
COMBINATORIAL DIFFERENTIAL GEOMETRY AND IDEAL

BIANCHI–RICCI IDENTITIES

J. JANYŠKA, M. MARKL

Abstract. We apply the graph complex method of [7] to vector fields depending naturally
on a set of vector fields and a linear symmetric connection. We characterize all possible
systems of generators for such vector-field valued operators including the classical ones
given by normal tensors and covariant derivatives. We also describe the size of the space of
such operators and prove the existence of an ‘ideal’ basis consisting of operators with given
leading terms which satisfy the (generalized) Bianchi–Ricci identities without the correction
terms.

Plan of the paper. In Sections 1 and 2 we recall classical reduction theorems and the

Bianchi-Ricci identities. The main results of this paper, Theorems A–F, are formulated in

Section 3. Sections 4, 5 and 6 contain necessary notions and results of the graph complex

theory and related homological algebra. Section 7 provides proofs of the statements of

Section 3.

1. Classical reduction theorems

In this paper, M will always denote a smooth manifold. The letters X, Y , Z, U , V ,...,

with or without indices, will denote (smooth) vector fields on M . The local coefficients of

a vector field X are smooth functions Xλ in coordinates xλ, 1 ≤ λ ≤ dim(M), such that

X = Xλ ∂
∂xλ where, as usual, the summation over repeated indices is assumed. We also

consider a linear connection Γ on M with Christoffel symbols Γλ
µν , 1 ≤ λ, µ, ν ≤ dim(M),

see, for example, [1, Section III.7]. The letter R will denote the curvature (1, 3)-tensor field

of Γ, the symbol ∇ the covariant derivative with respect to Γ, and by ∇(r) we will denote the

sequence of iterated covariant derivatives up to order r, i.e. ∇(r) = (id,∇, . . . ,∇r). In this

paper we assume the connection Γ to be symmetric (also called torsion-free), i.e. Γλ
µν = Γλ

νµ.

The case of non-symmetric connections will be addressed in a forthcoming paper.

It is well-known that natural (that is invariant with respect to chosen local coordinates,

i.e. coordinate-independent) operators of linear symmetric connections on manifolds and

of tensor fields which have values in tensor fields can be factorized through the curvature
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2 JANYŠKA, MARKL

tensors, their covariant derivatives, given tensor fields and their covariant derivatives. These

results are known as the first (the operators of connections only) and the second reduction

theorems.

Let us quote the original Schouten’s formulation of the first reduction theorem.

1.1. Theorem. [12, p. 164] All differential concomitants of a symmetric connexion are or-

dinary concomitants of R.
ν
.
µ

.
λ

κ and its covariant derivatives.

Similarly we have the second reduction theorem.

1.2. Theorem. [12, p. 165] All differential concomitants of a set of quantities Φ1, . . . , Φd (in-

dices suppressed) and the symmetric connexion Γκ
µλ are ordinary concomitants of Φ1, . . . , Φd,

R.
ν
.
µ

.
λ

κ and their covariant derivatives.

Let us recall that a differential concomitant is a polynomial coordinate-independent op-

erator with values in tensor fields depending on certain order derivatives of input fields,

while ordinary concomitants are zero order operators obtained from input fields by tensorial

operations, i.e. by tensor products, permutations of indices and contractions.

Proofs of the above reduction theorems use normal coordinates of Γ centered at a point

x0 of M , see [15]. In such coordinates,

(1.1) Γλ
µν(x

ρ) = xρNλ
ρµν(x0) +

1

2!
xρ1xρ2Nλ

ρ1ρ2µν(x0) + · · · ,

where Nn := (Nλ
ρ1 ···ρn−2µν), n ≥ 3, are the normal tensors satisfying the following identities:

(1.2) Nn(Xσ(1), . . . , Xσ(n−2), Xn−1, Xn) − Nn(X1, . . . , Xn) = 0

for any permutation σ of (n − 2) indices,

(1.3) Nn(X1, . . . , Xn−2, Xn−1, Xn) − Nn(X1, . . . , Xn−2, Xn, Xn−1) = 0

and

(1.4)
∑

σ∈Σn

Nn(Xσ(1), . . . , Xσ(n)) = 0,

where Σn denotes the permutation group of n elements. The independence of a differential

concomitant on given local coordinates implies that any differential concomitant of Γ is

an ordinary concomitant of the normal tensors Nn, n ≥ 3. This result is known as the

replacement theorem, see [14]. The first reduction theorem now follows from the fact that

each Nn can be expressed as a linear combination, with real coefficients, of the covariant

derivatives of order (n − 3) of the curvature tensor R of Γ and a tensor field constructed

from covariant derivatives of orders ≤ (n − 4) of R, [12, p. 162], i.e., if we denote by

(∇iR)(X1, . . . , Xi)(Xi+1, Xi+2)(Xi+3)
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COMBINATORIAL DIFFERENTIAL GEOMETRY 3

the (1, i + 3) tensor field ∇iR evaluated on vector fields (X1, . . . , Xi+3), one can write

Nn(X1, . . . , Xn) =
∑

σ∈Σn

Aσ(∇n−3R)(Xσ(1), . . . , Xσ(n−3))(Xσ(n−2), Xσ(n−1))(Xσ(n)) + l.o.t. ,

with some Aσ ∈ R, where l.o.t. is a (1, n)-type ordinary concomitant constructed from

∇(n−4)R.

The second reduction theorem can be proved similarly.

In the language of natural bundles and natural operators, differential concomitants are

polynomial natural differential operators, see, for instance, [2, 3, 11, 13]. It is proved in [2,

Section 28] that the above reduction theorems are true for all natural differential operators,

not only for polynomial ones.

We will study polynomial natural differential operators on vector fields and symmetric lin-

ear connections with values in vector fields. By the second reduction theorem such operators

of order r with respect to the vector fields are given by their r-th order covariant derivatives.

So, the minimal order with respect to the connection is (r− 1) but this order can be higher.

We have:

1.3. Corollary. All polynomial vector fields depending naturally on vector fields X1, . . . , Xd

(in order r) and a symmetric linear connection Γ (in order s ≥ (r − 1)) are obtained by

tensorial constructions from the covariant derivatives (up to the order (s−1)) of the curvature

tensor of Γ, vector fields X1, . . . , Xd and their covariant derivatives up to the order r, i.e.

X(Γ; X1, . . . , Xd) = X(∇(s−1)R;∇(r)X1, . . . ,∇
(r)Xd) .

Results of the paper. Classical reduction theorems, as Theorems 1.1 and 1.2 above,

describe systems of operators which generate all operators of a given type. One usually also

gives a list of relations between these generators. For example, the generating system
S

∇(s−1)R

for operators of a symmetric connection given by the symmetrized covariant derivatives of

the curvature tensor satisfies the classical (higher order) Bianchi identities (2.11) with non-

vanishing right-hand sides.

In this paper we characterize all generating systems of natural operators from a set of

vector fields and a connection with values in vector fields, see Theorems A, B and C of

Section 3. Theorem D of the same section is a uniqueness result for presentations in a

given generating system. Theorem E then states that, for each choice of the leading terms

of the generating operators, there exists a streamlined, ‘ideal’ version of these operators

satisfying the (generalized) Bianchi-Ricci identities without the right-hand sides. Finally, in

Theorem F, we calculate the size of the spaces of natural operators studied in the paper.
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4 JANYŠKA, MARKL

Methods of the paper. Classical proofs of reduction theorems, as those given in [12,

Section III.7], as well as proofs that use techniques of natural operators, see [2, Section 28],

are based on technically complicated calculations in coordinates. The proofs given in this

paper combine the classical methods of normal coordinates with the graph complex method

proposed by the second author in [7] which is independent on local calculations and analysis.

While the ‘classical’ methods are suited for proving that a certain system of operators

generate all operators of a given type, the graph-complex method is particularly useful for

analyzing the uniqueness of expressing an operator via the generating ones. Therefore, the

strength of the graph complex method will be particularly manifest in Theorems B, D and F

of Section 3.

Let us close this section by recalling that the graph complex method is a sophisticated

version of the ‘abstract tensor calculus.’ It represents geometric quantities, such as coor-

dinates of a tensor field, via vertices of graphs, with graphs playing the role of contraction

schemes for composed geometric objects. The coordinate independence of such expressions

is characterized by the vanishing of a graph differential. This brings our method into the

realm of homological algebra. See [7, 6] for details.

2. Classical Bianchi and Ricci identities

If Q is a tensor field of the type (1, k), k ≥ 0, we denote by (∇rQ)(X1, . . . , Xr, Z1, . . . , Zk)

the value of the rth covariant derivative of Q evaluated on (r + k) vector fields Xj, Zi,

j = 1, . . . , r, i = 1, . . . , k, i.e.

(∇rQ)(X1, . . . , Xr, Z1, . . . , Zk) = Xν1 · · ·XνrZµ1 · · ·Zµk ∇ν1
· · ·∇νr

Qλ
µ1...µk

∂

∂xλ
.

Let us denote by

(
S

∇rQ)(X1, . . . , Xr, Z1, . . . , Zk) =
1

r!

∑

σ∈Σr

(∇rQ)(Xσ(1), . . . , Xσ(r), Z1, . . . , Zk)

and

(
A

∇rQ)(X1, . . . , Xr, Z1, . . . , Zk) =
1

r!

∑

σ∈Σr

(−1)sign(σ)(∇kQ)(Xσ(1), . . . , Xσ(r), Z1, . . . , Zk)

the symmetrized and the antisymmetrized rth covariant derivatives of Q, respectively.

Then we have the Ricci identity

(
A

∇2Q)(Y, X,Z1, . . . , Zk) = −
1

2

[
R(X, Y )(Q(Z1, . . . , Zk))(2.1)

− Q(R(X, Y )(Z1), Z2, . . . , Zk) − · · · − Q(Z1, . . . , R(X, Y )(Zk))
]

.
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COMBINATORIAL DIFFERENTIAL GEOMETRY 5

From the Ricci identity (2.1) we obtain

(∇rQ)(X1, . . . , Xr, Z1, . . . , Zk) = (
S

∇rQ)(X1, . . . , Xr, Z1, . . . , Zk)(2.2)

+ pol(X1, . . . , Xr, Z1, . . . , Zk) ,

where pol is a (1, r + k)-type ordinary concomitant constructed from ∇(r−2)Q and ∇(r−2)R.

For vector fields we have

(∇Y )(X) = ∇XY , (∇2Z)(Y, X) = ∇Y (∇XZ) −∇∇Y XZ .

Identity (2.2) now has the form

(∇rZ)(X1, . . . , Xr) = (
S

∇rZ)(X1, . . . , Xr) + pol(X1, . . . , Xr) ,(2.3)

where pol is a (1, r)-type ordinary concomitant constructed from ∇(r−2)Z and ∇(r−2)R.

For the curvature tensor we have the antisymmetry identity

(2.4) R(X, Y )(Z) = −R(Y, X)(Z) ,

the 1st Bianchi identity

(2.5) ◦
∑

X,Y,Z

R(X, Y )(Z) = 0 ,

and the 2nd Bianchi identity

(2.6) ◦
∑

U,X,Y

(∇R)(U)(X, Y )(Z) = 0 ,

where ◦
∑

denotes the cyclic summation over the indicated vector fields. Identity (2.2) for R

has the form

(∇rR)(U1, . . . , Ur)(X, Y )(Z) = (
S

∇rR)(U1, . . . , Ur)(X, Y )(Z)(2.7)

+ pol(U1, . . . , Ur, X, Y, Z) ,

where pol is a (1, r + 3)-type ordinary concomitant constructed from ∇(r−2)R.

2.1. Remark. The rth order, r ≥ 2, covariant derivative ∇rR satisfies the identities obtained

by the covariant derivatives of the 1st and the 2nd Bianchi identities, i.e.

(2.8) ◦
∑

X,Y,Z

(∇rR)(U1, . . . , Ur)(X, Y )(Z) = 0 , ◦
∑

Ur,X,Y

(∇rR)(U1, . . . , Ur)(X, Y )(Z) = 0 .

The symmetrized rth order covariant derivative
S

∇rR however satisfies only the identity

obtained by the covariant derivative of the 1st Bianchi identity.

So, for the symmetrized higher order covariant derivatives of the curvature tensor, we have

the following (higher order) antisymmetry identity

(2.9) (
S

∇rR)(U1, . . . , Ur)(X, Y )(Z) + (
S

∇rR)(U1, . . . , Ur)(Y, X)(Z) = 0 ,
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the (higher order) classical 1st Bianchi identity

(2.10) ◦
∑

X,Y,Z

(
S

∇rR)(U1, . . . , Ur)(X, Y )(Z) = 0

and the (higher order) classical 2nd Bianchi identity with a non-vanishing right hand side

(2.11) ◦
∑

Ur ,X,Y

(
S

∇rR)(U1, . . . , Ur)(X, Y )(Z) = −◦
∑

Ur ,X,Y

pol(U1, . . . , Ur, X, Y, Z) ,

where pol is a (1, r + 3)-type ordinary concomitant from (2.7).

3. Main results

3.1. Operators we consider. Let Con be the natural bundle functor of torsion-free linear

connections [2, Section 17.7] and T the tangent bundle functor. We will consider natural

differential operators O : Con × T⊗d → T acting on a linear connection and d vector fileds,

d ≥ 0, which are linear in the vector fields variables, and which have values in vector fields.

We will denote the space of natural operators of this type by Nat(Con × T ⊗d, T ). Some

typical operators Con × T⊗d → T are recalled in Example 4.1 on page 16.

Define the vf-order (vector-field order) resp. the c-order (connection order) of a differential

operator O : Con × T⊗d → T as the order of O in the vector field variables, resp. the

connection variable.

3.2. Traces. Let O be an operator acting on vector fields X1, . . . , Xd and a connection Γ,

with values in vector fields. Suppose that O is a linear order 0 differential operator in Xi

for some 1 ≤ i ≤ d. This means that the local formula O(Γ, X1, . . . , Xd) for O is a linear

function of the coordinates of Xi and does not contain derivatives of the coordinates of Xi.

In this situation we define Tr i(O) ∈ Nat(Con × T⊗(d−1), R) as the operator with values in

the bundle R of smooth functions given by the local formula

Tr i(O)(Γ, X1, . . . , Xi−1, Xi+1, . . . , Xd) :=

Trace(O(Γ, X1, . . . , Xi−1,−, Xi+1, . . . , Xd) : R
n → R

n).

It is easy to see that Tr i(O) is well defined. Whenever we write Tr i(O) we tacitly assume

that the trace makes sense, i.e. that O is linear order 0 differential operator in Xi.

3.3. Compositions Let O
′ : Con × T⊗d′ → T and O

′′ : Con × T⊗d′′ → T be operators as

in 3.1. Assume that O
′ is a linear order 0 differential operator in Xi for some 1 ≤ i ≤ d′. In

this situation we define the composition O
′ ◦i O

′′ : Con × T⊗(d′+d′′−1) → T as the operator

obtained by substituting the value of the operator O
′′ for the vector-field variable Xi of O

′.

As in 3.2, by writing O
′ ◦i O

′′ we signalize that O
′ is of order 0 in Xi.
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COMBINATORIAL DIFFERENTIAL GEOMETRY 7

3.4. Throughout this section, by an iteration of differential operators we understand applying

a finite number of the following ‘elementary’ operations:

(i) permuting the vector-fields inputs of a differential operator O,

(ii) taking the pointwise linear combination k′ · O′ + k′′ · O′′, k′, k′′ ∈ R,

(iii) performing the substitution O
′ ◦i O

′′, and

(iv) taking the pointwise product Tr i(O
′) · O′′.

We of course assume that the operations in (ii) and (iii) make sense, see 3.2 and 3.3. There

are ‘obvious’ relations between the above operations. The operations ◦i in (iii) satisfy the

‘operadic’ associativity and are compatible with permutations in (i), see properties (1.9) and

(1.10) in [9, Definition II.1.6]. Other ‘obvious’ relations are the commutativity of the trace,

Tr j(O
′ ◦i O

′′) = Tr i(O
′′ ◦j O

′) and its ‘obvious’ compatibility with permutations of (i).

The iteration defined above provides a coordinate-independent definition of an ordinary

concomitant recalled on page 2, i.e. an operator O is an iteration of operators O1, . . . , ON if

and only if it is an ordinary concomitant of O1, . . . , ON .

3.5. Let us consider, for n ≥ 3, the induced representation E0(n) := IndΣn

Σn−2×Σ2
(1n−2 × 12),

where 1n−2 (resp. 12) is the trivial representation of the symmetric group Σn−2 (resp. Σ2).

Elements of E0(n) are linear combinations

(3.1)
∑

σ∈Ush(n−2,2)

ασ · (1n−2 × 12)σ,

where 1n−2 × 12 ∈ 1n−2 × 12 is the generator, ασ ∈ R, and σ runs over all (n − 2, 2)-

unshuffles which are, by definition, permutations σ ∈ Σn such that σ(1) < · · · < σ(n − 2)

and σ(n − 1) < σ(n). Let E1(n) be the trivial Σn-module 1n and ϑE : E0(n) → E1(n) the

equivariant map that sends the generator 1n−2 × 12 ∈ 1n−2 × 12 to −1n ∈ 1n. The reason

for this notation and sign convention will became clear in Section 6.

Define finally K(n) ⊂ E0(n) to be the kernel of the map ϑE. It is clear that K(n) consists

of all expressions (3.1) such that

(3.2)
∑

σ∈Ush(n−2,2)

ασ = 0.

Theorem A. Let Dn(Γ, X1, . . . , Xn), n ≥ 3, be differential operators in Nat(Con ×T⊗n, T )

whose local expressions are

(3.3) Dω
n

(
Γλ

µν, X
δ1
1 , . . . , Xδn

n

)
=

∑

σ∈Ush(n−2,2)

ασ · Xρ1

σ(1) · · ·X
ρn

σ(n)

∂n−2Γω
ρn−1ρn

∂xρ1 · · ·∂xρn−2

+ l .o.t .

where l .o.t . is an expression of differential order < n − 2, and {ασ}σ∈Σn
are real constants

such that the element (3.1) generates the Σn-module K(n) introduced in 3.5 (which in par-

ticular means that (3.2) is satisfied).
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Let also Vn(Γ, X1, . . . , Xn), n ≥ 1, be differential operators in Nat(Con × T⊗n, T ) of the

form

V ω
n

(
Γλ

µν , X
δ1
1 , . . . , Xδn

n

)
= X

ρ1

1 · · ·X
ρn−1

n−1

∂n−1Xωn

∂xρ1 · · ·∂xρn−1

+ l .o.t .,

where l .o.t . is an expression of differential order < n − 1.

Suppose, moreover, that the operator Dn(Γ, X1, . . . , Xn) is of vf-order 0 and the operator

Vn(Γ, X1, . . . , Xn) of order 0 in X1, . . . , Xn−1. Then each differential operator O : Con ×

T⊗d → T is an iteration, in the sense of 3.4, of the operators {Dn}n≥3 and {Vn}n≥1.

Theorem A, as well as other statements in this Section, are proved in Section 7. Observe

that necessarily V1(Γ, X) = X, so we may safely discard V1 from the list of ‘generating’

operators and consider Vn’s only for n ≥ 2.

3.6. Remark. It is a simple exercise on the Littlewood-Richardson rule that the Σn-module

K(n) of 3.5 decomposes as K(n) ∼=
⊕

λ Vλ, with the summation taken over all two-column

Young diagrams λ = (λ1, λ2) with λ1 ≥ 2, 0 < λ2 ≤ λ1, such that λ1 + λ2 = n, and where

Vλ is the irreducible representation corresponding to λ. Since all irreducible factors of K(n)

have multiplicity one, an element x ∈ K(n) is a Σn-generator if and only if πλ(x) 6= 0 for

each projection πλ : K(n) → Vλ. Therefore the assumption of Theorem A on the coefficients

ασ can in principle be checked.

The operator Dn(Γ, X1, . . . , Xn) in Theorem A has vf-order 0 so it can be interpreted

as a (1, n)-tensor field Dn(Γ) naturally depending on Γ (with c-order (n − 2)). Similarly

Vn(Γ, X1, . . . , Xn) can be considered as a (1, n− 1)-tensor field Vn(Γ, Xn) naturally given by

Γ and Xn (with order (n − 1) with respect to Xn).

Then the set {Dn(Γ)}n≥3 and {Vn(Γ, Xi)}n≥1, i = 1, . . . , d, is a new system of generating

operators for natural vector fields from Corollary 1.3.

There are two ‘preferred’ choices of the leading terms of the operators Dn in Theorem A,

the expression

(3.4) X
ρ1

1 · · ·Xρn

n

∂n−3

∂xρ1 · · ·∂xρn−3

(
∂Γω

ρn−2ρn

∂xρn−1

−
∂Γω

ρn−1ρn

∂xρn−2

)

and the expression

(3.5)




∑

σ∈Ush(n−2,2)

n(n − 1)

2
X

ρ1

σ(1) · · ·X
ρn

σ(n) − X
ρ1

1 · · ·Xρn

n


 ∂n−2Γω

ρn−1ρn

∂xρ1 · · ·∂xρn−2

.

The leading term (3.4) is given by the following choice of the coefficients in (3.3):

ασ :=





−1 if σ is the identity,

1 if σ is the 2-cycle that interchanges (n − 2) and (n − 1), and
0 otherwise.
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COMBINATORIAL DIFFERENTIAL GEOMETRY 9

It is fairly easy to prove that the corresponding element in (3.1) generates K(n). The

element (3.1) corresponding to (3.5) can be written as

(1n−2 × 12)




∑

σ∈Ush(n−2,2)

n(n − 1)

2
σ − id


 ,

so it is the image of the generator 1n−2 × 12 of E0(n) under the projection E0(n) � K(n).

This immediately implies that it generates K(n).

Expression (3.4) is the leading term of the iterated covariant derivative of the curvature

resp. of its streamlined version whose existence is proved in Theorem E. The leading term

of (3.5) is that of the “normal tensors” of (1.1), see also Example 3.7 below.

3.7. Example. Operators having the form required by Theorem A exist. One may, for

instance, take

Kn(Γ, X1, . . . , Xn) := (∇n−3R)(X1, · · · , Xn−3)(Xn−2, Xn−1)(Xn), n ≥ 3,

for the operators Dn and

Vn(Γ, X1, . . . , Xn) := (
S

∇n−1Xn)(X1, · · · , Xn−1), n ≥ 2.

It is obvious that the leading term of Kn is expression (3.4). Another realization of the

operators Dn is provided by the normal tensors Nn recalled in (1.1) whose leading term

is (3.5).

For an operator O ∈ Nat(Con × T⊗n, T ) and a permutation σ ∈ Σn we denote by Oσ

the operator obtained by permuting the vector-field variables X1, . . . , Xn of O according to

Σn. This action extends, by linearity, into a right action of the group ring R[Σn]. We will

denote Oc the result of the action of c ∈ R[Σn] on O. The following theorem characterizes

all possible systems of generating operators.

Theorem B. Assume that dim(M) ≥ 3. Let Un(Γ, X1, . . . , Xn) ∈ Nat(Con × T⊗n, T ),

n ≥ 3, be operators of vf-order 0 and of c-order (n − 2). Then the following two conditions

are equivalent.

(i) Each operator O ∈ Nat(Con ×T⊗d, T ) of vf-order 0 and c-order (n− 2) is an iteration

of the operators {Uu}u≤n.

(ii) For each n ≥ 3, there are elements c, c1, . . . , cn of the group ring R[Σn] such that the

leading term of the operator

(3.6) Dn := Unc +
∑

1≤j≤n

Tr j(Uncj)Xj ∈ Nat(Con × T⊗n, T )

is of the form required by Theorem A.
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10 JANYŠKA, MARKL

3.8. Example. Consider the operator

U3(Γ, X, Y, Z) := R(X, Y )(Z) + Tr(R(−, Z)(X)Y + Tr(R(−, Z)(Y )X.

Then clearly 1
2
{U(Γ, X, Y, Z) − U(Γ, Y, X, Z)} equals the curvature R(X, Y )(Z), so D3 de-

fined by (3.6) with c = 1
2
τ12, c1 = c2 = c3 = 0, where τ12 is the permutation (1, 2, 3) 7→

(2, 1, 3), has the leading term required by Theorem A. By Theorem B, U3 defined above can

be a member of a generating series of operators.

3.9. Example. Let us illustrate the necessity of the assumption dim(M) ≥ 3 in Theorem B.

Let U3 ∈ Nat(Con × T⊗3, T ) be the operator defined by

U3(Γ, X, Y, Z) := X · Tr(R(Y,−)(Z)) + Y · Tr(R(−, X)(Z)).

The leading term of this operator equals

XωY µZν
∂Γλ

µν

∂xλ
− Y ωXµZν

∂Γλ
µν

∂xλ
+ Y ωXλZν

∂Γµ
µν

∂xλ
− XωY λZν

∂Γµ
µν

∂xλ
,

so it is clearly not of the form required by Theorem A. On the other hand, it can be verified

by a straightforward calculation that on a 2-dimensional manifold,

U3(Γ, X, Y, Z) = R(X, Y )(Z) + l .o.t .

therefore, in dimension 2, the operator U3 can be a part of a generating series of operators.

Theorem C. Assume that dim(M) ≥ 2d−1 and that {Dn}n≥3, {Vn}n≥1 be as in Theorem A.

Let O : Con × T⊗d → T be a differential operator of the vf-order a ≥ 0. Then it has

an iterative representation with the following property. Suppose that an additive factor of

this iterative representation of O via {Dn}n≥3 and {Vn}n≥2 contains Vq1
, . . . , Vqt

, for some

q1, . . . , qt ≥ 2, t ≥ 0. Then

q1 + · · · + qt ≤ a + t.

In particular, if O is of vf-order 0, then there exists an iterative representation that uses only

{Dn}n≥3.

Notice that one can prove the particular case of Theorem C for operators of vf-order 0

without the dim(M) ≥ 2d− 1 assumption by a simple modification of the ‘classical’ proof of

Theorem A given on page 26. We, however, do not know how to use the classical reduction

techniques to prove Theorem C in full generality.

3.10. Example. It is clear that [X, Y ] = ∇XY −∇Y X i.e. if V2 is as in Example 3.7,

[X, Y ] = V2(Γ, X, Y ) − V2(Γ, Y, X).

This shows that the individual summands of an iterative representation of an operator O

may depend on the connection though the operator O does not. This fact was used in [3], in
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an other context, as the method of an auxiliary connection. Later, it was proved in [7] that

operators in Nat(Con × T⊗d, T ) that do not depend on the connection are iterations of the

Lie bracket of vector fields.

3.11. Example. We show that there is, in general, no relation between the c-order of a

differential operator and the c-order of its iterative representation. We have

[X, [Y, Z]] = V3(Γ, X, Y, Z) − V3(Γ, X, Z, Y ) + V2(Γ, V2(Γ, X, Y ), Z)

−V2(Γ, V2(Γ, X, Z), Y ) − V2(Γ, V2(Γ, Y, Z), X)

+V2(Γ, V2(Γ, Z, Y ), X) + l .o.t .

While the c-order of [X, [Y, Z]] is 0, the operators V3 in the right hand side are of the c-order 1.

For n ≥ 3, σ ∈ Σn and Dn as in Theorem A, denote by Dnσ the operator obtained from

Dn by permuting the vector fields variables according to σ. This notation clearly extends to

the action of an element S of the group ring R[Σn].

3.12. Definition. We say that S ∈ R[Σn] is a quasi-symmetry of an operator Dn in (3.3) if

(
∑

σ∈Σn

ασσ)S = 0

in the group ring R[Σn]. We say that S is a symmetry of Dn if DnS = 0.

A quasi-symmetry S of Dn, by definition, annihilates its leading term, therefore DnS is

an operator of c-order ≤ (n−3) that does not use the derivatives of the vector field variables.

We can express this fact by writing

(3.7) DnS(Γ, X1, . . . , Xn) = DS

n (Γ, X1, . . . , Xn)

where DS

n ∈ Nat(Con×T⊗n, T ) (D abbreviating “deviation”) is a degree ≤ (n−3) operator

which is, by Theorem C, an iteration of the operators Du with 3 ≤ u ≤ n − 1 (no Vn’s).

By definition, S is a symmetry of Dn if and only if DS

n = 0. We will see, in 3.13 below,

that (3.7) offers a conceptual explanation of the Bianchi and Ricci identities.

A similar discussion can be made also for the operators Vn, n ≥ 1. Since the leading term

of Vn is fully symmetric in X1, . . . , Xn−1,

(3.8) Vn(Γ, Xω(1), . . . , Xω(n−1), Xn) − Vn(Γ, X1, . . . , Xn) = DV ω
n (∇, X1, . . . , Xn)

for any n ≥ 2 and ω ∈ Σn−1, where DV ω ∈ Nat(Con × T⊗n, T ) is an order ≤ (n − 2)

differential operator.

The following theorem states that the iteration of Theorem A is unique up to identi-

ties (3.7), (3.8) and the ‘obvious’ relations.
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Theorem D. On manifolds of dimension ≥ 2d − 1, the iteration expressing an operator in

Nat(Con×T⊗d, T ) via {Dn}n≥3 and {Vn}n≥2 is unique up to relations (3.7) with S running

over all quasisymmetries of Dn, relation (3.8), and the ‘obvious’ relations among elementary

operations. In particular, (3.7) and (3.8) are the only (quasi)symmetries of the operators

{Dn}n≥3 and {Vn}n≥2.

3.13. Bianchi and Ricci identities. The leading term (3.4) enjoys the following symme-

tries:

(s1) the antisymmetry in Xn−2 and Xn−1,

(s2) the cyclic symmetry in Xn−2, Xn−1 and Xn,

(s3) for n ≥ 4, the cyclic symmetry in Xn−3, Xn−2 and Xn−1, and

(s3) for n ≥ 4, the total symmetry in X1, . . . , Xn−3.

We leave as an exercise to express these symmetries via appropriate elements of the group

ring R[Σn]. It is not difficult to prove that (s1)–(s4) generate all symmetries of (3.4).

Let Dn be an operator of the form (3.3) with the leading term (3.4). The (anti)symmetry

(s1) leads to the equation

(3.9) Dn (Γ, X1, ..., Xn−2, Xn−1, Xn) + Dn (Γ, X1, ..., Xn−1, Xn−2, Xn) = Das
n (Γ, X1, ..., Xn),

where the natural differential operator Das
n of order ≤ (n − 3) can be interpreted as the

deviation from antisymmetry of Dn. Similarly, (s2) leads to

(3.10) ◦
∑

σ

Dn

(
Γ, X1, . . . , Xσ(n−2), Xσ(n−1), Xσ(n)

)
= D′

n
cycl

(Γ, X1, . . . , Xn),

where ◦
∑

is the cyclic summation over the indicated indices and D′
n
cycl ∈ Nat(Con×T⊗n, T )

is an order ≤ (n − 3) differential operator. In the same manner, for n ≥ 4, (s3) gives

(3.11) ◦
∑

σ

Dn

(
Γ, X1, . . . , Xn−4, Xσ(n−3), Xσ(n−2), Xσ(n−1), Xn

)
= D′′

n
cycl

(Γ, X1, . . . , Xn),

for some order ≤ (n − 3) operators D′′
n
cycl ∈ Nat(Con × T⊗n, T ). Finally, for n ≥ 5, the

symmetry (s4) implies that

Dn

(
Γ, Xω(1), . . . , Xω(n−3), Xn−2, Xn−1, Xn

)
− Dn (Γ, X1, . . . , Xn) =(3.12)

= Dω
n(Γ, X1, . . . , Xn)

for each n ≥ 4 and a permutation ω ∈ Σn−3, with some order ≤ (n − 3) operators Dω
n ∈

Nat(Con × T⊗n, T ).

Observe that, by Theorem C, the right hand sides of (3.9)–(3.12) are iterations of the

operators Du with 3 ≤ u ≤ n− 1 (no Vn’s). We call (3.8)–(3.12) the Bianchi-Ricci identities

for the operators {Dn}n≥3 and {Vn}n≥2.
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3.14. Example. It is clear that not only the leading term of the operator Vn of Example 3.7,

but the operator itself is fully symmetric in X1, . . . , Xn−1, therefore (3.8) for this operator is

satisfied with trivial right hand side,

Vn(Γ, Xω(1), . . . , Xω(n−1), Xn) − Vn(Γ, X1, . . . , Xn) = 0

for any n ≥ 2 and ω ∈ Σn−1.

Let us inspect symmetries fulfilled by the operators Kn of Example 3.7.

For n = 3, (3.9) reduces to the standard antisymmetry of the curvature tensor,

(3.13) R(X, Y )(Z) + R(Y, X)(Z) = 0

and, for n ≥ 4, (3.9) is the iterated covariant derivative of (3.13). Therefore Kn satisfies (3.9)

with the trivial right hand side,

Kn (Γ, X1, . . . , Xn−2, Xn−1, Xn) + Kn (Γ, X1, . . . , Xn−1, Xn−2, Xn) = 0.

Similarly, for n = 3, (3.10) means the vanishing of the cyclic sum,

(3.14) R(X, Y )(Z) + R(Y, Z)(X) + R(Z, X)(Y ) = 0,

which is the classical 1st Bianchi identity (2.5) of a torsion-free connection. For n ≥ 4, (3.10)

is the iterated covariant derivative of (3.14), therefore

◦
∑

σ

Kn

(
Γ, X1, . . . , Xn−3, Xσ(n−2), Xσ(n−1), Xσ(n)

)
= 0.

For n = 4, the left hand side of (3.11) means the cyclic sum,

(3.15) (∇R)(U)(X, Y )(Z) + (∇R)(X)(Y, U)(Z) + (∇R)(Y )(U, X)(Z),

and, by the classical 2nd Bianchi identity (2.6), it is satisfied with the vanishing right hand

side. For n ≥ 5, (3.11) is the iterated covariant derivative of (3.15), therefore

◦
∑

σ

Kn

(
Γ, X1, . . . , Xσ(n−4), Xσ(n−3), Xσ(n−2), Xn

)
= 0.

On the other hand, for n ≥ 5, the left hand side of (3.12) is given by the covariant

derivatives of the Ricci identities, and it is nonzero.

3.15. Symmetries of the normal tensors. The leading term (3.5) of the normal tensor

Nn has the following symmetries:

(s1) the full symmetry in X1, . . . , Xn−2,

(s2) the symmetry in Xn−1 and Xn, and

(s3) the symmetry described by S :=
∑

σ∈Σn
σ.

One can prove that (s1)–(s3) generate all symmetries of (3.5). Equations (1.2)–(1.4) then say

that these symmetries of the leading term in fact extend to symmetries of the operator Nn.
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The following theorem shows that for each choice of the leading terms there exist partic-

ularly nice operators {Dn}n≥3 of Theorem A.

Theorem E. For each choice of the leading terms satisfying (3.2), there exist ‘ideal’ opera-

tors {Jn}n≥3 of the form (3.3), for which all the “generalized” Bianchi-Ricci identities (3.7)

are satisfied without the right hand sides. In other words, all quasisymmetries, in the sense

of Definition 3.12, are actual symmetries of the operators {Jn}n≥3.

Observe that, in Theorem E, we do not assume that the element (3.1) related to the

leading term generates K(n), we only assume that it belongs to the kernel of the map ϑE.

3.16. Example. As we already saw in Example 3.14, the operators Vn introduced in Ex-

ample 3.7 are ‘ideal’ in the sense that all their quasi-symmetries are also their symmetries.

This is not true for the iterated covariant derivatives Kn of the curvature tensor (see again

Example 3.14), neither for their ‘naively’ symmetrized versions K̃n :=
S

∇(n−3)R, n ≥ 3. The

ideal versions Jn of these operators (both having the same leading term) which exist by

Theorem E, can be constructed by modifying K̃n as

Jn = K̃n + Pn,

where Pn(Γ, X1, . . . , Xn) is a c-order ≤ (n−3) iteration of the operators {K̃u}3≤u≤n−1. While

clearly P3 = P4 = 0, i.e.

J3 = R , J4 = ∇R,

the calculation of the correction term Pn is, for n ≥ 5, a nontrivial task. To give the reader

the taste of the complexity of the calculation, we write an explicit formula for P5:

P (Γ,U, V, X, Y, Z) = −1
2

{
2R(U, R(X, Z)(Y ))(V ) − 2R(U, R(Y, Z)(X))(V )

+ 2R(V, R(X, Z)(Y ))(U) − 2R(V, R(Y, Z)(X))(U) + 2R(U, R(X, Y )(V ))(Z)

+ 2R(V, R(X, Y )(U))(Z) + R(X, R(U, Z)(V ))(Y ) + R(X, R(V, Z)(U))(Y )

− R(Y, R(U, Z)(V ))(X) − R(Y, R(V, Z)(U))(X) + R(U, R(X, Z)(V ))(Y )

+ R(V, R(X, Z)(U))(Y ) − R(U, R(Y, Z)(V ))(X) − R(V, R(Y, Z)(U))(X)

+ R(Y, R(X, U)(V ))(Z) + R(Y, R(X, V )(U))(Z) − R(X, R(Y, U)(V ))(Z)

− R(X, R(Y, V )(U))(Z) + R(Y, R(X, U)(Z))(V ) + R(Y, R(X, V )(Z))(U)

− R(X, R(Y, U)(Z))(V ) − R(X, R(Y, V )(Z))(U) + R(X, R(U, Z)(Y ))(V )

+R(X, R(V, Z)(Y ))(U) − R(Y, R(U, Z)(X))(V ) − R(Y, R(V, Z)(X))(U)
}

.
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3.17. Remark. Let as remark that the ideal basis {Jn}n≥3 of the type discussed in Exam-

ple 3.16 can be constructed using the normal tensors {Nn}n≥3 of (1.1) as

Jn(X1, . . . , Xn−3, Xn−2, Xn−1, Xn) :=(3.16)

= Nn(X1, . . . , Xn−3, Xn−2, Xn−1, Xn) − Nn(X1, . . . , Xn−3, Xn−1, Xn−2, Xn) .

It is indeed easy to see that the operators Jn defined in this way have the same leading

terms as the operators Kn and that identities (1.2)–(1.4) imply the identities (3.9)–(3.12)

with trivial right-hand sides.

On the other hand, the normal tensor Nn is, for each n ≥ 3, a linear combination

(3.17) Nn(X1, . . . , Xn) =
∑

σ∈Σn

Aσ Jn(Xσ(1), . . . , Xσ(n)),

where the real coefficients Aσ are determined by requiring that identities (3.9)–(3.12) with

trivial right-hand sides imply identities (1.2)–(1.4).

The size of the space of natural operators Con×T⊗d → T is described in the last theorem

of this section:

Theorem F. On manifolds of dimension ≥ 2d − 1, the vector space Nat(Con × T ⊗d, T ) is

isomorphic to the graph space Gr[K](d) introduced on page 25 of Section 6.

3.18. Example. The calculation of the dimension of Gr[K](d) as of a vector space spanned by

graphs is a purely combinatorial problem. For instance, for d = 1 we get dim(Gr[K](d)) = 1,

with the corresponding natural operator the identity X 7→ X.

One also easily calculates that, on manifolds of dimension ≥ 3, dim(Nat(Con×T ⊗2, T )) =

dim(Gr[K](d)) = 4. The corresponding generating operators are

∇XY, ∇Y X, X · Tr(∇−Y ) and Y · Tr(∇−X).

Results of this section characterize bases of natural operators in Nat(Con × T ⊗d, T ) and

state some properties of these bases. Various ‘classical’ bases are then special cases of these

general bases. This is symbolically expressed by Figure 1.

4. Rules of the game

In this section whose bulk is taken from [7] we recall the graph complex describing nat-

ural differential operators from Nat(Con × T⊗d, T ). The underlying graded vector space of

this complex is spanned by directed, not necessary connected, graphs with three types of

vertices plus one special vertex called the anchor, see 4.2. The differential given by vertex

replacements is recalled in 4.5. Let us, however, start with an example showing three typical

operators from Nat(Con × T⊗d, T ).
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{Nn}n≥3

identities of normal tensors
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general B.-R. identities
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ideal B.-R. identities
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∇n−3R}n≥3

classical B.-R. identities

�
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A

A
A

A
A

A
A

A
A

AAK

Figure 1. Classical bases of operators as specializations of the universal one.

4.1. Example. The Lie bracket X, Y 7→ [X, Y ] is a natural operator that constructs from

two vector fields on M a third one. For the purposes of this paper we consider the Lie

bracket as an operator in Nat(Con × T⊗2, T ). In local coordinates,

(4.1) [X, Y ] =

(
Xµ ∂Y λ

∂xµ
− Y µ ∂Xλ

∂xµ

)
∂

∂xλ
.

The covariant derivative (Γ, X, Y ) 7→ ∇XY is another natural differential operator from

Nat(Con × T⊗2, T ). In local coordinates,

(4.2) ∇XY =

(
Γλ

µνX
µY ν + Xµ ∂Y λ

∂xµ

)
∂

∂xλ
,

where Γi
jk are the Christoffel symbols. The curvature R ∈ Nat(Con × T⊗3, T ) of Γ is

a composition of the above operators,

R(X, Y )(Z) := ∇[X,Y ]Z − [∇X ,∇Y ]Z.

4.2. The graph complex. In this paper, by a graph we mean a directed (i.e. with oriented

edges), not necessary connected, graph whose vertices are of the types described below.

Multiple edges, loops and wheels are allowed. Let us recall the construction of the graph

complex Gr∗(d) describing natural differential operators from d vector fields and a torsion-

free linear connection with values in vector fields that are d-multilinear in the vector field

variables. Details and motivations can be found in [7] but observe that in that paper we

did not assume that the connection is torsion-free. The degree m part Grm(d) is spanned by
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graphs with precisely d ‘black’ vertices

(4.3) bu :=

6

�
���

@
@@I

�
���
• , u ≥ 0,

( ). . .︸ ︷︷ ︸
u inputs

labelled by X, Y, . . ., X1, . . . , Xd or 1, . . . , d, some number of vertices

(4.4) ∇ , u ≥ 0.
6

AAK@@I�
��

�
��

����*
. . .︸ ︷︷ ︸

u inputs

( ) ( )

precisely m ‘white’ vertices

(4.5)

6

�
���

@
@@I

�
���
◦ , u ≥ 2,

( ). . .︸ ︷︷ ︸
u inputs

and one vertex 6(the anchor). The braces ( ) in the above pictures mean that the inputs

they encompass are fully symmetric, but we will usually omit these braces in the forthcoming

text.

In the above graph complex, black vertices (4.3) correspond to derivatives of vector field

coordinates,

Xλ
(µ1 ,...,µu) :=

∂uXλ

∂xµ1 · · ·∂xµu

,

∇-vertices (4.4) to the derivatives of the Christoffel symbols,

(ω1,...,ωu)Γ
λ
µν :=

∂uΓλ
µν

∂xω1 · · ·∂xωu

,

white vertices (4.5) correspond to generators of infinitesimal symmetries and the anchor 6

to the vector-field value of the operator.

4.3. General connections and vector fields. A simple modification of material in 4.2

describes operators from general, not necessarily torsion-free, linear connections and vector

fields into vector fields. The corresponding graph complex has the same vertices (4.3), (4.5)

and 6as the graph complex Gr∗(d), above but we do not assume that the ∇-vertex (4.4) is

symmetric in the two rightmost inputs. The replacement rules are the same as for Gr∗(d)

and the obvious analog of Theorem 4.6 holds.
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4.4. Anchored versus rooted graphs. Before we proceed to the differential in the graph

complex, we need to make a couple of observations on the structure of our graphs. All graphs

we have been working with so far had an anchor 6. For an arbitrary k, 0 ≤ k ≤ d, denote by

Gr∗(d)k the subspace of Gr∗(d) spanned by graphs Υ with a distinguished subset {•1
6, . . . , •

k
6}

of the set of black vertices (4.3) with u = 0. Schematically such an Υ looks as

(4.6) Υ .

••• · · ·
k21

@@I

����

6

��
��

An obvious right Σk-action on the space Gr∗(d)k permutes the labels of the distinguished

vertices. Let Gr∗k :=
⊕

d≥k Gr∗(d)k. We will call graphs as in (4.6) anchored k-graphs.

For each graph Υ ∈ Gr∗k, there is a graph Υa with k input edges and one output edge,

obtained by amputating from the anchor and •’s from the input edges of the distinguished

vertices. For instance, the graph Υ in (4.6) gives the amputated graph

(4.7) Υa

· · ·
k21

@@I

����

6

��
��

with one output and k numbered input edges. As in operad theory, we will call the output

edge of Υa the root and its inputs the legs. Graphs as in (4.7) will be then called rooted

k-graphs. The operation Υ 7→ Υa is clearly one-to-one and, when convenient, we will make

no distinction between anchored graphs and the associated rooted graphs.

Let v be a vertex of a graph Λ ∈ Gr∗ :=
⊕

d≥1 Gr∗(d). Suppose that v has k input edges

and let Υ ∈ Gr∗k be a rooted k-graph enjoying the same Σk-symmetry as the inputs of v.

One then may replace the vertex v by Υ, by grafting the root of Υ to the output edge of

v and the legs of Υ to the input edges of v. We denote the result by Λ ◦v Υ ∈ Gr∗ and

call this operation the vertex insertion or vertex replacement . One can clearly extend this

by linearity to define Λ ◦v x for x ∈ Gr∗k a linear combination of graphs with appropriate

symmetry.

4.5. The differential. Let us recall that the graph differential δ : Gr∗(d) → Gr∗+1(d) is the

linear map acting on a graph Λ ∈ Grm(d) by the formula

(4.8) δ(Λ) =
∑

v∈Vert(Λ)

εv · Λ ◦v δ(v) ∈ Grm+1(d), m ≥ 0,
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in which Vert(Λ) denotes the set of vertices of Λ and Λ ◦v δ(v) the result of replacing the

vertex v by the sum δ(v) of rooted graphs defined by

δ

( )6

��� @@I���
◦
. . .︸ ︷︷ ︸

k inputs

:=
∑

s+u=k

6

��� @@I���
◦
. . .︸ ︷︷ ︸
s��� @@I���

◦
. . .︸ ︷︷ ︸
u

( )

ush

, k ≥ 2,

for white vertices,

(4.9) δ




6

��� @@I���
•X

. . .︸ ︷︷ ︸
k inputs


 :=

∑

s+u=k

6

��� @@I���
◦
. . .︸ ︷︷ ︸
s��� @@I���

•X

. . .︸ ︷︷ ︸
u

( )

ush

−

6

��� @@I���
•X

. . .︸ ︷︷ ︸
s��� @@I���

◦
. . .︸ ︷︷ ︸
u

( )

ush

, k ≥ 0,

for black vertices and δ( 6) = 0 for the anchor. The braces ( )ush in the right hand sides

indicate that the summations over all (u, s−1)-unshuffles of the inputs have been performed,

see formulas (29) and (30) of [7] for details. For convenience, we write explicitly formula (4.9)

for k = 0, 1, 2:

δ (•6) = 0, δ (•6
6
) =

6

6@@I•
◦ , δ (

6

��� AAK
• ) = −

6
6

��� AAK

•
◦ +

6

��� AAKK
•
◦ +

6

��� AAK
HHY•◦ , . . .

The replacement rule for the ∇-vertices is of the form

(4.10) δ

( )

∇
6

AAK@@I�
��

�
��

����*
. . .︸ ︷︷ ︸

k inputs

:= Gk −

6

��� @@I���
◦
. . .︸ ︷︷ ︸

k + 2

where Gk is a linear combination of 2-vertex trees with one ∇-vertex (4.4), with u < k, and

one white vertex (4.5) with u < k + 2. Explicit formulas for k = 0, 1 are

δ

( )

∇
6

AAK@@I
:= −

6

��� AAK
◦

and

δ

( )

∇
6

AAK@@I���
:=

6

�
�
��� @@I
◦
∇

AAK@@I
−

∇
6

6

J
J

J]

��� AAK
◦ −

∇
6

A
AAK@
@I

�
�3

@@I
◦ −

6

��� @@I6
◦ ,

which is a graphical form of an equation for the transformation of the Christoffel symbols

and their derivative under coordinate changes that can be found in [2, Section 17.7] (but

notice a different convention for covariant derivatives used in [2]).
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20 JANYŠKA, MARKL

Finally, εv ∈ {−1, +1} in (4.8) is a certain sign whose definition can be found in [7,

Section 4]. For the purposes of this paper it will be enough to say that, if Λ ∈ Gr0(d) (no

white vertices), then εv = 1 for all v ∈ Vert(Λ). The relation between Gr∗(d) and natural

differential operators is described in:

4.6. Theorem ([7]). Each element in H0(Gr∗(d), δ) = Ker
(
δ : Gr0(d) → Gr1(d)

)
represents

a natural operator Con×T⊗d → T . On manifolds of dimension ≥ 2d−1 this correspondence

is in fact an isomorphism

H0(Gr∗(d), δ) ∼= Nat(Con × T⊗d, T ).

4.7. Example. In this example taken from [7] we recall graphs representing the Lie bracket,

covariant derivative and curvature. The Lie bracket [X, Y ] of vector fields X, Y is de-

scribed by

[X, Y ]:
6
• Y

6
• X

-
6
• X

6
• Y

∈ Gr0(2),

which in the obvious way expresses the local formula (4.1). The covariant derivative is given

by the graph

∇ +∇XY :
6

AAK@@I
•
X

Y

•

6
• Y

6
• X

∈ Gr0(2),

which is a graphical form of (4.2). Finally, the curvature R : Con × T⊗3 → T is given by

the graph

∇ −R(X, Y )(Z) :
6

AAK@@I

�
•
XY Z

••
∇ + −

6

AAK@@I

�
•
YX Z

••
∇

6

AAK@@I
•
Y

∇
AAK@@I
•
X

Z

•

∇
6

AAK@@I
•
X

∇
AAK@@I
•
Y

Z

•

∈ Gr0(3).

We recommend as an exercise to verify that all the above graphs belong to the kernel of δ.

5. Auxiliary results

The results of this purely technical section will be used, in Section 6, to construct an ex-

plicit basis of the vector space H0(Gr∗(d), δ) recalled in Section 4. Let us consider a bicomplex
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0

0

0

0

0

0

0

0

0

B0,0

B0,1

B0,2

B0,3

B−1,1

B−1,2

B−1,3

B−2,2

B−2,3B−3,3

6
δv

6
δv

6
δv

6
δv

6
δv

6
δv

6
δv

6
δv

6
δv

6
δv

6
δv

6
δv

6
δv

6
δv

6
δv

-
δh

-
δh

-
δh

-
δh

-
δh

-
δh

-
δh

-
δh

-
δh

-
δh

-
δh

-
δh

-
δh

-
δh

-
δh

...
...

...
...

...

Figure 2. The relevant part of a bicomplex B concentrated in the sector 0 ≤ −p ≤ q.

B = (B∗,∗, δ = δh + δv), with B∗,∗ =
⊕

p,q∈Z
Bp,q and differentials

δh : Bp,q → Bp+1,q, δv : Bp,q → Bp,q+1.

We require, as usual, that

(5.1) δ2
v = 0, δ2

h = 0 and δvδh + δhδv = 0.

The associated total complex Tot(B) = (B∗, δ) has B∗ :=
⊕

n∈Z
Bn with Bn :=

⊕
p+q=n Bp,q

and δ := δh + δv : Bn → Bn+1; see [4, §XI.6] for the terminology. Throughout this section

we assume that

(i) B is concentrated in the sector 0 ≤ −p ≤ q (see Figure 2),

(ii) B is left-bounded in the sense that Bp,∗ = 0 for p << 0, and

(iii) the horizontal cohomology of B is concentrated on the diagonal p + q = 0, that is

Hp(B∗,q, δh) = 0 for p + q 6= 0

or, equivalently,

Hm(B∗, δh) = 0 for m 6= 0.
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It then follows from a standard spectral sequence argument [4, Theorem XI.6.1] that

Hm(Tot(B)) = 0 for m 6= 0

while H0(Tot(B)) is isomorphic to the direct sum Zh :=
⊕

r≥0 Zr
h (which is finite, by (ii)) of

subspaces

(5.2) Zr
h := Ker(δh : B−r,r → B−r+1,r).

Let us indicate how to construct such an isomorphism.

5.1. Proposition. Let β : Zh =
⊕

r≥0 Zr
h →

⊕
r≥0 B−r,r be a linear map such that, for each

r ≥ 0 and z ∈ Zr
h, β(z) is a cocycle in the total complex Tot(B) and has the form

(5.3) β(z) = z + l .o.t .

with some l .o.t . ∈
⊕

p>r B−p,p. Then the map β induces an isomorphism (denoted by the

same symbol)

β : Zh

∼=
→ H0(Tot(B)).

Proof. Let us interpret Zh =
⊕

r≥0 Zr
h as a cochain complex concentrated in degree zero,

with trivial differential. Define a decreasing filtration

Zh = F ′
0Zh ⊃ F ′

1Zh ⊃ F ′
2Zh ⊃ F ′

3Zh ⊃ · · ·

of Zh by F ′
sZh :=

⊕
r≥s Zr

h. Similarly, define a decreasing filtration

B∗ = F ′′
0 B∗ ⊃ F ′′

1 B∗ ⊃ F ′′
2 B∗ ⊃ F ′′

3 B∗ ⊃ · · ·

of the total complex Tot(B) = (B∗, d) by F ′′
s B∗ :=

⊕
p+q=∗

⊕
q≥s Bp,q. With these definitions,

β is a map of filtered cochain complexes that induces an isomorphism of the E1-terms of the

associated spectral sequences. The proposition follows from a standard spectral sequence

argument [4, Theorem XI.1.1]. �

In Proposition 5.1, l.o.t. is an abbreviation from lower order terms. The justification for

this terminology will became obvious on page 26 of Section 6. It is not difficult to show

that there always exists a map β satisfying the assumptions of the proposition. For further

applications we, however, need an explicit construction of this map. It starts by choosing,

for each n ≥ 0, a complementary subspace Dn ⊂ B−n,n to Zn
h so that

(5.4) B−n,n = Zn
h ⊕ Dn.

Let πn : B−n,n → Dn be the projection. For Xn := Ker(δvδh : B−n,n → B−n+1,n+1) we define

U : Xn → Xn+1 by

(5.5) U(x) := πn+1δ
−1
h δv(x), x ∈ Xn.
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We must verify that this definition of U makes sense. Since, for x ∈ Xn, δvδhx = −δhδvx =

0 (see the third equation of (5.1)), δvx is a δh-cocycle, so δvx ∈ Im(δh : B−n−1,n+1 → B−n,n+1)

by the acyclicity (iii). The set δ−1
h δv(x) is therefore non-empty. If u′, u′′ ∈ δ−1

h δv(x), then

δh(u
′ − u′′) = 0 so πn+1(u

′) = πn+1(u
′′), which means that U(x) = πn+1δ

−1
h δv(x) is a one-

element set. The condition δvδhU(x) = 0 follows from the simple fact that

(5.6) δhU(x) = δhπn+1δ
−1
h δv(x) = δvx.

This shows that indeed U(x) ∈ Xn+1. For z ∈ Zn
h ⊂ Xn finally define

(5.7) β(z) := z − U(z) + U 2(z) − U3(z) + · · · = (id + U)−1(z).

The above sum is, by assumption (ii), finite.

5.2. Lemma. For each n ≥ 0 and z ∈ Zn
h , the element β(z) ∈

⊕
p≥n B−p,p is a degree 0 co-

cycle of the total complex Tot(B). The map β defined in (5.7) therefore satisfies assumptions

of Proposition 5.1.

Proof. By the definition of the differential in the total complex, one needs to verify that

δhz = 0, δhU(z) = δvz, δhU
2(z) = δvU(z), . . .

The above equations immediately follow from (5.6). �

Let us formulate a simple lemma which will be used in the proof of Corollary 5.4 below.

5.3. Lemma. For x ∈ Xn, the element U(x) defined in (5.5) is characterized by U(x) ∈ Dn+1

and δhU(x) = δvx.

Proof. It follows from definition and from (5.6) that U(x) satisfies the conditions of the

lemma. On the other hand, suppose we are given an element a ∈ Dn+1 such that δha = δvx.

Then a = πn+1a = πn+1δ
−1
h δha = πn+1δ

−1
h δvx = U(x). �

5.4. Corollary. Let G be a group and assume that the bicomplex B = (B∗,∗, δ = δh + δv)

consists of reductive G-modules. Suppose moreover that the differentials δh and δv are G-

equivariant. Then there exists a G-equivariant β satisfying assumptions of Proposition 5.1.

Proof. By the reductivity of the actions, one may obviously assume that the decomposi-

tion (5.4) is G-invariant and that the projection πn is G-equivariant. Moreover, Xn is

a G-stable subspace of B−n,n and δh(U(x)g) = (δhU(x))g = δv(x)g for each x ∈ Xn,

g ∈ G, because the differentials are assumed to be G-equivariant. Lemma 5.3 then im-

plies that U(xg) = U(x)g, that is, U is G-equivariant. Then β defined by (5.7) is G-

equivariant, too. �
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6. Cohomology of graph complexes

In this part we apply the methods of Section 5 to the graph complex constructed in

Section 4. Let us start with Gr∗(d). The first step is to realize that (Gr∗(d), δ) is the total

complex of a bicomplex defined as follows. For p, q ∈ Z, let

(6.1) Grp,q(d) := Span
{
graphs Λ ∈ Grp+q(d); the number of ∇-vertices = −p

}
.

Define the horizontal differential δh : Grp,q(d) → Grp+1,q(d) by

(6.2) δh


 ∇

6

AAK@@I�
��

�
��

����*
. . .︸ ︷︷ ︸

k inputs


 := −

6

��� @@I���
◦
. . .︸ ︷︷ ︸

k + 2

while δh is trivial on remaining vertices. The vertical differential δv : Grp,q(d) → Grp,q+1(d)

is defined by requiring that δv := δ on black vertices (4.3), white vertices (4.5) and the

anchor 6, while

δv


 ∇

6

AAK@@I�
��

�
��

����*
. . .︸ ︷︷ ︸

k inputs


 := Gk,

where Gk is the same as in (4.10).

6.1. Lemma. The object Gr∗,∗(d) = (Gr∗,∗(d), δh +δv) constructed above is a bicomplex whose

total complex is the graph complex (Gr∗(d), δ) recalled in Section 4.

Proof. The only property which is not obvious are the relations (5.1) which can be verified

directly. �

Let us check that the bicomplex Gr∗,∗(d) satisfies conditions (i)–(iii) on page 21, Section 5.

One immediately sees that (i) is equivalent to the obvious inequality

0 ≤ number of ∇ vertices ≤ number of ∇ vertices + number of white vertices.

Simple graph combinatorics implies that each graph Λ ∈ Gr∗(d) has at most d−1 ∇-vertices,

therefore Grp,q(d) = 0 for p ≤ −d so the condition (ii) of Section 5 is also satisfied.

To verify (iii), we need to follow [7] and observe that (Gr∗(d), δv) is a particular case of

the following construction. For each collection (E∗, ϑE) = {(E∗(s), ϑE)}s≥2 of right dg-Σs-

modules (E∗(s), ϑE), one considers the complex Gr∗[E∗](d) = (Gr∗[E∗](d), ϑ) spanned by

graphs with d black vertices (4.3), one vertex 6and a finite number of vertices decorated

by elements of E. The grading of Gr∗[E∗](d) is induced by the grading of E∗ and the

differential ϑ replaces E-decorated vertices, one at a time, by their ϑE-images, leaving other
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vertices unchanged. It is a standard fact [10] (see also [5, Theorem 21]) that the assignment

(E∗, ϑE) 7→ (Gr∗[E∗](d), ϑ) is a polynomial, hence exact, functor, thus

(6.3) H∗(Gr∗[E∗](d), ϑ) ∼= Gr∗[H∗(E, ϑE)](d).

Let now (E∗, ϑE) = {(E∗(s), ϑE)}s≥2 be such that E0(s) is spanned by symbols (4.4) with

u + 2 = s, E1(s) by symbols (4.5) with u = s, and Em(s) = 0 for m ≥ 2. The differential

ϑE is defined by replacement rule (6.2). More formally,

E0(s) = IndΣs

Σs−2×Σ2
(1s−2 × 12) and E1(s) = 1s,

where 1s−2 (resp. 12, resp. 1s) denotes the trivial representation of the symmetric group

Σs−2 (resp. Σ2, resp. Σs). The differential ϑE then sends the generator 1 × 1 ∈ 1s−2 × 12

into −1 ∈ 1s. It is clear that, with this particular choice of the collection (E∗, ϑE),

(Gr∗(d), δh) ∼= (Gr∗[E∗](d), ϑ).

Since ϑE : E0(s) → E1(s) is onto, the collection H∗(E, ϑE) = {H∗(E(s), ϑE)}s≥2 is

concentrated in degree 0, with H0(E(s), ϑE) the kernel

(6.4) K(s) := Ker
(
ϑE : E0(s) → E1(s)

)
.

Denoting by K the collection K := {K(s)}s≥2 we conclude that

(6.5) H∗(Gr∗(d), δh) ∼= Gr[K](d).

The right hand side is concentrated in degree zero so we omitted the star indicating the

grading. In particular, Hm(Gr∗(d), δh) = 0 for m 6= 0 which establishes (iii).

The above calculation shows that, for the bicomplex Gr∗,∗(d), the cocycle space Zn
h of (5.2)

equals

(6.6) Zn
h = Span {Λ ∈ Gr[K](d); Λ has precisely n vertices decorated by K} .

Let ασ, σ ∈ Ush(s−2, 2), be real coefficients as in Theorem A. If we take the symbol (4.4),

with the inputs numbered consecutively from left to right by {1, . . . , s}, as the generator of

E0(s), then K(s) is, as a Σs-module, generated by the linear combination

(6.7) ξs :=
∑

σ∈Ush(s−2,2)

∇
6

AAK@@I�
��

�
��

����*

. . .σ(1) σ(n)

=
∑

σ∈Ush(s−2,2)

∇
6

AAK@@I�
��

�
��

����*
. . .

· σ .

For each n ≥ 0 consider the subcomplex Gr∗(n + 1)n of Gr∗(n + 1) spanned by graphs

with a distinguished subset {•1
6, . . . , •n

6} of the set of black vertices (4.3) with u = 0, see 4.4.

Suppose we are given, for each n ≥ 0, cochains νn ∈ Gr0(n + 1)n of the form

(6.8) νn = bn + l .o.t .
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where bn denotes the black vertex (4.3) with u = n. The abbreviation l.o.t. denotes a linear

combination of graphs in Gr0(n + 1)n that has at least one ∇-vertex. It is not difficult to

verify that each such a graph represents a local expression whose differential order is strictly

smaller than the differential order of the local expression represented by bn (which is n− 1).

This explains why l.o.t. abbreviates “lower order terms.”

Similarly, recall from 4.4 that Gr∗(n)n denotes the subcomplex of Gr∗(n) spanned by graphs

whose all black vertices belongs to the distinguished subset {•1
6, . . . , •n

6}. Suppose that we

are given, for each n ≥ 3, cochains ςn ∈ Gr0(n) of the form

(6.9) ςn = ξn + l .o.t .

where ξn is as in (6.7) and l.o.t. a linear combination of graphs with at least two ∇-vertices.

It is not difficult to see that νn’s and ςn’s as above always exist, but we prove a stronger

result:

6.2. Proposition. The cocycles {νn}n≥2 and {ςn}n≥3 can be choosen ‘equivariantly,’ that is,

in such a way that they enjoy the same symmetries as the elements {bn}n≥2 and {ξn}n≥3.

Proof. Repeating the reasonings in the proof of Lemma 6.1, one easily sees that the obvious

modification of the bigrading (6.1) turns the graph complex Gr∗(n+1)n into a bicomplex sat-

isfying conditions (i)–(iii) on page 21. The symmetric group Σn permutes the distinguished

vertices of graphs spanning Gr∗(n + 1)n. This action satisfies the requirements of Corol-

lary 5.4 which therefore gives a Σn-equivariant β satisfying assumptions of Proposition 5.1.

The element νn := β(bn) is then an ‘equivariant’ cocycle in that it is, as bn, Σn-stable.

An ‘equivariant’ ςn can be constructed in the same fashion, considering Gr∗(n)n instead of

Gr∗(n + 1)n. �

7. Proofs of Theorems A–F

Proof of Theorem A. We will in fact give two proofs, one using the classical reduction

theorem, and one based on the graph complex method. Let us start with the ‘classical’ proof.

By Example 3.7, expression (3.1) corresponding to the leading term of the iterated covari-

ant derivative ∇n−2R of the curvature tensor belongs to the kernel K(n), for each n ≥ 3.

Since, by assumption, expressions (3.1) corresponding to the leading terms of the operators

Dn generate K(n), one clearly has, for each n ≥ 3,

∇n−2R(X1, . . . , Xn) =
∑

σ∈Σn

AσDn(Xσ(1), . . . , Xσ(n)) + l .o.t .
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with some real coefficients Aσ. Similarly, the leading term of any operator Vn as in Theorem A

equals, by Example 3.7 and (2.3), the leading term of the iterated covariant derivative

(∇n−1Xn)(X1, . . . , Xn−1), therefore

(∇n−1Xn)(X1, . . . , Xn−1) = V (Γ, X1, . . . , Xn) + l .o.t .

Theorem A now follows from Theorem 1.2 and obvious induction on the differential degree.

Let us give another proof of Theorem A based on the method of graph complexes. The

drawback of this proof is that it requires the ‘stability’ dim(M) ≥ 2d − 1. On the other

hand, it is completely independent on local calculations. Moreover, we will need to set up

the stage for graph-ical proofs of other statements.

Each iteration in the sense of 3.4 is clearly a linear combination of terms given by contract-

ing ‘free’ indices of the local coordinate expressions of the operators {Dn}n≥3 and {Vn}n≥2.

Each such a contraction is determined by a ‘contraction scheme,’ which is a graph as in 4.2

with vertices of the following two types:

– vertices dn, n ≥ 3, with n linearly ordered input edges and one output, and

– vertices vn, n ≥ 0, labeled 1, . . . , d, with n linearly ordered edges and one output.

Observe that we allowed vertices vn also for n = 0 as places where order zero vector field

variables are to be inserted. Denote by Cont(d) the space spanned by the above contraction

schemes. Consider the diagram

(7.1) Gr[K](d)
π
� Cont(d)

Ψ
→ Gr0(d)

in which the maps π and Ψ are defined as follows.

The map π replaces each vertex dn of a contraction scheme K ∈ Cont(d) by ξn and each

vertex vn by bn – recall (6.7) resp. (4.3) for the definition of ξn resp. bn. The map Ψ replaces

each vertex dn by the cocycle ςn ∈ Gr0(n) representing, in the correspondence of Theorem 4.6,

the operator Dn, and each vertex vn by the cocycle νn ∈ Gr0(n+1) representing the operator

Vn+1. Therefore Ψ(K) is the cocycle representing the iteration determined by K.

The map π is an epimorphism. One may establish this fact by constructing a section

(= right inverse) s : Gr[K](d) → Cont(d) of π as follows. Recall [8] that a graph with vertices

decorated by a collection F = {F (s)}s≥0 of right Σs-modules F (s) (F -graph for short) is an

equivalence class of graphs whose vertices have linearly ordered inputs and are decorated by

elements of F . The equivalence identifies graphs that differ only by the orders of the inputs

and actions of the corresponding permutations at the decorations. The space Gr[K](d) is

then spanned by F -graphs with F := K ⊕ 1, where K defined in (6.4) is generated by the

sequence {ξn}n≥3 (we of course put K(s) = 0 for s = 0, 1, 2) and 1 is the collection of trivial

representations generated by the elements {bn}n≥0.
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Assume that the graphs Λ1, . . . , Λb form a basis of Gr[K](d). Choose a representative Λ̃i of

each Λi, 1 ≤ i ≤ b, in the equivalence relation described in the previous paragraph. Define

s(Λi) as the contraction scheme obtained from Λ̃i by replacing each vertex ξn by dn and each

vertex bn by vn, preserving the linear orders of the inputs. The identity Ψ ◦ s = id for the

map s defined in this way is obvious.

The composition β := Ψ ◦ s : Gr[K](d) → Gr0(d) is easy to describe; β(Λi) is the graph

obtained from Λ̃i by replacing each vertex ξn by the graph ςn representing the operator Dn

and each vertex bn of Λi by the graph νn representing the operator Vn+1, 1 ≤ i ≤ b. One easily

sees that β satisfies assumptions of Propositions 5.1, with B∗,∗ the graph bicomplex Gr∗,∗(d)

defined by (6.1) and Zh equalling, by (6.6), the space Gr[K](d). Therefore β = Ψ ◦ s induces

an isomorphism Gr[K](d) ∼= H0(Gr∗(d), δ). In particular, the map Ψ is an epimorphism onto

Ker(δ : Gr0(d) → Gr1(d)) = H0(Gr∗(d), δ). This, along with Theorem 4.6, proves Theorem A.

Proof of Theorem B. Operators {Dn}n≥3 defined by (3.6) are clearly iterations, in the

sense of 3.4, of the operators {Un}n≥3. If the leading terms of the operators {Dn}n≥3 are as

in Theorem A, then each operator O is an iteration of the operators {Dn}n≥3 and hence also

of the operators {Un}n≥3. This proves (ii) =⇒ (i). Let us prove the oposite implication.

Fix n ≥ 3 and write Un = Ln+l .o.t . (i.e., Ln is the leading term of Un). Let En = Qn+l .o.t .

be an arbitrary operator whose leading term satisfies the assumptions of Theorem A. If (ii)

is fulfilled, then, in particular, the operator En is an iteration of the operators {Uu}u≤n. A

simple reasoning based on the c-order implies that the leading term Qn of En is obtained

from Ln by linear combinations of successive applications of the operations O 7→ Oσ, σ ∈ Σn,

and O 7→ Tr j(O)Xj, with some 1 ≤ j ≤ n, i.e. by using elementary iterations (i), (ii) and

(iv) of 3.4 only, with O
′ := O and O

′′(Γ, X1, . . . , Xn) := Xj in (iv).

Traces commute with the symmetric group action in the sense that, for each σ ∈ Σn and

1 ≤ j ≤ n, there exists some σ̃j ∈ Σn such that

(7.2) (Tr j(O)Xj)σ = Trσ−1(j)(Oσ̃j)Xσ−1(j).

The explicit description of the permutation σ̃j is not important for this proof and we leave it

as an exercise for the reader. The ‘commutativity’ (7.2) implies that one may always move

the symmetric group action inside the trace and write

(7.3) Qn = Lnc +
∑

1≤j≤n

Tr j(Lncj)Xj

for some c, c1, . . . , cn ∈ R[Σn].

While the leading terms of natural differential operators need not be invariant under

general coordinate changes, they are still invariant under the action of the general linear

group GLn. This means (see [6]) that the expressions in (7.3) are represented by linear
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combination of graphs. These graphs have the anchor 6, vertices {•1
6, . . . , •n

6}, and one

vertex (4.4) with u := n − 2. Each such a graph has n + 1 edges, but, since the ∇-vertex is

fully symmetric in the first (n − 2) and the last two inputs, the stability dimension (= the

minimal dimension of the underlying space for which a GLn-invariant operator uniquely

determines a linear combination of graphs) is 3, see [6, Proposition 4.9].

So both sides of (7.3) are represented by the same linear combinations of graphs, i.e. they

are given by the same contraction schemes of indices. We conclude that, if dim(M) ≥ 3, the

leading term of the operator Dn defined by (3.6), with c, c1, . . . , cn as in (7.3), is of the form

required by Theorem A.

Proof of Theorem C. One may assign to each graph Λ ∈ Gr[K](d) the (formal) vf-order

(where, as on page 6, vf abbreviates ‘vector field’) defined by the summation

(7.4) ordvf(Λ) :=
∑

v∈Vert(Λ)

ordvf(v),

where

ordvf(v) :=

{
0, if v is ξn, n ≥ 3, and
n, if v is bn, n ≥ 0.

The vf-order of a contraction scheme G ∈ Cont(d) can be defined similarly, with the role

of vertices ξn played by dn, and the role of vertices bn by vn. Therefore, if a contraction

scheme has vertices vp1
, . . . , vpt

for some p1, . . . , pt ≥ 0 (plus possibly some other vertices of

either types), then

(7.5) p1 + · · ·+ pt ≤ ordvf(G).

Finally, the vf-order of a graph Λ in Gr0(d) is given by formula (7.4) in which we define

now

ordvf(v) :=

{
0, if v is a ∇-vertex, and
n, if v is bn, n ≥ 0.

The vf-order of an element of Gr[K](d) (resp. Cont(d), resp. Gr0(d)) is then the maximum

of vf-orders of its linear constituents. It is clear that the (formal) vf-order of a cocycle in

Gr0(d) equals the vf-order of the operator it represents.

We are going to show that the isomorphism β = Φ ◦ s constructed in the proof of Theo-

rem A preserves the vf-order. As before, let {Λi}1≤i≤b be a basis of Gr[K](d). Recall from

page 28 that β acts by replacing ξn-vertices of Λi by ςn and bn-vertices of Λi by νn. Another

observation we need is that

(7.6) ordvf(ςn) = 0, n ≥ 3,

while νn = bn + ηn, where ηn is a graph such that

(7.7) ordvf(ηn) < ordvf(bn), n ≥ 0.
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Equation (7.6) expresses that ςn represents the operator Dn which is, by assumption, of order

0 in the vector field variables. Inequality (7.7) is a consequence of the fact that ηn is a linear

combination of graphs having at least one ∇-vertex and that, by simple graph combinatorics,

the vf-order of each such a graph is strictly less than the vf-order of bn, compare the remark

following (6.8).

The above implies that β(Λi) = Λi+εi, where ordvf(εi) < ordvf(Λi) for each 1 ≤ i ≤ b, thus

also, for an arbitrary linear combination y ∈ Gr[K](d) of the basis elements, β(y) = y + ε,

where ordvf(ε) < ordvf(y). We conclude that then indeed ord vf(y) = ordvf(β(y)). The fact

that the section s constructed in the proof of Theorem A also preserves the vf-order, is

obvious.

Let O ∈ Nat(Con ×T⊗d, T ) be a differential operator represented by a cocycle c ∈ Gr0(d),

y := β−1(c) and C := s(y). Acording to our constructions, C ∈ Cont(d) describes an

iteration of {Dn}n≥3 and {Vn}n≥1 representing O. Since both β and s preserve the vf-order,

one has ordvf(C) = ordvf(O). Theorem C now immediately follows from formula (7.5).

Remaining proofs. A moment’s reflection convinces us that the kernel of the map Ψ

in diagram (7.1) is generated by contraction schemes expressing relations (3.7) and (3.8).

This is precisely the content of Theorem D. The ‘ideal’ tensors in Theorem E are natural

operators corresponding to the cocycles {ςn}n≥3 and {νn}n≥2 constructed in Proposition 6.2.

Theorem F is a combination of Theorem 4.6 and isomorphism (6.5).
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