X with the property
that X∗ generates projections in X is well known: these are precisely weakly Lindelöf
determined spaces. Below we prove the easier implication.

Proposition 6 Let 〈X,D〉 be a Plichko pair. Then D generates projections in X.

A similar statement was proved by Koszmider [22, Lemma 4.1], using the existence of
a countably 1-norming Markushevich basis.

PROOF. Fix M � 〈H(θ),∈〉 so that D ∈M . Suppose ϕ ∈ X∗ is such that X ∩M ⊆
kerϕ and ⊥(D ∩M) ⊆ kerϕ. The latter fact means that ϕ ∈ cl∗(D∩M). Let G ⊆ X be
a linearly dense set such that suppt(y,G) is countable for each y ∈ D. By elementarity,
we may assume that G ∈ M . Suppose ϕ 6= 0 and fix u ∈ G such that ϕ(u) 6= 0. Since
ϕ is in the weak∗ closure of D ∩M , we may find ψ ∈ D ∩M such that ψ(u) 6= 0.
Thus u ∈ suppt(ψ,G). On the other hand, suppt(ψ,G) ∈ M , because ψ,G ∈ M . By
Proposition 2(c), suppt(ψ,G) ⊆ M . In particular u ∈ X ∩M and hence ϕ(u) = 0, a
contradiction.

The above result says in particular that X∗ generates projections in X whenever X is
WLD. The converse implication will be proved in Section 5.

3.3 Projectional generators

Projectional generators were introduced by Orihuela and Valdivia [32] as a tool for
showing that certain Banach spaces have a PRI. In fact, first projectional generators
were implicitely constructed by Lindenstrauss [28,29]. We refer to Chapter 6 of Fabián’s
book [10] for more information. Let us recall the definition.

Let X be a Banach space. A pair 〈D,Φ〉 is a projectional generator in X if

(1) D ⊆ X∗ is a norming Q-linear subspace,
(2) Φ: D → [X]6ℵ0 ,
(3) (

⋃
Φ[B])⊥ ∩ cl∗(B) = 0, whenever B ⊆ D is Q-linear.

Below we show how projectional generators together with elementary submodels induce
projections.

Proposition 7 Let X be a Banach space which has a projectional generator with do-
main D ⊆ X∗. Then D generates projections in X.

PROOF. Fix M � 〈H(θ),∈〉 with D ∈M , where θ is big enough so that H(θ) satisfies
“there exists a projectional generator on X with domain D”. By elementarity, there is
Φ ∈ M such that M satisfies “〈D,Φ〉 is a projectional generator on X”. It suffices to
check that the only ψ ∈ X∗ which vanishes on XM ∪ ⊥(D ∩M) is the zero functional.
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Let B := D ∩M . By elementarity, B is Q-linear because D is assumed to be Q-linear.
By the definition of a projectional generator, (

⋃
Φ[B])⊥ ∩ cl∗(B) = 0. Thus, if ψ ∈ X∗

is such that XM ∪ ⊥(D ∩M) ⊆ kerψ then ψ ∈ (
⋃

Φ[B])⊥. This is because Φ(b) ⊆ M
whenever b ∈ B (by Proposition 2(c)). It follows that ψ = 0.

3.4 Bandlow’s Property Ω

A result of Bandlow [5, Thm. 5.6] says that K is Corson compact iff Cp(K) has Property
Ω, which says that given a big enough cardinal θ, for every countable M � 〈H(θ),∈〉
with K ∈ M , for every f ∈ Cp(K) there exists g ∈ cl(Cp(K) ∩ M) such that f �
(K ∩M) = g � (K ∩M) (in other words: f − g ∈ ⊥(K ∩M)). According to Bandlow’s
definition, cl means here the pointwise closure, however by Lemma 3 we can replace it
by the norm closure.

A natural generalization of the above condition is Property Ω for a pair 〈X,D〉, where D
is a norming set in the dual ofX: given a suffciently big θ, for every countable elementary
substructure M of H(θ) such that D ∈M , for every p ∈ X there is q ∈ cl(X ∩M) such
that p − q ∈ ⊥(D ∩M). Recall that in this definition we do not have to assume that
X ∈M , because it is implied by the fact that D ∈M .

Proposition 8 Let X be a Banach space and let D ⊆ X∗ be a norming set. The
following statements are equivalent.

(a) 〈X,D〉 has Property Ω.
(b) D generates projections in X.

PROOF. (a) =⇒ (b) Fix M � 〈H(θ),∈〉 such that D ∈ M and fix ϕ ∈ X∗ such that
(X ∩M) ∪ ⊥(D ∩M) ⊆ kerϕ. Fix p ∈ X. Applying Property Ω, find q ∈ cl(X ∩M)
such that p− q ∈ ⊥(D ∩M). Then ϕ(q) = 0 and ϕ(p− q) = 0, thus also ϕ(p) = 0. This
shows that ϕ = 0. Since ϕ was arbitrary, we get X = cl(X ∩M)⊕ ⊥(D ∩M).

(b) =⇒ (a) Fix M � 〈H(θ),∈〉 with D ∈M and fix p ∈ X. By (b), there is a projection
P : X → X satisfying imP = cl(X ∩M) and kerP = ⊥(D ∩M). Let q = P (p). Then
p− q ∈ ⊥(D ∩M). This is exactly Property Ω.

Thus, in our language, Bandlow’s result says that K is Corson compact if and only if
K generates projections in C(K), where K is naturally identified with a suitable subset
of C(K)∗. Recall that consistently there exists a Corson compact K for which C(K) is
not WLD, see [2].
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4 Projectional skeletons

In this section we define the crucial notion of this work. Recall that a partially ordered
set Γ is directed if for every s0, s1 ∈ Γ there is t ∈ Γ such that s0 6 t and s1 6 t. Γ is
σ-complete if every sequence s0 < s1 < . . . has the least upper bound in Γ. A subset A
of Γ is closed if supn∈ω sn ∈ A whenever {sn : n ∈ ω} ⊆ A is such that s0 < s1 < . . . . A
set A ⊆ Γ is cofinal if for every s ∈ Γ there exists t ∈ A with s 6 t.

4.1 Definition and basic properties

Let X be a Banach space. A projectional skeleton in X is a family {Ps}s∈Γ of bounded
projections of X indexed by a directed partially ordered set Γ, satisfying the following
conditions

(1) X =
⋃

s∈Γ PsX and each PsX is separable.
(2) s 6 t =⇒ Ps = Ps ◦ Pt = Pt ◦ Ps.
(3) If s0 < s1 < s2 < . . . then t = supn∈ω sn exists in Γ and PtX = cl(

⋃
n∈ω PsnX).

Condition (3) says in particular that the poset Γ is σ-complete. We have not assumed
so far that the projections Ps are uniformly bounded. Note that for every closed cofinal
set Γ′ ⊆ Γ the restriction {Ps}s∈Γ′ is again a projectional skeleton in X. The notion of a
projectional skeleton makes sense for non-separable Banach spaces only: in a separable
Banach space X the family {idX} is a projectional skeleton.

The next observation was obtained jointly with Ondřej Kalenda.

Proposition 9 Let {Ps}s∈Γ be a projectional skeleton in a Banach space X. Then there
exists a closed cofinal set Γ′ ⊆ Γ such that

sup
s∈Γ′

‖Ps‖ < +∞.

PROOF. For each n > 1 define Gn = {s ∈ Γ: ‖Ps‖ 6 n}. We claim that one of these
sets is cofinal in Γ. Suppose otherwise and for each n ∈ ω choose tn such that ‖Ps‖ > n
whenever tn 6 s. Using the directedness of Γ, construct a sequence s1 < s2 < . . . such
that tn 6 sn for n ∈ ω. Let s∞ = supn∈ω sn. Then ‖Ps∞‖ = +∞, a contradiction.

Fix k > 1 such that Γ′ := Gk is cofinal in Γ. We claim that Γ′ is also closed. For fix
s0 < s1 < . . . in Γ′ and let t = supn∈ω sn. We need to show that ‖Pt‖ 6 k.

Suppose this is not true and fix x ∈ X with ‖x‖ = 1 and ‖Ptx‖ = r > k. Let
ε = (r − k)/2. Using the second part of (3), find m ∈ ω and y ∈ PsmX such that
‖Ptx − y‖ < ε/k. Note that Psm = Psm ◦ Pt. Using the fact that ‖Psm‖ 6 k, we get
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‖Psmx‖ 6 k and

‖y − Psmx‖ = ‖Psm(y − Ptx)‖ 6 k‖y − Ptx‖ < ε.

Thus

‖Ptx‖ 6 ‖Ptx− y‖+ ‖y − Psmx‖+ ‖Psmx‖ < ε/k + ε+ k 6 2ε+ k = r = ‖Ptx‖.

This contradiction completes the proof.

By the above proposition, we shall always assume that a projectional skeleton {Ps}s∈Γ

satisfies the condition

(4) sups∈Γ ‖Ps‖ < +∞.

We shall say that {Ps}s∈Γ is an r-projectional skeleton if it is a projectional skeleton
such that ‖Ps‖ 6 r for every s ∈ Γ. The remaining part of this section will be devoted
to proving basic properties of projectional skeletons.

Lemma 10 Let {Ps}s∈Γ be a projectional skeleton in X and let s0 < s1 < . . . be such
that t = supn∈ω sn in Γ. Then

Ptx = lim
n→∞

Psnx

for every x ∈ X.

PROOF. Let r = sups∈Γ ‖Ps‖ and fix x ∈ X, ε > 0. By the second part of (3), find
y ∈ ⋃

n∈ω PsnX such that ‖Ptx − y‖ < ε/(1 + r). Choose k such that y ∈ Psk
X. Note

that Pty = y and Psny = y for n > k. Thus, given n > k, we have

‖Ptx− Psnx‖ 6 ‖Ptx− y‖+ ‖y − Psnx‖ < ε/(1 + r) + ‖Psn(y − Ptx)‖
6 ε/(1 + r) + r‖y − Ptx‖ < ε/(1 + r) + rε/(1 + r) = ε.

This shows that limn→∞ ‖Ptx− Psnx‖ = 0.

Lemma 11 Let {Ps}s∈Γ be a projectional skeleton in X and let T ⊆ Γ be a directed
subset of Γ. Then the formula

PTx = lim
s∈T

Psx

well defines a bounded projection of X onto cl(
⋃

s∈T PsX).

PROOF. It is enough to show that {Psx}s∈T is a Cauchy net for every x ∈ X.

Suppose this is not the case and fix x ∈ X and ε > 0 such that for each s ∈ T there
are t1, t2 ∈ T , s 6 t1, s 6 t2 with ‖Pt1x − Pt2x‖ > 2ε. As T is directed, we have that
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for each s ∈ T there are t1, t2 ∈ T with s 6 t1 6 t2 and ‖Pt1x − Pt2x‖ > ε. Hence,
by induction we can construct a sequence t1 6 t2 6 t3 6 t4 6 . . . in T such that
‖Pt2k−1

x− Pt2k
x‖ > ε for k ∈ N. This contradicts Lemma 10.

4.2 Projectional resolutions of the identity

Theorem 12 Every Banach space with 1-projectional skeleton has a projectional reso-
lution of the identity.

PROOF. Let κ = densX and let s = {Ps}s∈Γ be a projectional skeleton in X such
that ‖Ps‖ = 1 for every s ∈ Γ. Fix a continuous chain {Tα}α<κ of up-directed subsets
of Γ satisfying |Tα| 6 α + ℵ0 for each α and such that

E =
⋃
{PsX : s ∈ Tα, α < κ}

is dense in X. Continuity of the chain means that Tδ =
⋃

ξ<δ Tξ whenever δ is a limit
ordinal. Let Xα = cl(

⋃
s∈Tα

PsX). Then {Xα}α<κ is a chain of closed subspaces of
X, the density of Xα does not exceed |α| + ℵ0 and Xδ = cl(

⋃
ξ<δ Xξ) for every limit

ordinal δ. By Lemma 11, formula Pαx = lims∈Tα Psx defines a projection of X onto Xα.
Clearly, ‖Pα‖ = 1, because ‖Ps‖ = 1 for s ∈ Γ. Fix α < β. Then Tα ⊆ Tβ, therefore
Pβ ◦ Pαx = Pα. Observe that Ps ◦ Pβ = Ps for every s ∈ Tα. Indeed, given s ∈ Tα, the
set A = {t ∈ Tβ : t > s} ⊆ Tβ is cofinal in Tβ, so

PsPβx = lim
t∈Tβ

PsPtx = lim
t∈A

PsPtx = Psx.

It follows that PαPβx = lims∈Tα PsPβx = lims∈Tα Psx = Pαx. Thus, {Pα}α<κ is a PRI
on X.

Corollary 13 Given a Banach space X of density ℵ1, the following properties are
equivalent.

(a) X has a 1-projectional skeleton.
(b) X has a projectional resolution of the identity.

PROOF. Implication (a) =⇒ (b) follows from the above theorem. In case of density
ℵ1, every PRI is a 1-projectional skeleton.
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4.3 Norming space induced by a projectional skeleton

We shall now look at the dual of a space with a projectional skeleton. Let s = {Ps}s∈Γ

be a projectional skeleton in a Banach space X. The set

D =
⋃
s∈Γ

P ∗sX
∗

is clearly a linear subspace of X. Notice that P ∗sX
∗ ∩ BX∗ endowed with the weak∗

topology is second countable, because P ∗sX
∗ is linearly homeomorphic to the dual of

PsX. Let r = sups∈Γ ‖Ps‖. Given x ∈ SX , there is s ∈ Γ such that x = Psx; choose
ϕ ∈ X∗ such that ϕ(x) = 1 = ‖ϕ‖. Then (P ∗s ϕ)x = ϕ(Psx) = ϕ(x) = 1 and ‖P ∗s ϕ‖ 6 r.
This shows that the space D is r-norming. We shall say that D is the dual norming
subspace induced by s and we shall denote it by D(s).

Let s = {Ps}s∈Γ and t = {Qt}t∈Π be projectional skeletons in the same Banach space
X. We say that s and t are equivalent if they induce the same norming subspace,
i.e.

⋃
s∈Γ imP ∗s =

⋃
t∈Π imQ∗t . It turns out that, with help of elementary submodels, a

projectional skeleton can be recovered (up to equivalence) from the norming space.

Lemma 14 Let s = {Ps}s∈Γ be a projectional skeleton in a Banach space X and let
D ⊆ D(s) be norming for X. Further, let θ be a big enough regular cardinal and let
M � 〈H(θ),∈〉 be countable and such that s ∈ M . Then the projection induced by
〈X,D,M〉 equals Pt, where t = sup(Γ ∩M).

PROOF. First notice that, by elementarity, the set Γ ∩ M is directed. Indeed, if
t0, t1 ∈ Γ ∩ M then M satisfies the formula “(∃ s ∈ Γ) t0 6 s ∧ t1 6 s”, therefore
there is t ∈M such that t ∈ Γ and t0 6 t, t1 6 t. Since M is countable, the supremum
of Γ ∩M indeed exists. Now observe that⋃

s∈Γ∩M

imPs ⊆ cl(X ∩M).

This is because, given s ∈ Γ ∩M , by elementarity there exists a countable set A ∈ M
which is dense in imPs. By Proposition 2(c), A ⊆ X∩M , therefore imPs ⊆ cl(X∩M). It
follows that imPt = cl(

⋃
s∈Γ∩M imPs) ⊆ cl(X∩M). On the other hand, given x ∈ X∩M ,

by elementarity there is s ∈ Γ ∩M such that x ∈ imPs; thus x ∈ imPt. Hence imPt =
XM . Notice that, again by elementarity, P ∗t ϕ = ϕ whenever ϕ ∈ D ∩M . Thus kerPt ⊆
⊥(D ∩M), because if Ptx = 0 and ϕ ∈ D ∩M then ϕ(x) = (P ∗t ϕ)x = ϕ(Ptx) = 0. It
follows that kerPt = ⊥(D ∩M), because X = XM ⊕ kerPt and XM ∩ ⊥(D ∩M) = {0}
(Lemma 4(a)).
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Theorem 15 Let X be a Banach space and let D ⊆ X∗ be an r-norming set (r > 1).
The following properties are equivalent.

(a) X has an r-projectional skeleton s such that D ⊆ D(s).
(b) D generates projections in X.

PROOF. Implication (a) =⇒ (b) follows from Lemma 14 – take θ so that D ∈ H(θ)
and H(θ) satisfies “there exists an r-projectional skeleton s such that D ⊆ D(s).

(b) =⇒ (a) Fix a big enough regular cardinal θ and let Γ be the family of all countable
elementary substructures M of 〈H(θ),∈〉 such that D ∈ M . Endow Γ with inclusion.
Clearly, Γ is a σ-directed poset. Fix M ∈ Γ and let PM be the projection onto cl(X∩M)
with ker(PM) = ⊥(D ∩M). By definition, PM is defined on the entire space. Further,
‖PM‖ 6 r, by Lemma 4. Given M ⊆ N in Γ, we have that cl(X ∩M) ⊆ cl(X ∩N) and
⊥(D ∩M) ⊇ ⊥(D ∩N). The first inclusion shows that PN ◦ PM = PM and the latter
one shows that PM ◦ PN = PM . Finally, given a sequence M0 ⊆ M1 ⊆ . . . in Γ, the
union M =

⋃
n∈ω Mn is an elementary substructure of H(θ) such that cl(X ∩M) is the

closure of
⋃

n∈ω cl(X ∩Mn). It follows that s = {PM}M∈Γ is a projectional skeleton in
X. It is clear that D ⊆ D(s), because D ∩M ⊆ imP ∗M .

Corollary 16 Let X be a Banach space with a projectional skeleton. Then there exists
a renorming of X under which X has an equivalent 1-projectional skeleton.

PROOF. Let D be the dual norming subspace induced by a fixed projectional skeleton
in X. By Lemma 14, D generates projections in X. Consider a renorming of X after
which D becomes 1-norming (see Proposition 1). By Theorem 15, X has a 1-projectional
skeleton.

As an application of Theorem 15, we prove that the class of Banach spaces with a
1-projectional skeleton is stable under arbitrary c0- and `p-sums.

Theorem 17 Let {Xα}α<κ be a collection of Banach spaces and let X =
⊕

α<κXα be
endowed either with the c0-norm or with `p-norm (1 6 p < ∞). Further, assume that
for each α < κ, Dα ⊆ Xα is 1-norming and generates projections in Xα. Then the set

D = {ϕ ∈ X∗ : (∀ α) ϕ � Xα ∈ Dα and |{α : ϕ � Xα 6= 0}| 6 ℵ0}

is 1-norming and generates projections in X.

PROOF. The fact that D is 1-norming follows from the properties of the c0-sum
and the `p-sum. Define suppt(ϕ) = {α : ϕ � Xα 6= 0}. Fix M � 〈H(θ),∈〉 with a
big enough θ, so that D ∈ M . Let S = κ ∩ M . Note that suppt(ϕ) ⊆ S whenever
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ϕ ∈ D ∩M . Suppose X 6= XM ⊕ ⊥(D ∩M) and fix ψ ∈ X∗ satisfying X ∩M ⊆ kerψ
and ⊥(D ∩M) ⊆ kerψ. Then ψ is in the weak∗ closure of the linear hull of D ∩M ,
therefore suppt(ψ) ⊆ S. Assuming ψ 6= 0, there is α ∈ S such that ψα := ψ � Xα 6= 0.
Note that Xα ∩M ⊆ kerψα. If x ∈ ⊥(Dα ∩M) and ϕ ∈ D ∩M then ϕ � Xα ∈ Dα ∩M
so ϕ(x) = 0. It follows that ⊥(D ∩M) ∩Xα = ⊥(Dα ∩M). Thus ⊥(Dα ∩M) ⊆ kerψ.
On the other hand, Xα = cl(Xα ∩ M) ⊕ ⊥(Dα ∩M), because Dα ∈ M . This is a
contradiction.

We finish this section by exhibiting a topological property of norming spaces induced
by a projectional skeleton.

Theorem 18 Let X be a Banach space with a projectional skeleton s = {Ps}s∈Γ and
let D ⊆ X∗ be the norming space induced by s, endowed with the weak∗ topology. Then:

(a) The closure in X∗ of every countable bounded subset of D is metrizable and con-
tained in D.

(b) D is countably tight.

PROOF. Part (a) is trivial: every countable subset of D is contained in Ys = P ∗sX
∗

for some s ∈ Γ and every bounded subset of Ys with the weak∗ topology is second
countable.

(b) Let A ⊆ D and p ∈ cl∗(A)∩D be given. Replacing A by A−p, we may assume that
p = 0. Fix a big enough regular cardinal θ and a countable elementary substructure M
of 〈H(θ),∈〉 such that X, s, A ∈M . We claim that 0 ∈ cl∗(A ∩M).

Let t = sup(Γ ∩M) and let Yt = P ∗t X
∗. Fix a weak∗ neighborhood U of p. We may

assume that U =
⋂

i<n U(xi, ε), where U(x, ε) := {y ∈ X∗ : |y(x)| < ε}, x0, . . . , xn−1 ∈
X and ε > 0 is rational. By Lemma 14, PtX = cl(X ∩M). By Banach’s Open Mapping
Principle, Pt

−1[X ∩M ] is dense in X. Hence, without loss of generality, we may assume
that Ptxi ∈M for each i < n.

ThusW :=
⋂

i<n U(Ptxi, ε) is a weak∗ neighborhood of 0 andW ∈M , because Ptxi ∈M
and ε ∈ M . By elementarity, there is a ∈ A ∩ M ∩ W . It follows that a ∈ Yt, i.e.
P ∗t a = a. Given i < n, we have a(xi) = (P ∗t a)xi = a(Ptxi). Thus a ∈ U(xi, ε). Finally,
a ∈ A ∩M ∩ U .

Corollary 19 Let X be a Banach space and let D,E ⊆ X∗ be norming spaces induced
by projectional skeletons. If D ∩ E is total then D = E.

PROOF. Note that D ∩ E is a linear space. Assuming it is total, it must be weak∗

dense. Thus, given p ∈ D, we have that p ∈ cl∗(D∩E) so p ∈ cl∗(A) for some countable
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A ⊆ D ∩ E (Theorem 18(b)). By Theorem 18(a), cl∗(A) ⊆ D ∩ E. This shows that
D ⊆ E. By symmetry, D = E.

Corollary 20 Let X be a Banach space and let S ⊆ X∗ generate projections in X.
Further, let D be the smallest linear subspace of X∗ containing S and such that cl∗(A) ⊆
D for every countable set A ⊆ D. Then D is induced by a projectional skeleton in X.

PROOF. By Theorem 15, there exists a projectional skeleton s in X such that S ⊆
D(s). By Theorem 18(a), D ⊆ D(s). On the other hand, D is weak∗ dense, because
it is a norming (and hence total) linear space. Hence, given p ∈ D(s), we have that
p ∈ cl∗(D) so, by Theorem 18(b), p ∈ cl∗(A) for some countable A ⊆ D. Hence p ∈ D.
This shows that D = D(s).

The results of this section show that Banach spaces with a projectional skeleton have
very similar properties to Plichko spaces. In fact, we know only one basic example
distinguishing those two classes: the space C(ω2 + 1) which, by the result of Kalenda
[19], does not have any countably norming Markushevich basis. We shall come back to
this example in Section 7.

5 Plichko spaces and projectional skeletons

We prove a preservation theorem for projectional sequences of Plichko spaces. As an
application, we show that every Banach space with a commutative projectional skeleton
is Plichko. A projectional skeleton {Ps}s∈Γ is commutative if Ps ◦ Pt = Pt ◦ Ps holds for
every s, t ∈ Γ.

Proposition 21 Let X be a Plichko space with a Σ-space D ⊆ X∗. Then there exists
a commutative projectional skeleton {Ps}s∈Γ on X such that D = D(s).

PROOF. Let G ⊆ X be a linearly dense set witnessing that D is a Σ-space. Fix
a big enough regular cardinal θ and let Γ be the family of all countable elementary
substructures M of 〈H(θ),∈〉 such that X,D,G ∈M . By Proposition 6 and the proof of
Theorem 15, we know that s = {PM}M∈Γ is a projectional skeleton in X such that D ⊆
D(s), where PM is induced by 〈X,D,M〉, i.e. imPM = XM and kerPM = ⊥(D ∩M).
Theorem 18(b) says that D(s) is weak∗ countably tight. On the other hand, D is weak∗

countably closed, i.e. cl∗A ⊆ D whenever A ⊆ D is countable. Thus D = D(s).
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It remains to show that s is commutative. Given M ∈ Γ, define rM = PM � G. We
claim that

(*) rM(x) =

x, if x ∈ G ∩M,

0, if x ∈ G \M.

Indeed, G ∩M ⊆ cl(X ∩M) = imPM . If x ∈ G \M then for y ∈ D ∩M we have
that x /∈ suppt(y,G), because suppt(y,G) ⊆ M . Hence y(x) = 0 for y ∈ D ∩M and
therefore x ∈ ⊥(D ∩M) = kerPM .

Using (*), we see that rM ◦ rN = rM∩N for M,N ∈ Γ. Since G is linearly dense in X,
this shows that PM ◦ PN = PM∩N = PN ◦ PM for every M,N ∈ Γ. This completes the
proof.

5.1 Preservation theorem

Lemma 22 Let 〈X,D〉 be a Plichko pair and let P : X → X be a bounded projection
such that P ∗D ⊆ D. Then 〈kerP,D ∩ kerP ∗〉 is a Plichko pair.

PROOF. Let A be a linearly dense subset of X such that | suppt(y, A)| 6 ℵ0 for every
y ∈ D. Let B = {a − Pa : a ∈ A}. Then B is linearly dense in kerP = im(idX −P ).
Let E = D ∩ kerP ∗. Fix y ∈ D with ‖y‖ = 1. Let z = y − P ∗y. Then z ∈ D, because
P ∗ preserves D. Further, z ∈ kerP ∗ and ‖z‖ 6 1 + ‖P‖. Given x ∈ kerP , we have
|z(x)| = |y(x) − (P ∗y)x| = |y(x) − y(Px)| = |y(x)|. This shows that E is norming for
kerP . Finally, given y ∈ E, we have y(a−Pa) = y(a)− y(Pa) = y(a)− (P ∗y)a = y(a),
so suppt(y,B) = suppt(y, A). Thus, B witnesses that 〈kerP,E〉 is a Plichko pair.

Theorem 23 Let {Pα}α<κ be a projectional sequence in a Banach space X and let
D ⊆ X∗ be a norming space such that

D =
⋃

α<κ

P ∗αD

and 〈PαX,P
∗
αD〉 is a Plichko pair for each α < κ. Then 〈X,D〉 is a Plichko pair.

Note that we do not assume that the above projections are uniformly bounded.

PROOF. We construct inductively a family of sets {Aα}α<κ such that

(i) Aα is a linearly dense subset of PαX;
(ii) α < β =⇒ Aα ⊆ Aβ;

(iii) suppt(y, Aα) is countable for every y ∈ D;
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(iv) Pαa = 0 whenever a ∈ Aβ \ Aα.

We start with a linearly dense set A0 ⊆ P0X witnessing that 〈P0X,P
∗
0D〉 is a Plichko

pair. We must check (iii). Observe that a = P0a and consequently y(a) = (P ∗0 y)a for
every a ∈ A0 and y ∈ X∗. Hence suppt(y, A0) = suppt(P ∗0 y, A0) is countable and (iii)
holds. Now, fix an ordinal δ > 0 and assume {Aα}α<δ has already been defined.

Suppose first that δ = β + 1. Let Y = PδX and let D′ = {y � Y : y ∈ D} ⊆ Y ∗. Then
〈Y,D′〉 is a Plichko pair and Pβ � Y is a projection whose dual preserves D′. By Lemma
22, there is a linearly dense subset B of kerPβ ∩ Y witnessing that 〈kerPβ ∩ Y,E〉 is
a Plichko pair, where E = D′ ∩ ker[(Pβ � Y )∗]. It follows that suppt(y,B) is countable
whenever y ∈ D∩kerP ∗β . Define Aδ = Aβ∪B. Conditions (i), (ii) and (iv) are obviously
satisfied. It remains to check (iii). Fix y ∈ D. By the induction hypothesis, suppt(y, Aβ)
is countable. Let z = y−P ∗βy. Then z ∈ D∩kerPβ, so suppt(z, B) is countable. Finally,
given b ∈ B we have

z(b) = y(b)− (P ∗βy)b = y(b)− y(Pβb) = y(b),

therefore suppt(y,B) = suppt(z, B) is countable. This shows (iii), because suppt(y, Aδ)
= suppt(y, Aβ) ∪ suppt(y,B).

Suppose now that δ is a limit ordinal. Define Aδ =
⋃

ξ<δ Aξ. Clearly, conditions (i) and
(ii) are satisfied. Condition (iv) is obvious, so it remains to check (iii). Fix y ∈ D.
There is nothing to prove if δ has a countable cofinality, because then suppt(y, Aδ) =⋃

n∈ω suppt(y, Aξn), where {ξn}n∈ω is a cofinal sequence in δ. Assume cf δ > ℵ0. Since
Aδ ⊆ PδX, we see that suppt(y, Aδ) = suppt(P ∗δ y, Aδ). Thus, we may assume that y =
P ∗δ y. Further, P ∗δ D is contained in a Σ-space, therefore it is weak∗ countably tight. On
the other hand,

⋃
ξ<δ P

∗
ξ D is weak∗ dense in P ∗δ X

∗ and hence, since δ has uncountable
cofinality, there exists α < δ such that y ∈ P ∗αD. It follows that P ∗αy = y. In particular,
suppt(y, Aδ) = suppt(y, Aα), because if a ∈ Aδ \ Aα then y(a) = (P ∗αy)a = y(Pαa) = 0,
by (iv). By the induction hypothesis, suppt(y, Aδ) is countable. This shows (iii).

Finally, set A =
⋃

α<κAα. By (i), A is linearly dense in X. It remains to check that
suppt(y, A) is countable for every y ∈ D. Fix y ∈ D. By the assumption, y ∈ P ∗αD for
some α < κ. Thus P ∗ξ y = y whenever α 6 ξ < κ and we conclude like in the limit case
of the above construction. This completes the proof.

The above theorem should be compared with the results of S. Gul′ko (see [12,13,14]),
where similar preservation was proved for topological spaces which have a continuous
injection into a Σ-product.

Corollary 24 Let X be a Banach space with a projectional sequence {Pα}α<κ such that
PαX is weakly Lindelöf determined for each α < κ. Then X is a Plichko space.

Corollary 25 Given a Banach space X, the following properties are equivalent.
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(a) X∗ generates projections in X.
(b) X is weakly Lindelöf determined.

By a result of Orihuela, Schachermayer and Valdivia [31], the above properties are also
equivalent to “〈BX∗ , weak∗〉 is Corson compact”.

It is natural to ask when X (as a subspace of X∗∗) generates projections in X∗. By
a result of Fabián and Godefroy [9] this is the case when X is Asplund. Specifically,
assuming X is an Asplund space, the authors of [9] construct a projectional generator
〈X,Φ〉 in X∗. On the other hand, Orihuela and Valdivia noted in [32, Thm. 3] that the
existence of a projectional generator with domain X and with values in X∗ implies that
X is Asplund. Recall that a Banach space X is Asplund if the dual of every separable
subspace of X is separable. Assume X generates projections in X∗ and fix a separable
subspace Y of X. Fix a countable M � H(θ) such that X ∈M and Y ∩M is dense in Y
and let P : X∗ → X∗ be the projection with imP = cl(X∗∩M) and kerP = (X ∩M)⊥.
Then P ∗y = y for every y ∈ Y , because Y ⊆ cl∗(X ∩M). Fix ϕ ∈ Y ∗ and let ψ ∈ X∗

be an extension of ϕ. Then (Pψ)y = ψ(P ∗y) = ψ(y) = ϕ(y) for every y ∈ Y . Thus,
ϕ = (Pψ) � Y . It follows that Y ∗ is separable because so is imP . Summarizing, we
have:

Proposition 26 Given a Banach space X, the following properties are equivalent.

(a) X is Asplund.
(b) X generates projections in X∗.

5.2 A characterization of Plichko spaces

Theorem 27 Let X be a Banach space and let r > 1. The following properties are
equivalent.

(a) X has a commutative r-projectional skeleton.
(b) X is an r-Plichko space.

PROOF. Implication (b) =⇒ (a) is contained in Proposition 21. For the converse
implication, we use Theorem 12, Lemma 11 and induction on the density of X. Suppose
we have proved that (a) =⇒ (b) for spaces of density < κ and fix a Banach space X
of density κ with a commutative r-projectional skeleton {Ps}s∈Γ. By (the proof of)
Theorem 12, there exists an r-projectional resolution of the identity s = {Pα}α<κ on
X such that for each α < κ there is a directed set Sα ⊆ Γ with Pαx = lims∈Sα Psx for
x ∈ X (to be formal, we need to assume that Γ ∩ κ = ∅). Observe that, by continuity,
Ps ◦ Pα = Pα ◦ Ps holds for every s ∈ Γ and α < κ. Let D be the norming space
induced by s. Fix y ∈ D and fix α < κ. Let s ∈ Γ be such that y = P ∗s y. Then
P ∗αy = P ∗αP

∗
s y = P ∗s P

∗
αy ∈ D. Hence P ∗αD ⊆ D. Now use Theorem 23. In case where
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cf κ = ℵ0, it may happen that D 6= ⋃
α<κ P

∗
αD, but we may replace D by

⋃
α<κ P

∗
αD,

still having an r-norming space. By Theorem 23, 〈X,D〉 is a Plichko pair, therefore X
is r-Plichko.

6 Spaces of continuous functions

In this section we shall discuss a natural class of compact spaces K for which C(K) has
a projectional skeleton.

Let R0 denote the class of all compacta which have a retractional skeleton. Following
[25], a retractional skeleton (briefly: r-skeleton) in a compact space K is a family of
retractions {rs}s∈Γ, indexed by an up-directed poset Γ, satisfying the following condi-
tions:

(1) s 6 t =⇒ rs = rs ◦ rt = rt ◦ rs.
(2) For every x ∈ X, x = lims∈Γ rs(x).
(3) rs[X] is metrizable for each s ∈ Γ.
(4) Given s0 < s1 < . . . in Γ, t = supn∈ω sn exists and rt(x) = limn→∞ rsn(x) for every

x ∈ K.

It has been proved in [25] that Valdivia compacta are precisely those compact spaces
which have a commutative r-skeleton. The ordinal ω2 + 1 is an example of a space in
class R0 which is not Valdivia compact. A retractional skeleton in a space of the form
κ+ 1, where κ is an uncountable cardinal, is described in [25, Example 6.4].

It is clear that every r-skeleton induces a 1-projectional skeleton on the space of con-
tinuous functions; that is:

Proposition 28 Let K be a compact space with a retractional skeleton {rs}s∈Γ. Then
{r∗s}s∈Γ is a projectional skeleton in C(K), where r∗s denotes the transformation adjoint
to rs.

A simple application of Lemma 11 shows that every space from class R0 can be de-
composed into a continuous inverse sequence of retractions onto smaller spaces in class
R0 (notion dual to a PRI). This shows that R0 ⊆ R, where R is the smallest class
of spaces containing all metric compacta and closed under limits of continuous inverse
sequences of retractions (see [6,23]). Note that class R0 restricted to spaces of weight
6 ℵ1 coincides with the class of Valdivia compacta ([25, Cor. 4.3]). This is not the case
with class R (see [25, Example 4.6(b)]), therefore R0 6= R.

Let us admit that the converse to Proposition 28 fails, namely there exist compact
spaces K /∈ R such that C(K) is 1-Plichko, see [3]. On the other hand, by Lemma 10,
we have:
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Proposition 29 Let D ⊆ X∗ be a 1-norming space which generates projections in a
Banach space X. Then BX∗ endowed with the weak∗ topology belongs to class R0.

The following results are dual to Theorems 15, 17 and 18 respectively.

Theorem 30 Let K be a compact space and let D ⊆ K be a dense countably closed
set. The following properties are equivalent:

(a) K ∈ R0 and D is induced by an r-skeleton in K.
(b) For every sufficiently big cardinal θ, for every countable elementary substructure

M of H(θ) with K,D ∈ M , the quotient qM
K : K → K/M restricted to cl(D ∩M)

is one-to-one.

PROOF. Assume (a) and fix a countable M � 〈H(θ),∈〉 such that K,D ∈ M . By
elementarity, there exists {rs}s∈Γ ∈ M which is an r-skeleton in K such that D =⋃

s∈Γ rs[K]. Fix x, y ∈ cl(D∩M), x 6= y. Let t = sup(Γ∩M). By elementarity, D∩M ⊆
rt[K]. Indeed, if x ∈ D∩M then rs(x) = x for some s ∈ Γ∩M , hence rt(x) = x. Thus,
also cl(D∩M) ⊆ rt[K]. It follows that x = rt(x) and y = rt(y). Let {sn}n∈ω ⊆ Γ∩M be
increasing and such that t = supn∈ω sn. Then x = limn→∞ rsn(x) and y = limn→∞ rsn(y).
It follows that rsk

(x) 6= rsk
(y) for all but finitely many k ∈ ω. Fix such k and let r = rsk

.
Note that K, r ∈M and r[K] is second countable. By elementarity and by Proposition
2(c), there exists a countable family F ∈ M consisting of continuous real functions
on r[K] which separates the points. Choose f ∈ F so that f(r(x)) 6= f(r(y)). Then
f ◦ r ∈ C(K) ∩M , which shows that x 6∼M y. Thus (a) =⇒ (b).

The proof of (b) =⇒ (a) is similar to that of (b) =⇒ (a) in Theorem 15: the family Γ
of all countable M � 〈H(θ),∈〉 with K,D ∈ M is an r-skeleton on K, since each qM

K

can be treated as a retraction of K onto cl(K ∩M).

Note that countably tight spaces in class R0 are precisely Corson compacta. Thus, in
case K is Corson compact, we have D = K and the above theorem gives Bandlow’s
characterization [4].

Proposition 31 Class R0 is closed under arbitrary products.

PROOF. Let {Kα : α ∈ κ} be a family of spaces in R0 and let K =
∏

α∈κKα. For
each α ∈ κ choose a dense set Dα ⊆ Kα which is induced by a fixed r-skeleton in Kα.
Fix p ∈ ∏

α∈κDα and let D be the Σ-product of {Dα}α∈κ based on p, i.e.

D = {x ∈
∏
α∈κ

Dα : | supptp(x)| 6 ℵ0},

where supptp(x) := {α ∈ κ : x(α) 6= p(α)}. It is clear that D is countably closed and
dense in K. We check condition (b) of Theorem 30. Let θ > κ be a regular cardinal
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such that for every α < κ statement (b) of Theorem 30 holds for every countable
M � H(θ) with Kα, Dα ∈ M . Fix a countable M � H(θ) with K,D ∈ M . Note that
M “knows” that K is the product of the family {Kα}α∈κ. Indeed, by elementarity,
there is x ∈M ∩K. Then κ = dom(x) ∈M and hence also the function α 7→ Kα is an
element of M . Finally, M satisfies “x ∈ K iff for every α ∈ κ, x(α) ∈ Kα”, which means
that K is the product of {Kα}α∈κ. In particular, if α ∈ κ∩M then Kα ∈M . Similarly,
M “knows” that D is the Σ-product of {Dα}α∈κ based on some q ∈ K ∩M . Assuming
κ > ℵ0, we have that q = p, because the unique constant function in D specifies the
base point. If κ = ℵ0 then D =

∏
α∈κDα and the point p becomes irrelevant. In any

case, we may assume that p ∈M .

Let S = κ ∩M . Observe that

cl(D ∩M) ⊆ {x ∈ K : supptp(x) ⊆ S}.

Fix x 6= y in cl(D ∩M). Then x(α) 6= y(α) for some α. By the above remark, α ∈ M .
Thus Kα ∈ M , being the α-th projection of K. Similarly, Dα ∈ M and therefore qM

Kα

is one-to-one on cl(Dα ∩M). Finally, if f ∈ C(Kα)∩M separates x(α) from y(α), then
g = f ◦ prα ∈ M and g(x) 6= g(y), where prα denotes the projection onto the α-th
coordinate. This shows that qM

K is one-to-one on cl(D ∩M). By Theorem 30, K ∈ R0.

Theorem 32 Assume {Rs}s∈Γ is an r-skeleton in a compact space K and let D =⋃
s∈ΓRs[K]. Then

(1) D is dense in K and for every countable set A ⊆ D the closure clK(A) is metrizable
and contained in D.

(2) D is a countably tight Fréchet space.
(3) D is a normal space and K = βD.

We shall say that D is the dense set induced by {Rs}s∈Γ.

PROOF. (1) follows from the σ-directedness of Γ: every countable subset of D is
contained in some Ks := Rs[K]. This also shows that D is Fréchet. The countable
tightness of D follows from Theorem 18(b), because D ⊆ C(K)∗ generates projections
in C(K).

It remains to prove that D is a normal space and that K = βD. Fix disjoint relatively
closed sets A,B ⊆ D. We claim that clK(A) ∩ clK(B) = ∅. This will also show that
K = βD. Suppose p ∈ clK(A) ∩ clK(B) and fix a countable M � H(θ) (where θ is
sufficiently big) such that A,B, p, {Rs}s∈Γ ∈M . Let δ = sup(Γ∩M). Then Rδ(p) ∈ D,
so we may assume that Rδ(p) /∈ A (interchanging the roles of A and B, if necessary).
Recall that Kδ := Rδ[K] is the limit of inverse system 〈Ks, R

t
s,Γ ∩M〉, where Rt

s =
Rs � Kt (see [25, Lemma 3.4]). Thus, there are t ∈ Γ∩M and an open set V ⊆ Kt such
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that U := Kδ ∩ (Rt)
−1[V ] is a neighborhood of p in Kδ disjoint from A. On the other

hand, (Rt)
−1[V ] ∩ A 6= ∅. Since Kt is second countable, we may assume that V ∈ M .

Thus, by elementarity, there is a ∈M such that a ∈ (Rt)
−1[V ] ∩A. Finally, a ∈ Kδ, so

a ∈ U ∩ A, a contradiction.

A Banach space analogue of part (3) of the above result looks as follows.

Proposition 33 Let D be a norming space induced by a projectional skeleton {Ps}s∈Γ

in a Banach space X. Then for every weak∗ continuous function f : D → R there exists
t ∈ Γ such that f = f ◦ P ∗t � D.

PROOF. Fix n > 0 and consider Kn = nBX∗ . Then {P ∗s � Kn}s∈Γ is a retractional
skeleton in Kn. By [25, Lemma 5.1], there exists sn ∈ Γ such that fn = f◦P ∗sn

� (D∩Kn).
We may assume that s1 6 s2 6 . . . . Let t = supn∈ω sn. Then f = f ◦ P ∗t � D.

We are now able to determine weak∗ compact subsets of spaces induced by projectional
skeletons.

Theorem 34 Assume D ⊆ X∗ generates projections in a Banach space X. Then every
compact subset of D is Corson.

PROOF. Let K ⊆ D be compact with respect to the weak∗ topology. We use Band-
low’s characterization [4], which is a special case of Theorem 30. Fix a big enough
cardinal θ and a countable M � 〈H(θ),∈〉 and fix p 6= q in cl∗(K ∩M). Then there is
x ∈ X such that p(x) 6= q(x). Since 〈X,D〉 has Property Ω (see Proposition 8), there
exists y ∈ cl(X ∩ M) such that x − y ∈ ⊥(D ∩M). In particular, p(x) = p(y) and
q(x) = q(y). Now, the continuity of p and q, find z ∈ X ∩M such that p(z) 6= q(z).
Thus the function ϕ 7→ ϕ(z) is an element of M which separates p and q. This shows
that p 6∼M q. Finally, Bandlow’s theorem [4] (or a special case of Theorem 30) shows
that K is Corson.

We do not know whether the converse holds, namely whether every norming weak∗

Corson compact set generates projections, see Question 5.

A preservation theorem for Valdivia compacta, dual to Theorem 23, looks as follows.
We omit its proof, since it can be easily deduced from (the proof of) Theorem 23.

Given a Valdivia compact K, let us call 〈K,D〉 a Valdivia pair if D is dense in K and
there is an embedding j : K → [0, 1]κ such that j[D] ⊆ Σ(κ).

Theorem 35 Let {rα}α<κ be a continuous retractive sequence in a compact space K.
Let D ⊆ K be a dense set such that for each α < κ, 〈rα[K], rα[D]〉 is a Valdivia pair
and rα[D] ⊆ D for every α < κ. Then 〈K,D〉 is a Valdivia pair.
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The above result leads to another proof of [25, Thm. 6.1], saying that a compact space
with a commutative r-skeleton is Valdivia compact. Another corollary is the following.

Corollary 36 The limit of a continuous retractive inverse sequence of Corson com-
pacta is Valdivia compact.

7 Final remarks and open problems

As we have already mentioned, the ordinal ω2 + 1 provides an example of a compact
space in class R0 whose space of continuous functions is not Plichko. An r-skeleton in
ω2 + 1 can be constructed as follows. Denote by Γ the family of all countable closed
subsets A of ω2 such that 0 ∈ A and every isolated point of A is isolated in ω2. Given
A ∈ Γ, define rA : ω2 + 1 → ω2 + 1 by setting rA(α) = max(A ∩ [0, α]). It is straight to
check that rA is a retraction onto A (continuity follows from the assumption concerning
isolated points). It is easy to check that r = {rA}A∈Γ is an r-skeleton. Obviously, this
skeleton is not commutative. On the other hand, the dual C(ω2 + 1)∗ is 1-Plichko (see
[18, Example 4.10(a)] or [17, Example 6.10]).

Example 37 There exists a 1-projectional skeleton s on `1(ω2) such that D(s) is not
a Σ-space, i.e. 〈`1(ω2), D(s)〉 is not a Plichko pair.

PROOF. We shall use ω2+1 instead of ω2 as the coordinate set, because ω2+1 = [0, ω2]
has the maximal element with respect to the natural well order. Let Γ consist of all
countable subsets S of ω2 +1 such that ω2 ∈ S. Given S ∈ Γ, define fS : ω2 +1 → ω2 +1
by fS(α) = min(S ∩ [α, ω2]). Note that fS is generally discontinuous with respect to
the interval topology on ω2 + 1. Further, define QS : `1(ω2 + 1) → `1(ω2 + 1) by setting
(QSx)(α) =

∑
ξ∈f−1

S (α) x(ξ). It is clear that QS is a well defined linear projection onto

`1(S) ⊆ `1(ω2 + 1). Further, ‖QS‖ = 1. Fix S ⊆ T in Γ. Clearly, QT ◦ QS = QS,
because QT is identity on `1(T ) ⊇ `1(S). Now observe that fS ◦ fT = fS. Thus, given
x ∈ `1(ω2 +1) and α ∈ ω2 +1, we have that f−1

S (α) =
⋃

ξ∈f−1
S (α) f

−1
T (ξ) and consequently

(QSQTx)(α) =
∑

ξ∈f−1
S (α)

(QTx)(ξ) =
∑

ξ∈f−1
S (α)

∑
η∈f−1

T (ξ)

x(η) =
∑

ξ∈f−1
S (α)

x(ξ) = (QSx)(α).

Finally, given S0 ⊆ S1 ⊆ . . . in Γ, the set S∞ =
⋃

n∈ω Sn is an element of Γ and⋃
n∈ω im(QSn) is clearly dense in im(QS∞). It follows that s = {QS}S∈Γ is a projectional

skeleton in `1(ω2 + 1).

Now suppose that 〈`1(ω2), D(s)〉 is a Plichko pair. By Theorem 27, there exists a com-
mutative projectional skeleton r = {Pt}t∈∆ such that D(r) = D(s). By Lemma 14, there
exists a cofinal subset Γ′ ⊆ Γ such that for every S ∈ Γ′ there is t = t(S) ∈ ∆ with
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QS = Pt. In particular, QS ◦ QT = QT ◦ QS whenever S, T ∈ Γ′. We shall derive a
contradiction by finding S, T ∈ Γ′ such that QS ◦QT 6= QT ◦QS.

Given S ∈ Γ′, define ϕ(S) = sup(S ∩ ω2). Construct a chain {Sα}α<ω1 in Γ′ so that
ϕ(α) < ϕ(β) whenever α < β. This is possible, because Γ′ is cofinal in Γ. Let δ =
supα<ω1

ϕ(α). Fix T ∈ Γ′ such that ϕ(T ) > δ. Then sup(T ∩ δ) < δ, because δ has
cofinality ω1. Find α < ω1 such that sup(T ∩ δ) < ϕ(Sα) < δ. Let S = Sα. Fix ξ ∈ Sα

such that sup(T ∩ δ) < ξ. Then fT (ξ) > δ and hence fSfT (ξ) = ω2, because ϕ(S) < δ.
On the other hand, fS(ξ) = ξ < ϕ(T ) and hence fTfS(ξ) 6 ϕ(T ) < ω2. It follows
that fSfT (ξ) 6= fTfS(ξ). Considering the characteristic function of {ξ} as an element of
`1(ω2 + 1), we conclude that QS ◦QT 6= QT ◦QS.

Given a norming space D ⊆ X∗, let TD denote the topology on X induced by D,
i.e. TD = σ(X,D). It can be shown that 〈X, TD〉 is Lindelöf, whenever D generates
projections in X. On the other hand, by the result of Kalenda [16, Thm. 2.3], D is a
Σ-space iff 〈X, TD〉 is primarily Lindelöf and D∩BX∗ is weak∗ countably compact (the
last assumption cannot be dropped, see [17, Example 2.10(ii),(iii)]).

Problem 1 Assume D ⊆ X∗ is a norming space. Find a topological property of 〈X, TD〉
which says when D = D(s) for some projectional skeleton s in X.

Question 1 Assume X has a 1-projectional skeleton. Does X have a projectional gen-
erator?

Question 2 Assume X is a Banach space of density > ℵ1 and F is a directed family of
1-complemented separable subspaces such that X =

⋃F and cl(
⋃

n∈ω Fn) ∈ F whenever
{Fn : n ∈ ω} ⊆ F . Does X necessarily have a projectional skeleton?

Note that if X has density ℵ1 then the above assumptions imply the existence of a PRI,
see [24, Lemma 6.1].

Question 3 Let X be a Banach space with a projectional skeleton. Does every closed
subspace of X have the separable complementation property?

Note that, by the main result of [24], a closed subspace of a Plichko space of density ℵ1

may not have a projectional skeleton.

The following question has already been asked by Ondřej Kalenda [19].

Question 4 Is C(ω2 + 1) embeddable into a Plichko space?

Question 5 Assume K ⊆ X∗ is Corson compact and norming for X. Does K generate
projections in X?

If K is a Corson compact in the dual of a Banach space X and K is norming for X,
then X embeds into C(K). Thus, if C(K) is WLD then so is X and consequently K
generates projections in X. It follows that the above question at least consistently has
affirmative answer: it is relatively consistent with the usual axioms of set theory that
C(K) is WLD for every Corson compact K (see e.g. [2, Remark 3.2.3)]).
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functions. Serdica Math. J. 32, 2-3 (2006), 227–258.

[7] Deville, R., Godefroy, G., and Zizler, V. Smoothness and renormings in Banach
spaces, vol. 64 of Pitman Monographs and Surveys in Pure and Applied Mathematics.
Longman Scientific & Technical, Harlow, 1993.

[8] Dow, A. An introduction to applications of elementary submodels to topology. Topology
Proc. 13, 1 (1988), 17–72.

[9] Fabián, M., and Godefroy, G. The dual of every Asplund space admits a projectional
resolution of the identity. Studia Math. 91, 2 (1988), 141–151.

[10] Fabián, M. J. Gâteaux differentiability of convex functions and topology. Canadian
Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons
Inc., New York, 1997. Weak Asplund spaces, A Wiley-Interscience Publication.

[11] Gowers, W. T., and Maurey, B. The unconditional basic sequence problem. J. Amer.
Math. Soc. 6, 4 (1993), 851–874.

[12] Gul′ko, S. P. Properties of sets that lie in Σ-products. Dokl. Akad. Nauk SSSR 237, 3
(1977), 505–508.

29

http://arxiv.org/abs/math/0610795v2


[13] Gul′ko, S. P. The structure of spaces of continuous functions and their hereditary
paracompactness. Uspekhi Mat. Nauk 34, 6(210) (1979), 33–40.

[14] Gul′ko, S. P. Semilattice of retractions and the properties of continuous function spaces
of partial maps. In Recent progress in function spaces, vol. 3 of Quad. Mat. Dept. Math.,
Seconda Univ. Napoli, Caserta, 1998, pp. 93–155.

[15] Heinrich, S., and Mankiewicz, P. Applications of ultrapowers to the uniform and
Lipschitz classification of Banach spaces. Studia Math. 73, 3 (1982), 225–251.

[16] Kalenda, O. A characterization of Valdivia compact spaces. Collect. Math. 51, 1 (2000),
59–81.

[17] Kalenda, O. F. K. Valdivia compact spaces in topology and Banach space theory.
Extracta Math. 15, 1 (2000), 1–85.

[18] Kalenda, O. F. K. Valdivia compacta and biduals of Asplund spaces. In General
topology in Banach spaces. Nova Sci. Publ., Huntington, NY, 2001, 115–125.

[19] Kalenda, O. F. K. M -bases in spaces of continuous functions on ordinals. Colloq.
Math. 92, 2 (2002), 179–187.

[20] Kalenda, O. Natural examples of Valdivia compact spaces. J. Math. Anal. Appl. (2008),
in press.

[21] Koszmider, P. Banach spaces of continuous functions with few operators. Math. Ann.
330, 1 (2004), 151–183.

[22] Koszmider, P. Projections in weakly compactly generated Banach spaces and Chang’s
conjecture. J. Appl. Anal. 11, 2 (2005), 187–205.

[23] Kubís, W. Compact spaces generated by retractions. Topology Appl. 153, 18 (2006),
3383–3396.

[24] Kubís, W. Linearly ordered compacta and Banach spaces with a projectional resolution
of the identity. Topology Appl. 154, 3 (2007), 749–757.

[25] Kubís, W., and Michalewski, H. Small Valdivia compact spaces. Topology Appl. 153,
14 (2006), 2560–2573.

[26] Kubís, W., and Uspenskij, V. A compact group which is not Valdivia compact. Proc.
Amer. Math. Soc. 133, 8 (2005), 2483–2487.

[27] Kunen, K. Set theory, vol. 102 of Studies in Logic and the Foundations of Mathematics.
North-Holland Publishing Co., Amsterdam, 1983. An introduction to independence
proofs, Reprint of the 1980 original.

30



[28] Lindenstrauss, J. On reflexive spaces having the metric approximation property. Israel
J. Math. 3 (1965), 199–204.

[29] Lindenstrauss, J. On nonseparable reflexive Banach spaces. Bull. Amer. Math. Soc.
72 (1966), 967–970.

[30] Lindenstrauss, J., and Tzafriri, L. On the complemented subspaces problem. Israel
J. Math. 9 (1971), 263–269.

[31] Orihuela, J., Schachermayer, W., and Valdivia, M. Every Radon-Nikodým
Corson compact space is Eberlein compact. Studia Math. 98, 2 (1991), 157–174.

[32] Orihuela, J., and Valdivia, M. Projective generators and resolutions of identity in
Banach spaces. Rev. Mat. Univ. Complut. Madrid 2, suppl. (1989), 179–199. Congress
on Functional Analysis (Madrid, 1988).

[33] Plebanek, G. A construction of a Banach space C(K) with few operators. Topology
Appl. 143, 1-3 (2004), 217–239.

[34] Plichko, A. Projection decompositions of the identity operator and Markushevich bases.
Dokl. Akad. Nauk SSSR 263, 3 (1982), 543–546.

[35] Plichko, A. Projection decompositions, Markushevich bases and equivalent norms. Mat.
Zametki 34, 5 (1983), 719–726.

[36] Plichko, A. Bases and complements in nonseparable Banach spaces. II. Sibirsk. Mat.
Zh. 27, 2 (1986), 149–153, 222.

[37] Plichko, A., and Yost, D. Complemented and uncomplemented subspaces of Banach
spaces. Extracta Math. 15, 2 (2000), 335–371. III Congress on Banach Spaces (Jarandilla
de la Vera, 1998).

[38] Sims, B., and Yost, D. Linear Hahn-Banach extension operators. Proc. Edinburgh
Math. Soc. (2) 32, 1 (1989), 53–57.

[39] Valdivia, M. Resolutions of the identity in certain Banach spaces. Collect. Math. 39, 2
(1988), 127–140.

[40] Valdivia, M. Simultaneous resolutions of the identity operator in normed spaces. Collect.
Math. 42, 3 (1991), 265–284 (1992).
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