
Amplifying Lower Bounds by Means of Self-Reducibility

Eric Allender∗

Department of Computer Science
Rutgers University

New Brunswick, NJ 08855, USA
allender@cs.rutgers.edu

Michal Koucký†

Institute of Mathematics of the
Academy of Sciences of the Czech Republic

Prague, Czech Republic
koucky@math.cas.cz

May 5, 2008

Abstract

We observe that many important computational problems in NC1 share a simple self-reducibility
property. We then show that, for any problem A having this self-reducibility property, A has poly-
nomial size TC0 circuits if and only if it has TC0 circuits of size n1+ε for every ε > 0 (counting
the number of wires in a circuit as the size of the circuit). As an example of what this observa-
tion yields, consider the Boolean Formula Evaluation problem (BFE), which is complete for NC1.
It follows from a lower bound of Impagliazzo, Paturi, and Saks, that BFE requires depth d TC0

circuits of size n1+εd . If one were able to improve this lower bound to show that there is some
constant ε > 0 such that every TC0 circuit family recognizing BFE has size n1+ε, then it would
follow that TC0 6= NC1.

We also show that problems with small uniform constant-depth circuits have algorithms that
simultaneously have small space and time bounds. We then make use of known time-space tradeoff
lower bounds to show that SAT requires uniform depth d TC0 and AC0[6] circuits of size n1+c for
some constant c depending on d.

1 Introduction
There is a great deal of pessimism in the research community, regarding the likelihood of proving
superpolynomial lower bounds on the circuit size required for various computational problems. One
goal of this paper is to suggest that there might be some reason to be more optimistic about prospects
for circuit size lower bounds; we show that superpolynomial bounds would follow as a consequence
of some very modest-sounding lower bound results (such as a lower bound of size n1.0001). Of course,
a confirmed pessimist would say that this is merely evidence that even these modest-sounding lower
bounds are likely to remain beyond our reach. In Section 6 we discuss some possible interpretations
of our results; in particular, we discuss the extent to which it might be possible to hope that the

∗Supported in part by NSF Grants CCF-0514155 and DMS-0652582.
†Part of this work was done while visiting DIMACS and Rutgers University partially supported by NSF grant CCF-

0514703. Supported in part by grant GA ČR 201/07/P276, project No. 1M0021620808 of MŠMT ČR and Institutional
Research Plan No. AV0Z10190503.

Preprint, Institute of Mathematics, AS CR, Prague. 2008-5-4 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic

observations we present here point to a path around the obstacles to proving circuit lower bounds that
were presented by Razborov and Rudich in their work on Natural Proofs [15].

1.1 Circuit complexity classes
This paper focuses on NC1 and its subclasses. Let us remind the reader of the main definitions, and
present some notation.

• NC1 is the class of languages recognized by circuits of fan-in two AND and OR gates, and
unary NOT gates, having depth O(log n). Two standard complete problems for NC1 are (1) the
word problem for the permutation group S5 on five elements [2], and (2) the Boolean Formula
Evaluation problem [5]. In order to make the statement of some of our results slightly more
crisp, we will be somewhat particular about the encoding of the Boolean Formula Evaluation
problem. Define BFE to be the set of all balanced Boolean formulae (with constants 0 and
1, and no variables) that evaluate to 1, where the set of connectives is {AND, OR,⊕}. This
encoding of BFE remains complete for NC1. (See, for example, the proof of Lemma 7.2 in
[3].)

We also make use of an NC1-complete variant of s-t-connectivity. We say that a (possibly
directed) graph is of width k if it is a layered graph where each layer is of size at most k
and every edge goes between vertices either from the same layer or from consecutive layers.
W5-STCONN is the problem of deciding whether the first vertex of the first layer is con-
nected by a path to the last vertex in the last layer of a width 5 graph. It follows from [2] that
W5-STCONN is complete for NC1.

• TC0 is the class of languages recognized by polynomial-size constant-depth circuits of (un-
bounded fan-in) MAJ gates and unary NOT gates. (A MAJ gate is a gate that evaluates to one
iff the majority of its inputs is set to one.)

• ACC0 is the union of all the classes AC0[q] (for q > 1); see below.

• CC0 is the union of all the classes CC0[q] (for q > 1); see below.

• AC0[q] is the class of languages recognized by polynomial-size constant-depth circuits of un-
bounded fan-in AND and OR gates and unary NOT gates, along with unbounded fan-in MOD-q
gates. (A MOD-q gate evaluates to one iff the number of ones that feed into it is divisible by q).

• CC0[q] is the class of languages recognized by polynomial-size constant-depth circuits having
only MOD-q gates.

• AC0 is the class of languages recognized by polynomial-size constant-depth circuits of un-
bounded fan-in AND and OR gates and unary NOT gates.

As presented, these classes are nonuniform (i.e., it is not required that there be an easy way to con-
struct the circuits for inputs of length n). We shall also need to consider logspace-uniform and
Dlogtime-uniform versions of these classes [3].

Lower bounds are known for AC0[q] when q is prime [18], but it remains unknown even whether
NP = Dlogtime-uniform CC0[6].

1.2 What are the main contributions?
In Section 3 we show that many problems (such as BFE, W5-STCONN, the word problem over S5,
MAJ, AND, and iterated matrix product) have strong self-reducibility properties. Then, in Section 4,
we show that, for any set possessing such self-reducibility properties, any proof of a lower bound of
size nc implies a superpolynomial size lower bound. (The constant “c” depends on the details of the

self-reduction. For the word problem over S5 or any of the problems BFE, W5-STCONN, MAJ or
AND, any constant c > 1 suffices.)1

This seems to be a new observation. There are several examples of nonlinear lower bounds for
various models of computation. For example Håstad presents a nearly-cubic lower bound on the
formula size for a certain function [9], lower bounds on branching program size have been presented
[1, 4], and the time-space tradeoff results that are surveyed by van Melkebeek [20] give run-time
lower bounds of the form nc for small-space computations. None of these lower bounds has led to
separations of complexity classes. More to the point, there has never been any expectation that a
lower bound of the form nc could possibly lead to a separation of complexity classes. In this paper,
we show that there are several settings where this can occur.

It is necessary to be precise about the meaning of the word “size”. There are two popular measures
of circuit size—the number of gates and the number of wires. (There are always at least as many
wires as there are gates. See e.g. [13] for treatment of the differences. For the results that have been
mentioned in the paper thus far, the correct interpretation of “size” is “number of wires”.) We will
have occasion to refer to each of these two size measures, and in those cases where it is important to
know which size measure is meant, we will be specific.

As mentioned above, in order to show that TC0 6= NC1, it suffices to show that BFE requires TC0

circuits of size n1+ε for some constant ε > 0. In fact, some non-linear lower bounds for BFE are
known; Impagliazzo, Paturi, and Saks showed that any depth d TC0 circuit for PARITY must have
n1+Ω(1/(2.5)d) wires [11]. Since there is a trivial reduction from PARITY to BFE, the same size lower
bound holds for BFE. Clearly, no proof of TC0 6= NC1 can follow from a PARITY lower bound, and
equally clearly, this argument does not yield a lower bound on the size of AC0[6] circuits computing
BFE. In fact, there seem to be no known lower bounds for BFE on AC0[q] circuits for any composite
q.

Fortnow showed that SAT does not have logspace-uniform NC1 circuits of size n1+o(1) [7]. Since
modest lower bounds for BFE yield superpolynomial lower bounds, it is natural to wonder if the same
situation holds for SAT. That is, if one could build on the Fortnow lower bound, and show that SAT
requires AC0[6] circuits of size n1.01, would it follow that NP 6= AC0[6]? We know of no such
implication – and the approach that works for BFE cannot transfer directly to SAT. In Section 5 we
show that any set possessing the self-reducibility properties that we utilize in Section 4 must lie in
(uniform) NC. Thus, in order to demonstrate that SAT has the sort of self-reducibility properties that
would enable us to amplify modest lower bounds to superpolynomial lower bounds, one would have
to first prove that P=NP. (It is still conceivable that one could proceed by arguing that if NP = AC0[6],
then SAT has the desired type of self-reduction, but we have not been able to construct such an
argument.) It is interesting to note that Srinivasan has shown [19] that an Ω(n1+ε) lower bound on
the running time of algorithms that compute weak approximations to CLIQUE would imply P 6= NP.
Using his techniques, one can also compute a constant c such that if there are no AC0[6] circuits of
size nc that compute certain weak approximations to CLIQUE then NP 6= AC0[6].

Even though we do not know how to separate NP from AC0[6] by presenting a lower bound of
the form nc for the size of AC0[6] circuits for SAT, we would nonetheless like to be able to present
such a lower bound (as an illustration that current techniques can provide the sort of modest lower
bounds that would separate NC1 from AC0[6] if such bounds could be proved for BFE). Although
we can not provide such a lower bound, we can provide a lower bound analogous to the Impagliazzo,
Paturi, and Saks bound mentioned above, showing that there is a constant cd such that depth d AC0[6]
circuits for SAT require size n1+cd . In Section 7 we show that SAT requires Dlogtime-uniform depth
d circuits of size n1+c for some constant c, for any of the constant-depth families of circuits that we
consider (such as ACC0 and TC0).

1A special case of this general observation (relating only to regular sets) also appears in a survey article by the second
author [12]; the present article expands significantly on the related results of [12].

2 Preliminaries
We have presented definitions for several circuit complexity classes in Section 1.1. For any of these
classes C, we can also define C-reducibility. We say that A≤C

TB if there is a constant-depth family
of circuits of polynomial size recognizing A, where the circuits have oracle gates for the language B
in addition to the collection of gates that is provided in the definition of the circuit class C.

A C self-reduction for A is a family of oracle circuits witnessing that A≤C
TA, where on input x,

the oracle circuit does not feed input x into any of its oracle gates.
A pure self-reduction for A is a self-reduction for A, where the only gates are oracle gates, as well

as bounded fan-in AND and OR gates and unary NOT gates.2

Self-reductions can be either uniform or non-uniform. The reader can verify that all of the exam-
ples of self-reductions that we present in this paper are Dlogtime-uniform.

In addition to languages over the binary alphabet, we also consider languages over an arbitrary
alphabet Σ. In such cases we assume that there is some fixed encoding of symbols from Σ into fixed-
length binary strings; circuits for languages in Σ∗ operate on these Boolean encodings. Similarly, a
circuit for a function with non-Boolean output produces a binary encoding of the output symbol.

3 Downward self-reducibility
Let f : {0, 1}∗ → {0, 1}∗ be a function. Let s(n),m(n) : N → N be functions such that for all n,
m(n) < n and let d ≥ 1 be an integer. We say that fn is downward self-reducible to fm(n) by a pure
reduction of depth d and size s(n) if for every n there exists a depth d pure self-reduction with s(n)
gates computing fn, using oracle gates only for fm(n).

Similarly, we can write of fn being downward self-reducible to fm(n) by a C reduction of depth
d and size s(n) for various circuit classes C. This notion of downward self-reducibility is essentially
identical to what Goldwasser et al. call “strong downward self-reducibility” [8]. For our purposes, it
is important to pay close attention to the size and depth of the reduction.

The following example may seem trivial, but it is nonetheless useful.

Proposition 1 For any 0 < ε < 1, ANDn is downward self-reducible to ANDnε by a pure reduction
of depth O(1/ε) and size O(n1−ε). Similarly for ORn.

Proof. Form a tree of depth 1/ε from gates computing ANDnε and assign each input bit to one of the
leaves. Clearly, the circuit will compute ANDn and it consists of O(n1−ε) gates. 2

The case of AND and OR can be further generalized as follows. Let M be a finite monoid (a
finite set with an associative binary operation and identity element.) We denote the operation of M
multiplicatively. The word problem over M is the function WM : {0, 1}∗ → {0, 1}|M | that takes
binary encodings of several elements from M and outputs the binary encoding of their product. (The
particular way of encoding elements from M into binary representation is of no interest to us. We
may assume that it is the unary encoding: 1i0|M |−i denoting the i-th element of M .)

Proposition 2 For any monoid M and any 0 < ε < 1, (WM)n is downward self-reducible to
(WM)nε by a pure reduction of depth O(1/ε) and size O(n1−ε).

The proof is essentially the same as for AND and OR. If for an integer q > 1 we consider the
monoid ({0, 1, . . . , q − 1},+(mod q)) then we obtain the next corollary.

Corollary 3 For any 0 < ε < 1, (MOD−q)n is downward self-reducible to (MOD−q)nε by a pure
reduction of depth O(1/ε) and size O(n1−ε).

2One could perhaps call pure self-reductions “NC0 self-reductions”, but since the oracle gates have unbounded fan-in, this
seems to be quite different than NC0 computation.

A similar proof also yields:

Proposition 4 For any 0 < ε < 1, W5-STCONNn is downward self-reducible to W5-STCONNnε

by a pure reduction of depth O(1/ε) and size O(n1−ε).

We can prove a similar claim also for MAJ. This time the proof is a little bit more involved and
uses the following lemma.

Lemma 5 For any m, ` ≥ 1 there is a constant depth circuit with O(m log m) oracle gates for
MAJ2m in addition to bounded fan-in AND and OR gates and unary NOT gates, taking as its input
m × ` bits representing m `-bit integers, and producing as output a sequence of ` ` + log m-bit
integers that have the same sum as the input integers.

Proof. First notice, using a gate for MAJ2m and constants 0 and 1 we can compute ANDm and
ORm. Using m gates for MAJ2m (together with some ANDm and ORm gates that can be computed
with MAJ2m), we can compute the unary representation of the sum of m bits (i.e., 1i0m−i where i of
the input bits are 1). This unary representation can be further transformed into binary representation
by a constant depth circuit using O(m log m) ANDm, ORm and NOT gates. Thus we can sum the
input bits at each of the ` binary positions in the m input numbers, to obtain ` ` + log m-bit integers
representing the sum of the input. (Note each of these ` integers will have ` of its bits always set to
zero.) 2

Proposition 6 For any 0 < ε < 1, MAJn is downward self-reducible to MAJnε by a pure reduction
of depth O(1/ε) and size O(n log n).

Proof. We prove the claim for ε = 1/2. For other ε the proof follows using the same technique
of building a tree as in the previous propositions. We can treat the input as n 1-bit integers. To
determine the output of MAJn we will compute the binary representation of the sum of these integers.
We proceed in summing them as follows. We split the input into 2

√
n blocks of

√
n/2 input bits,

each representing
√

n/2 1-bit integers. By the preceding lemma we can obtain the sum of each block
using O(

√
n log n) MAJ√n gates, i.e., O(n log n) MAJ√n gates in total.

Hence we have reduced the problem of summing the input bits to the problem of summing 2
√

n
O(log n)-bit integers. Splitting the integers into four equal size groups and applying the lemma on
each of the groups gives O(log n) O(log n)-bit integers whose sum is equal to the input sum.

We divide each of these integers into blocks of log log n consecutive bits and we sum the corre-
sponding blocks from the O(log n) integers using the lemma. For each block this yields O(log log n)
integers, each having O(log log n) bits, which sum to the sum of the block. Furthermore, by a DNF
formula of size 2O(log log n)2 ≤ no(1) built from ANDO((log log n)2) and ORno(1) gates we can obtain
for each block its O(log log n)-bit sum. From these O(log n/ log log n) O(log log n)-bit sums we can
form O(1) O(log n)-bit integers that represent the sum of the input bits. Summing O(1) O(log n)-bit
integers can be done using O(log3 n) ANDO(log n) and ORO(log n) gates; this concludes the proof. 2

We have seen that AND, OR, MOD-q, MAJ are all downward self-reducible, as well as the word
problem over finite monoids. This yields a self-reduction for the word problem over S5 (one of the
standard complete problems for NC1) and W5-STCONN. We thank Mario Szegedy for pointing out
that BFE (another standard complete problem for NC1) is also downward self-reducible:

Proposition 7 For any 0 < ε < 1, BFEn is downward self-reducible to BFEnε by a pure reduction
of depth O(1/ε) and size O(n).

Proof. Since the input is a balanced formula of size n, the depth of the formula is log n. We can
cut this formula into 1/ε layers, each of depth ε log n. We will evaluate the formula, starting with the
subformulae whose roots are on the top of the bottom layer (whose inputs are the leaves of the original

formula). Each of these formulae has size nε. We feed the values for each of those subformulae into
the formulae that form the next layer, and so on. 2

Indeed, we point out that any problem complete for a complexity class that has a downward
self-reducible complete problem must be downward self-reducible. See Proposition 17 in the next
section.

Another problem for which we can prove downward self-reducibility is Iterated Matrix Multipli-
cation. Let IMMn,d,` : {0, 1}nd2` → {0, 1}d2n(`+log d) be the problem of computing the product of
n d × d matrices, with each entry being a non-negative `-bit integer. Define the modular version of
the Iterated Matrix Product to be the function mIMMn,d,q : {0, 1}nd2 log q → {0, 1}d2 log q computing
the Iterated Matrix Product modulo some integer q ≥ 2. Finally, we will also need to consider the
Boolean Iterated Matrix Product problem BIMMn,d : {0, 1}nd2 → {0, 1}d2

which is the Iterated
Matrix Problem over the ring ({0, 1}, OR, AND).

The following proposition is immediate:

Proposition 8 For any 0 < ε < 1 and any n, d, q ≥ 1, mIMMn,d,q is downward self-reducible to
mIMMnε,d,q by a pure reduction of depth O(1/ε) and size O(n1−ε). BIMMn,d is similarly reducible
to BIMMnε,d with the same parameters.

The following more interesting lemma will be useful in the next section.

Lemma 9 There is a universal constant cCRR such that for any 0 < ε < 1 and any d ≤ n (where
d = d(n) may be a function of n), IMMn,d,n is downward self-reducible to IMMnε,d,nε by a TC0-
reduction of depth O(1/ε), with O(d2 · n3+2cCRR) wires and O(n3−ε) oracle gates.

Here, cCRR is a specific constant that can be determined from a paper of Hesse et al. [10].
Proof. Hesse et al. [10] give uniform TC0 circuits with O(ncCRR) wires that do the following tasks:

• take as input two n-bit integers a and b, and output amod b.

• take as input an n-bit integer a, and output its Chinese Remainder Representation, i.e., a se-
quence of O(n) pairs (ai, bi) of O(log n)-bit numbers where ai = amod bi and all bi are
distinct primes.

• take as input n pairs (ai, bi) of O(log n)-bit numbers and output an O(n log n)-bit number a
satisfying ai = amod bi and 0 ≤ a <

∏
i bi, if the bi are distinct primes.

Using these circuits we can reduce IMMn,d,n to the problem of computing O(n2) instances of
mIMMn,d,qi in parallel for O(n2) distinct prime O(log n)-bit numbers qi. Namely to compute the
iterated product, we first compute the representation of each input matrix mod each of the primes qi

(thereby converting the input from binary representation to Chinese Remainder Representation); this
gives us O(n2) instances of mIMMn,d,qi to solve. Next, we compute the iterated product mod each
of the qi (thereby obtaining the output in Chinese Remainder Representation). Finally, we convert
the answer to binary representation.

By the previous proposition, for each i we can downward reduce the computation of mIMMn,d,qi

to mIMMnε,d,qi
. However, since our goal is to produce a self-reduction for IMM, we must show how

to simulate each call to mIMM using an oracle for IMM. But this is easy: if inputs to mIMM are fed
instead into a IMM gate, then by taking the output from the IMM gate and taking each entry mod qi,
we obtain the output that would have been given by the mIMM gate. That is, we use TC0 circuitry to
prepare the inputs that would (ideally) be presented to the mIMMnε,d,qi oracle gates, and instead we
use IMMnε,d,nε gates (which provide the correct answer mod qi.) We then again use TC0 circuitry to
take each matrix entry mod qi, thereby simulating one oracle gate in a mIMM self-reduction.

The size of the resulting circuit is going to be

• d2n ·O(n2cCRR) to convert the input into Chinese Remainder Representation relative to O(n2)
moduli and then convert back from Chinese Remainder Representation into binary, plus

• O(n2 · n1−ε · d2 · n2εcCRR) for taking remainders to process the output of the O(n2 · n1−ε)
oracle gates.

Hence we get a TC0 circuit reducing IMMn,d,n to IMMnε,d,nε of size O(d2 · n3+2cCRR). 2

4 Amplifying lower bounds
In the previous section we have established several downward self-reducibility results. In this section
we show that any problem that is downward self-reducible in this way has circuits of polynomial size
if and only if it has very small circuits. Thus, if a small circuit size lower bound can be proved for
any such problem, it can be “amplified” into a superpolynomial size lower bound.

The general form of our claims is:

If a function f is computable by polynomial size circuits of type C then for any ε > 0, f
is computable by circuits of type C using O(n1+ε) gates and wires.

The circuit types we will consider are AC0, ACC0, CC0, TC0 and NC1 circuits. The functions f we
will consider will typically (but not always) be complete for some complexity class. For example
MAJ is complete for TC0 (under ≤AC0

T reductions), and the word problem for S5 is complete for
NC1, and so on. The consequence of our claim is that establishing a lower bound of Ω(n1+ε) for
some ε > 0 on the number of wires or gates necessary to compute f would separate some of the
circuit classes. The following proposition summarizes known relationships between these circuit
classes.

Proposition 10
AC0 (ACC0 ⊆ TC0 ⊆ NC1

CC0 ⊆ ACC0, CC0 6⊆ AC0

Except for the proper inclusion AC0 (ACC0 which also implies CC0 6⊆ AC0 the precise re-
lationship among ACC0, CC0, TC0 and NC1 is not known, and any separation or collapse would
constitute major progress in theoretical computer science. Separation of, say, TC0 from NC1 would
typically entail showing that no polynomial size TC0 circuit can compute some chosen function from
NC1. We show that a weaker lower bound than super-polynomial can already yield the same conclu-
sion.

Theorem 11 If, for every ε > 0, fn is downward self-reducible to fnε by a pure reduction of depth
O(1/ε) and size s(n), and f ∈ C, then for every ε′ > 0, f has circuits of type C with O(s(n)nε′)
wires.

Proof. Assume that fn has circuits of type C with nk wires. The reduction of fn to fnε has at most
s(n) oracle gates, each of fan-in nε, and at most s(n) other gates of bounded fan-in. Thus the total
number of wires in the reduction is O(s(n)nε). If we replace each oracle gate for fnε by the circuit
of type C of size nεk, we obtain a circuit of type C for fn with O(s(n)nεnεk) = O(s(n)nε(k+1))
wires. The claim follows, because k is fixed and the hypothesis holds for every ε > 0. 2

In the previous theorem, note that if C is a class of bounded depth circuits, then f has circuits of
type C having depth O(1/ε′) and O(s(n)nε′) wires. For most of our arguments, s(n) = O(n log n).
This yields the following corollary.

Corollary 12 1. If for some ε > 0, W5-STCONN requires CC0 circuits with at least Ω(n1+ε)
wires, then CC0 6= NC1. The same is true for ACC0 and TC0 in place of CC0, and for BFE
and WS5 in place of W5-STCONN.

2. If for some ε > 0, MAJ requires CC0 circuits with at least Ω(n1+ε) wires (gates) then CC0 6=
TC0. The same is true for ACC0 in place of CC0.

3. If for some ε > 0, AND requires CC0 circuits with at least Ω(n1+ε) wires (gates) then CC0 6=
ACC0.

Contrast this with the situation for SAT; if SAT is in TC0, we have no way to bound the number
k such that TC0 size nk is sufficient to compute SAT. (Although, as we mentioned in Section 1.2,
Srinivasan has shown that if P = NP then there are algorithms running in time n1+ε that compute
weak approximations to CLIQUE [19].)

Although stated as a sequence of implications, the preceding corollary is really a sequence of
equivalences, since W5-STCONN is complete for NC1, MAJ is complete for TC0, and AND is
complete for ACC0 under ≤CC0

T reductions. Thus, for example, W5-STCONN is in ACC0 iff
NC1 = ACC0.

We remark that, since our self-reductions are Dlogtime-uniform, one can compute a constant K
such that, for example, if BFE is in Dlogtime-uniform TC0, then it has TC0 circuits with O(n1+ε)
wires where the uniformity machine runs in time K log n. (We have not computed the value of K,
but we anticipate that K = 4 is sufficient; the self-reductions have a very regular structure, and the
O(log n) running time of the “original” TC0 circuit family ends up being simulated only to determine
the structure of circuits for inputs of size nε for small values of ε.)

Sometimes concrete lower bounds are easier to prove for specially-constructed sets, rather than
for the standard complete sets for a complexity class. The following corollary shows that we can also
“amplify” lower bounds for such specially-constructed sets, since if one can show that a specially-
constructed set lies in NC1, then typically one can determine some upper bound on the depth d(n) of
the NC1 circuits computing f .

Corollary 13 Let f be computable by NC1 circuits of depth d(n). If f does not have TC0 circuits of
size O(3d(n)) then TC0 6= NC1. Similarly for ACC0 and CC0 in place of TC0.

Proof. If f has NC1 circuits of depth d(n), then it has a balanced formula of size 2d(n), and thus
there is a reduction of f to instances of BFE of size 2d(n). If TC0 = NC1 then evaluating Boolean
formulae of length ` can be done by TC0 circuits of size O(`1+ε) for any chosen ε > 0. The claim
follows. 2

The technique is applicable also to other circuit classes, so if we pick a function f from e.g. TC0

and we know that it is computable by TC0 circuits of size O(nk), then if TC0 = ACC0 then for every
ε > 0, f is computable by ACC0 circuits using O(nk(1+ε)) wires (gates). So proving an Ω(nk(1+ε))
lower bound on the size of ACC0 circuits for f separates ACC0 from TC0.

This technique is applicable, to a certain extent, also to classes larger than NC1. First, let us
consider NL. Boolean iterated matrix product BIMMn,n is complete for NL. We do not know how
to work directly with BIMMn,n, and thus we work with slightly smaller matrices instead.

Theorem 14 If NL ⊆ NC1 then BIMMn,2
√

log n is computable by NC1 circuits with o(n2) wires. The
same is true for CC0, ACC0, and TC0 in place of NC1.

(The contrapositive may be more informative; if one can show that BIMMn,2
√

log n requires NC1

circuits of size Ω(n2) then one has shown that NC1 6= NL. Unlike the earlier theorems in this
section, we obtain only an implication, and not an equivalence – since BIMMn,2

√
log n is not known

(or believed) to be complete for NL. Note that this result is for NC1 circuit size; it does not seem to
translate into a useful statement about formula size.)

Proof. Since BIMMn,n is in NL, our assumption implies that BIMMn,n is computable by NC1

circuits of size O(nk) for some k > 0. Choose ε = 1/k. Then BIMMnε,nε is computable by NC1

circuits of size O(nεk) = O(n) and hence BIMMnε,2
√

log n is computable by NC1 circuits of size
O(n). By Proposition 8, BIMMn,2

√
log n is downward self-reducible to BIMMnε,2

√
log n by a pure

reduction of size n1−ε. The number of wires in this reduction is n1−ε ·nε22
√

log n = n22
√

log n. Since
BIMMnε,2

√
log n has NC1 circuits of size O(n), we can replace each oracle gate by a circuit with O(n)

wires, yielding an NC1 circuit with O(n22
√

log n + n1−εn) = o(n2) wires. 2

We now turn to the complexity class #L (the class of functions that count the number of accepting
paths of NL machines). This is the largest complexity class that we know how to address using these
techniques. Iterated Matrix Multiplication IMMn,n,n is a problem complete for #L. IMMn,2

√
log n,n

is a subproblem not known (or expected) to be complete for #L, but also not known to lie in any
smaller complexity class.

Theorem 15 If #L ⊆ TC0 then IMMn,2
√

log n,n is computable by TC0 circuits with O(n2cCRR+4)
wires. Similarly if #L ⊆ NC1 then IMMn,2

√
log n,n is computable by NC1 circuits of size O(n4cCRR+8)

wires.

Thus to separate #L from TC0 it suffices to show a lower bound of ω(n2cCRR+4) on the size of
TC0 circuits computing IMMn,2

√
log n,n. Similarly for NC1.

Proof. Since IMMn,n,n is in #L, by our assumption, IMMn,n,n is computable by TC0 circuits of
size O(nk) for some k > 0. Choose ε = 1/k. Then IMMnε,nε,nε is computable by TC0 circuits of
size O(nεk) = O(n) and hence IMMnε,2

√
log n,nε is computable by TC0 circuits of size O(n).

By Lemma 9, IMMn,2
√

log n,n is downward self-reducible to IMMnε,2
√

log n,nε by TC0 circuits of
size O(2O(

√
log n) · n2cCRR+3) = O(n2cCRR+4). There are O(n3−ε) oracle gates in this reduction,

and each gate for IMMnε,2
√

log n,nε can be replaced by circuits with O(n) wires, yielding TC0 circuits
of size O(n2cCRR+4 + n4) = O(n2cCRR+4). This yields the bound for TC0 circuits in the statement
of the lemma.

For NC1 it suffices to remark that each MAJn gate can be replaced by NC1 circuitry, at most
squaring the size. (Tighter analysis is possible.) 2

Similarly, one can use the fact that IMM3,n,n is complete for GapNC1 [6], to show that GapNC1

⊆ TC0(NC1) iff IMM3,n,n has TC0 (or NC1, respectively) circuits of size n3+2cCRR .

5 Limits on downward self-reducibility
In the previous section we have seen that downward self-reducibility provides us with an interesting
tool for the study of circuit classes. We have shown that in order to separate circuit classes such as
ACC0 and NC1, quadratic lower bounds for the circuit complexity of certain NC1-complete problems
would suffice. What about separating ACC0 from, say NP? That should in principle be a much easier
task. Can we use the technique of downward self-reducibility to establish an analog of Corollary 12
for ACC0 versus NP?

The following theorem shows that there are significant obstacles to overcome before such an
approach can work. Namely, in order to establish that a problem is downward self-reducible in the
way that we study in Section 3, one must already have an efficient algorithm for the problem.

Theorem 16 Let f : {0, 1}∗ → {0, 1}∗ be a function, and m(n) : N → N be such that m(n) < nε

for some 0 < ε < 1 and all n ≥ 2.

1. If fn is downward self-reducible to fm(n) by TC0-reductions, then f ∈ NC and has TC0

circuits of size 2nδ

for every δ > 0.

2. If fn is downward self-reducible to fm(n) via polynomial time Turing reductions then f is in P.

Proof. 1) In order to build a circuit for fn, start with the TC0 circuit of depth d and size nk that
reduces fn to fm(n). If we replace each oracle gate in this circuit with the circuit that reduces fm(n)

to fm(m(n)), the depth of the new circuit is d2 and the size is at most nk + nk · nεk. We repeat the
process until the oracle gates are of size O(1), at which point we replace the oracle gates by circuitry
of size O(1) computing f on small inputs. The number of stages is O(log log n); thus the depth is
dO(log log n) = logO(1) n. The size of the circuit is bounded by nk · nεk · nε2k · · · ≤ nk/(1−ε). It
is easy to verify that the resulting circuit is logspace-uniform if the self-reduction circuits are. This
establishes that f ∈ NC. In order to see that f has TC0 circuits of size 2nδ

, merely follow the same
iteration process as above, but continue for only O(1) stages instead of O(log log n) stages. This
results in a TC0 oracle circuit with oracle gates for fm with m < nδ . Now replace each oracle gate
with a DNF expression for fm. (Clearly, if the self-reduction is an AC0 circuit instead of a TC0

circuit, then f has AC0 circuits of size 2nδ

.)
2) Again we use the obvious recursive algorithm. We run the Turing reduction and whenever it

asks an oracle query about a smaller instance of f we recursively invoke the reduction on the smaller
instance. If the reduction runs in time O(nk) then the total running time of the algorithm will be
bounded by nk · nεk · nε2k · · · ≤ nk/(1−ε). Since ε is constant, the time is polynomial. 2

Speculation: These results do not exclude the following approach. Let us start with the assump-
tion that NP ⊆ TC0. Based on this assumption find a downward self-reduction of SAT (or some other
specially-constructed set in NP) and conclude that under this assumption SAT has almost linear size
TC0 circuits. Then prove that SAT does not have such circuits.

This is the appropriate time to observe that if NP ⊆ TC0, then it certainly does have the strong
downward self-reducibility property; this follows from Proposition 17 below. However, since one
can say nothing about the size of this self-reduction (other than that it is computed by an AC0 circuit
of polynomial size), this does not seem to allow us to conclude that SAT has TC0 circuits of, say,
quadratic size.

Proposition 17 If A is equivalent to BFE under uniform (non-uniform, respectively) ≤AC0

T reduc-
tions, then for every ε > 0, An is downward self-reducible via a uniform (non-uniform, respectively)
AC0 reduction of depth O(1) and size nO(1) that asks queries of length at most nε. Moreover, the
size of the self-reduction of An can be determined from the sizes of reductions between A and BFE.

Proof. By hypothesis, A≤AC0

T BFE via a reduction that, on instances of length n, asks queries of
size nO(1). Since queries to BFE can be padded easily to equivalent queries of longer length, we
may assume that all queries have length nk. Similarly, we are given that BFE≤AC0

T A via a reduction
that, on inputs of length m, asks queries of size at most mc. Composing these reductions with the
self-reduction that reduces BFEnk to BFEnkδ (for δ < ε/kc) yields the desired self-reduction for A.

2

The next section addresses the question of whether superpolynomial lower bounds obtained by
“amplifying” a “natural” proof of a lower bound of size n1.0001 would constitute an “un-natural
proof”.

6 The Natural Proofs barrier
Razborov and Rudich [15] identified a significant obstacle to further progress in proving lower bounds
on circuit size, by observing that existing lower bound arguments rely on the existence of an easy-to-
recognize combinatorial property of a function f that (a) is shared by a large fraction of all functions,
and (b) is shared by no function that has small circuits of a given type. Razborov and Rudich showed
that any “Natural Proof” that follows this paradigm and shows that a function cannot be computed

by circuits of a class C constitutes a proof that C cannot compute pseudorandom function generators.
It is not clear how significant an obstacle this is, for proving lower bounds against ACC0, since there
is not much evidence that ACC0 circuit families can compute pseudorandom function generators.
However, for TC0 this is a serious impediment, since Naor and Reingold have presented a good
candidate pseudorandom function generator that is computable in TC0 [14].

It is premature to argue very strongly that we have identified a path around this obstacle. After
all, the only new lower bound that this paper offers is to be found in Section 7, and that bound follows
from known time-space tradeoff results. (These time-space tradeoffs, in turn, rely on diagonalization,
which lies outside the natural proofs framework, but only gives lower bounds for uniform circuit fam-
ilies. The natural proofs framework addresses the problem of finding lower bounds for nonuniform
circuit complexity.)

However, we contend that it is at least plausible that a natural proof could form the basis for a
proof that NC1 6= TC0, even assuming that the Naor-Reingold generator is cryptographically secure.

How?
There seems to be no reason why a natural proof cannot yield a lower bound of the form nk for

some fixed k. The parity lower bound of Impagliazzo, Paturi, and Saks gives a lower bound of this
form for BFE on TC0 circuits of depth d [11]. Håstad gives a nearly cubic lower bound on formula
size [9]. These are natural proofs.

The self-reducibility property that allows a modest lower bound to be amplified to a superpolynomial-
size lower bound, on the other hand, is a combinatorial property that is shared by only a vanishingly
small fraction of all Boolean functions on n variables. Thus, this part of a lower bound argument
would not fit into the Natural Proofs framework. (Strictly speaking, the downward self-reducibility
property is not a combinatorial property in the sense of the Natural Proofs framework, as it is a re-
lationship between function values on different input sizes. However, all downward self-reducible
functions must have truth-tables of small Kolmogorov complexity, and thus they constitute a tiny
fraction of all functions.)

To be concrete, let us exhibit an example of a property T that is natural, and useful in the sense
of Razborov and Rudich. We will recall the definitions of Razborov and Rudich [15]:

Let Fn denote the class of all Boolean functions fn : {0, 1}n → {0, 1}. A property {Tn ⊆
Fn}n∈N is QuasiP -natural if there is a sub-property {T ∗

n ⊆ Tn}n∈N such that for some ε, c > 0

1. |T ∗
n | ≥ |Fn|/2εn, and

2. there is a deterministic algorithm that given a truth-table of a function fn : {0, 1}n → {0, 1}
decides whether fn ∈ T ∗

n in time 2nc

.

Furthermore, a property {Tn ⊆ Fn}n∈N is useful against a circuit class Λ if no sequence of functions
{fn ∈ Tn}n∈N is computable by circuits from Λ.

Our property T is defined as follows:

Tn = {fn : {0, 1}n → {0, 1}; fn does not have circuits of depth log∗ n and size n2

consisting of MAJ and NOT gates}.

It is a trivial exercise to verify that T is natural and useful against TC0 circuits of size O(n1.5).
Of course, we are not able to establish that BFE has property T ; if it does, then by Corollary 12
NC1 6= TC0. Clearly one can come up with QuasiP -natural property that will be useful against any
class of circuits of a fixed polynomial size.

However, the existence of property T does not seem to imply anything very interesting about
the nonexistence of pseudorandom function generators (and consequently does not yield interesting
upper bounds on the complexity of factoring Blum integers, which would follow if the Naor-Reingold
generator is insecure [14]).

The arguments of Razborov and Rudich transform any natural lower bound proof into a lower
bound on the complexity of computing a pseudorandom function generator. However, lower bounds

for circuits of size nk for fixed k translate into lower bounds for pseudorandom function generators
that are so weak as to be uninformative.

So are there reasons to be more optimistic about prospects for lower bounds? We are not sure.
The truth is that we do not understand computation. All the known lower bounds essentially rest
on information theoretic arguments and none of them really takes into account computation. For
example we are unable to handle recursion so our bounds typically deteriorate with depth. Hence,
the underlying message of Razborov and Rudich – namely, that we need to go beyond combinatorial
arguments – is still a worthwhile message. We identify two still unresolved challenges that we believe
would advance our understanding of computation:

• Prove Ω(n2) lower bounds on the length of width 5 branching programs computing an explicit
function.

• Prove Ω(n1+1/
√

d) lower bounds on the size of depth d circuits computing an explicit function.

Are there perhaps fundamental barriers that remain in our path, as we attempt to prove circuit
lower bounds?

One way to explore this question is to follow the lead of Razborov [17], who showed that (under
cryptographic assumptions) the bounded arithmetic proof system S2

2 cannot prove that SAT requires
circuits of superpolynomial size. (In earlier work, Razborov had argued that most existing lower
bound arguments can be carried out in even weaker systems [16].)

Perhaps techniques similar to those of [17], combined with our observations can enable one to
prove that S2

2 (or a similar system) cannot prove that BFE requires TC0 circuits of size n1+ε.

7 Circuit lower bounds
We begin this section by showing that problems with small constant-depth circuits have algorithms
that run quickly and have small space bounds.

Theorem 18 If A has Dlogtime-uniform TC0circuits of depth d with O(n1+ε) wires then for every
0 < δ < 1 + ε, A ∈ TISP ((n1+ε + nδd) logO(1) n, n1+ε−δ logO(1) n) on random access machines
and A ∈ TISP ((n1+ε+δd logO(1) n, n1+ε−δ logO(1) n) on Turing machines. (The same claim holds
with “TC0” replaced by “ACC0” and “CC0”, etc.)

Proof. A naı̈ve recursive way to evaluate the circuit in space O(log n) would require time O(nd(1+ε)).
Since we can use more space we will use it to remember the computed values of gates that have fan-
in larger than nδ . The faster algorithm then will also recursively evaluate the circuit but whenever
it computes the value of a gate with fan-in larger than nδ it records the value so such a gate will be
evaluated at most once. On a random access machine we will store the values in a binary search tree,
on a Turing machine we will store them in a simple list. Since there are at most O(n1+ε/nδ) gates
with fan-in larger than nδ we will need space only O(n1+ε−δ logO(1) n). Finding the value of a gate
and whether it has already been computed will take O(logO(1) n) time on a random access machine
and O(n1+ε−δ logO(1) n) on a Turing machine. To bound the total time needed to evaluate the circuit
notice that we will have to recursively evaluate a tree of fan-in at most nδ and depth d. To traverse the
tree we will need to make nδd visits to the nodes. Beside that we will have to evaluate the gates with
large fan-in. Since there are at most O(n1+ε) wires leading into them these gates will additionally
cost at most O(n1+ε) node visits. This yields the claimed time bound. 2

We need to make use of known time-space tradeoffs for SAT. The following theorem is a special
case of Theorem 1.3 in the excellent survey article by van Melkebeek [20]:

Theorem 19 For every real c such that 1 < c < 5/3, there exists a positive real e such that SAT
cannot be solved by both

1. a Π1 machine with random access that runs in time nc and

2. a deterministic random-access machine that runs in time n1.5 and space ne.

Moreover, the constant e approaches 1 from below when c approaches 1 from above.

Theorem 20 For every d there is a constant ε > 0 such that SAT does not have Dlogtime-uniform
depth d TC0 circuits with fewer than n1+ε wires.

Proof. Assume that the claim fails for some depth d; thus for every ε > 0, SAT has Dlogtime-uniform
depth d TC0 circuits with fewer than n1+ε wires.

By Theorem 18, this implies that for all small ε and δ, SAT is in TISP(n1+ε + ndδ, n1+ε−δ). In
particular, this is true if we pick δ = 2ε; hence we conclude that for all small enough ε > 0, SAT is
in TISP(n1+ε, n1−ε). Since this is true for all ε, we have in particular that SAT is in DTIME(nc) for
all c > 1.

Pick ε < 1
2 . We thus have SAT is in TISP(n1.5, n1−ε).

By Theorem 19, if we let c approach 1 from above, the value of e (in Theorem 19) approaches 1
from below. Thus there is some value of c > 1 for which e > 1− ε (in the statement of Theorem 19).
Fix these values of c and e. Summarizing, we now have that SAT is in TISP(n1.5, ne).

At this point, by Theorem 19, we know that SAT is not in both Π1 Time(nc) and TISP(n1.5, ne).
But we have already observed (three paragraphs ago) that SAT is in DTIME(nc) and thus it is in
Π1 Time(nc). Thus we must conclude that SAT is not in TISP(n1.5, ne). But this contradicts the
conclusion of the preceding paragraph. 2

8 Conclusions and open problems
The most important and interesting question raised by this work, is the question of whether it can
ultimately lead to separations of complexity classes. However, a number of other questions naturally
arise. We close by listing two such questions.

• Are there sets complete for every level of the NC hierarchy that are downward self-reducible
to instances of size nε? Or is there some fundamental reason why we were unable to find a
downward self-reduction of this sort for any problem that is complete for NL or L?

• If NP = TC0, does SAT have TC0 circuits of quadratic size? If NEXP ⊆ non-uniform CC0[6],
does the standard complete set for NEXP have CC0[6] circuits of quadratic size? (Even if
arguments based on downward self-reducibility fail for problems outside of NC, perhaps there
is another approach that leads to the same conclusion.)

Acknowledgments
We thank David Mix Barrington, Scott Diehl, Lance Fortnow, Stephan Holzer, Alexander Razborov,
Mike Saks, Mario Szegedy, Denis Thérien, and Fengming Wang for helpful discussions. We thank
Ryan Williams for calling our attention to the work of Srinivasan [19]. We thank the program com-
mittee (and their referees) for helpful suggestions.

References
[1] M. Ajtai. A non-linear time lower bound for Boolean branching programs. In Proc. IEEE Symposium on

Foundations of Computer Science (FOCS), pages 60–70, 1999.

[2] D. A. Barrington. Bounded-width polynomial-size branching programs recognize exactly those languages
in NC1. Journal of Computer and System Sciences, 38(1):150–164, Feb. 1989.

[3] D. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. Journal of Computer and
System Sciences, 41(3):274–306, Dec. 1990.

[4] P. Beame, M. Saks, X. Sun, and E. Vee. Super-linear time-space tradeoff lower bounds for randomized
computation. Journal of the ACM, 50:154–195, 2003.

[5] S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel algorithm for formula evaluation.
SIAM Journal on Computing, 21:755–780, 1992.

[6] H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1 computation. Journal of
Computer and System Sciences, 57:200–212, 1998.

[7] L. Fortnow. Time-space tradeoffs for satisfiability. Journal of Computer and System Sciences, 60:336–353,
2000.

[8] S. Goldwasser, D. Gutfreund, A. Healy, T. Kaufman, and G. N. Rothblum. Verifying and decoding in
constant depth. In Proc. ACM Symp. on Theory of Computing (STOC), pages 440–449, 2007.

[9] J. Håstad. The shrinkage exponent of de Morgan formulas is 2. SIAM J. Comput., 27(1):48–64, 1998.
[10] W. Hesse, E. Allender, and D. A. M. Barrington. Uniform constant-depth threshold circuits for division

and iterated multiplication. Journal of Computer and System Sciences, 65:695–716, 2002.
[11] R. Impagliazzo, R. Paturi, and M. E. Saks. Size-depth tradeoffs for threshold circuits. SIAM J. Comput.,

26:693–707, 1997.
[12] M. Koucký. Circuit complexity of regular languages. submitted for journal publication, 2007.
[13] M. Koucký, P. Pudlák, and D. Thérien. Bounded-depth circuits: Separating wires from gates. In Proc.

ACM Symp. on Theory of Computing (STOC), pages 257–265, 2005.
[14] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions. J. ACM,

51(2):231–262, 2004.
[15] A. Razborov and S. Rudich. Natural proofs. J. Comput. Syst. Sci., 55:24–35, 1997.
[16] A. A. Razborov. Bounded arithmetic and lower bounds. In P. Clote and J. Remmel, editors, Feasible Math-

ematics II,, volume 13 of Progress in Computer Science and Applied Logic, pages 344–386. Birkhäuser,
1995.

[17] A. A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of bounded arithmetic.
Izvestiya Math., 59:205–227, 1995.

[18] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proc.
ACM Symp. on Theory of Computing (STOC), pages 77–82, 1987.

[19] A. Srinivasan. The value of strong inapproximability results for clique. In Proc. ACM Symp. on Theory of
Computing (STOC), pages 144–152, 2000.

[20] D. van Melkebeek. A survey of lower bounds for satisfiability and related problems. Foundations and
Trends in Theoretical Computer Science, 2:197–303, 2007.

