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The article presents a variational theory of sharp phase interfaces bearing a deformation dependent
energy. The theory involves both the standard and Eshelby stresses. The constitutive theory is
outlined including the symmetry considerations and some particular cases. The existence of
phase equilibria is proved based on appropriate convexity properties of the interfacial energy.
Some generalization of the convexity properties is given and a relationship established to the
semiellipticity condition from the theory of parametric integrals over rectifiable currents.
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Introduction

This article presents convexity conditions for the deformation dependent energies
of sharp phase interfaces. The interfaces are modeled as two dimensional surfaces
separating bulk phases of a phase transforming body. For the bulk phases, the sat-
isfaction or violation of the convexity properties [3–4] has proved to be extremely
useful in understanding the behavior of bodies. The latter range from ‘regular’ ones
showing the existing equilibrium states with good properties under favorable con-
vexity properties up to the ‘singular’ ones with no equilibrium states and formation
of microstructures in case of energies missing these convexity properties [4, 21].
The microstructures of different phases or variants of the body are frequently ex-
amined under the approximation that phase interfaces bear no energy, which leads
to a picture of infinitely fine microstructures, mathematically described by Young’s
measures, whereas observations show limited fineness.

In this article it is assumed that the contribution of the interface to the total energy
can be described by a surface density f which depends on the deformation of the
interface via the constitutive equation

f��� � �f�F����n���� (1)

for each material point � � S of the interface where F is the surface deformation
gradient (see below), n the normal of S� and �f is a response function. The surface
energy leads to the standard and configurational stresses acting in the interface. The
bulk phases are governed by the standard equations of nonlinear elasticity.

A constitutive theory for the equation (1) and the associated stress relations are
given below, including the symmetry considerations and the discussion of the roles
and interrelations of the two types of stresses. Next we discuss the formal aspects of
the equilibrium of phases with interfaces governed by (1). The equilibrium equations
for standard and configurational stresses are obtained as necessary conditions for
minimum of the total energy. The resulting equations including the constitutive
theory are equivalent to the equilibrium part of the theory developed by Gurtin and
collaborators [16, 13], [14; Chapter 21] although the motivation is slightly different.

We examine the existence of two phase equilibrium states. We introduce the
interface quasiconvexity of �f as the basic convexity property, which is an analog



4 Introduction

of the quasiconvexity of the bulk energy, but in contrast, it involves a variation of
the integration domain. Associated are the interface null lagrangians, functions �f
such that both �f and −�f are interface quasiconvex. The interface null lagrangians
admit an explicit description. In dimension �� there are 15 independent interface null
lagrangians. Based on interface null lagrangians are interface polyconvex functions,
defined as the supremum of some family of interface null lagrangians. The interface
convexity properties are related to the continuity properties of the total interface
energy under appropriate weak type convergences. The interface polyconvexity of �f,
accompanied by the polyconvexity of the individual bulk phases and by the coercivity,
leads to the existence of the energy minimizing states of coexistent phases.

The theory described so far deals with integral functionals over varying surfaces
of dimension n − � in �n� One can consider, more generally, integrals over surfaces
of dimension r in �n with � 	 r 	 n� The interface quasiconvexity easily generalizes
to this situation; the resulting notion is termed quasiconvexity of degree r here. (The
quasiconvexity of degree n in �n is the classial quasiconvexity of bulk phases.)
One then defines null lagrangians of degree r and polyconvex functions of degree
r in �n� The null lagrangians and polyconvex functions of degree r admit explicit
descriptions.

The variable nature of the integration domains of the integral functionals con-
sidered here also occurs in parametric integrands in the theory of minimal surfaces.
Indeed, there are close relationships. Roughly, each deformed surface of dimension
r gives rise to its graph; if the deformation is lipschitzian, then the graph can be
intepreted as an r dimensional rectifiable current. In this way, each integral functional
gives rise to a degree r parametric integral over rectifiable currents of the type con-
sidered in the theory of minimal surfaces. It turns out that the convexity properties of
the so related functionals essentially coincide.

Thus the degree r quasiconvexity is implied by the semiellipticity of parametric
integrands of degree r introduced by Almgren [1; Section 1] (see also Federer [9; Sub-
section 5.1.2]). Conversely, each integrand that is degree r quasiconvex satisfies the
semiellipticity inequality on rectifiable currents that can be represented as graphs. We
mention that the semiellipticity of a nonnegative parametric integrand is equivalent to
the lowersemicontinuity of the parametric integral under the flat norm. Thus it plays
the same role as the bulk quasiconvexity and our interface quasiconvexity. Pursuing
this relationsip further, one can define the semielliptic null lagrangians of degree r
as parametric integrands such that the integrand and its negative are semielliptic.
Semielliptic null lagrangians admit a simple explicit description giving a one to one
correspondence with the null lagrangians of degree r� The degree r polyconvexity
then corresponds to the convex parametric integrands. The graph view leads to a
noncalculational proof of the structure of the null lagrangians of degree r 	 n − � in
�n and substatializes some propositions dicussed hitherto. It is also recalled that the
graph view is basic to the approach of the elasticity of the bulk matter by Giaquinta,
Modica and Souček [11–12].

Some of the results announced in [27] are proved here.



Chapter 1

Constitutive theory

1.1 Informal description

Consider a deformed body in a state with two coexistent phases separated by a phase
interface. We use a fixed reference configuration represented by a bounded open set
� ⊂ �� and identify material points of the body with elements � of �� The state of
the body is described by a deformation function � � � � �� and by an open subset
E of � occupied by the first phase; the region occupied by the second phase is the
complement of E in �. The phase interface S is the part of the boundary of E that
is contained in � (the rest of the boundary of E being a subset of the boundary of
�, possibly empty). The deformation function � gives the actual position ���� of the
material point � � �� in particular for � � S the value y��� � ���� gives the actual
position of the interface points. We define the bulk deformation gradient � by

� � ∇�

for every � � �∼ S and the surface deformation gradient [16, 13]

F � V y� F n � �� (1.1.1)

where V denotes the surface gradient (see Section A.1) and n is the interface normal.
The density of energy of the bulk phases � � �� � is given by the energy functions

��� � � �� �� by

f���� � ��������� � � E�� E� �� E� E� �� �∼ 	
E

where throughout, 	
 and �� denote the closure and boundary. The surface density of
the interface energy is given by the interfacial energy function �f by

f��� � �f�F����n����� � � S� (1.1.2)

We note that the two arguments of �f in (1.1.2) are not independent [see (1.1.1)]; this
has some consequences on the form of the stress relations.
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The total energy of the state ���E� is

E���E� � E����E� + E �����E�

where
E����E� � �

E
����� dL

� + �
	∼E

����� dL
��

E �����E� � �
S

�f�F�n� dH�

are the bulk and interface energies, with dL� the referential volume element and dH�

the referential area element. Equilibrium states of the system correspond to minimum
energy under the constraints imposed by the environment of the system. Here the
region E is unknown.

The two bulk energies represent two energy wells of the substance. The functions
�� give rise to the bulk standard and configurational stresses �� and �� given by

��� �  ��� ��� � ��� − �

 ��� (1.1.3)

The interfacial energy �f leads to the standard and configurational interfacial stresses
�S and �C given by

�S � � �f P� (1.1.4)

�C � �f P − F
�
�f P + n� �F
� �f n − � �f�� (1.1.5)

Here� �f and � �f denote the ‘partial derivatives’ of �f � �f�F�n� with respect to the
first and second variables as defined in Sections 1.2 and A.1, and P � �−n�n is the
projection onto the tangent spave to the interface and the given point. The forms of
the stress relations (1.1.3), (1.1.4) and (1.1.5) is dictated by the equilibrium equations
for the standard and configurational stresses (see Sections 2.1), which, in turn, are
uniquely determined as necessary conditions for the minima of the total energy.
Our motivation for the standard and configurational stresses is variational, relating
the standard standard stress with outer variations and configurational stress with
inner variations, as explained in Section 2.1. Also, the standard and configurational
stresses exchange their roles under the exchange of the roles of actual and reference
configurations.

The principle of material frame indifference restricts the behavior of the response
functions under the multiplications of the deformation gradients from left; the sym-
metry of the material (such as the isotropy or the crystallographic symmetry) restricts
the behavior of the response functions under the action of the symmetry tensors on the
arguments from right. The last is related to the change of the reference configuration
� used to describe the body. These matters are discussed in Section 1.5 where also
the main types of the symmetry are mentioned.

1.2 Response functions

We generalize and formalize the picture of Section 1.1 as follows.
We denote by ����V �W � the set of all linear transformations from a vectorspace

V into a vectorspace W � Throughout, m� n are positive integers and we write ��� ��
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�����n��m� unless stated otherwise. Denote by �n−� the unit sphere in �n� We
model the reference configuration of the body by an open bounded subset � of �n

and consider deformations � � �� �m� In applications, m � n � �� In the treatment
of the constitutive theory for the interface it is necessary to take into account that
the surface energy �f � �f�F�n� is defined on pairs satisfying F n � �� this set �
forms a submanifold of the space �����n. Thus the derivatives of �f belong to the
tangent space of � and hence the “partial derivatives” with respect to F and n are not
independent. The derivative of a map on a manifold is defined in Section A.1.

The system of forces acting in a phase transforming body consists of standard
and configurational forces. The standard forces are represented by the (referential)
bulk stress tensor � and the (referential) interface stress tensor S acting, respectively,
in the bulk matter and in the interface. The configurational forces are described by
the (referential) bulk configurational stress tensor � and by the (referential) inter-
face stress tensor C� The response functions for all these � stresses are completely
determined by the response functions for the free energy.

Definitions 1.2.1 (Constitutive information and response functions).

(i) The two bulk phases are indexed by � � �� �� each phase is described by the bulk
energy �� � U� � � where U� ⊂ ��� is an open set and �� are class � functions.
We define the response functions for the standard and configurational stresses
��� � U� � �����n��m�� ��� � U� � �����n��n� by

��� �  ��� ��� � ��� − �

 ��

for each � � U�� where ���� ���� �� and its derivatives are evaluated at ��

(ii) The interface is described by the interfacial energy �f � U � � where U is a
(relatively) open subset of the class � manifold

� � ��F�n� � ���� �n−� � F n � ��

and �f is a class � function. The derivative of �f at �F�n� � � is an element of the
tangent space ������ �F�n�� of � at �F�n� given by

������ �F�n�� � ��G�m� � �����n � Gn + Fm � �� m ċ n � ��� (1.2.1)

we write  �f � �� �f�� �f� for its components in ��� and �n� respectively.
We define the response functions for the standard and configurational stresses
�S � �� �����n��m� and �C � �� �����n��n� by

�S � � �f P� (1.2.2)

�C � �f P − F
�
�f P + n� �F
� �f n −� �f� (1.2.3)

for every �F�n� � � where P � � − n � n and �S� �C, �f and its derivatives are
evaluated at �F�n��

The form of the stress relations (1.2.2) and (1.2.3) is motivated by the variations for-
mulas for the total energy, (2.1.5) and (2.1.6), by the correponding balance equations
(2.1.7) and (2.1.8), and by the fact that with the above definitions �S and �C neatly
exchange their roles under the exchange of the actual and reference configurations,
Section 1.3 (below). The ‘partial derivatives’ � �f and � �f satisfy
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�
�f�F�n�n + F�

�f�F�n� � �� n ċ� �f�F�n� � �

by (1.2.1).

1.3 The exchange of the actual and reference configurations

This section discusses the exchange of the roles of the standard and configurational
stresses under the exchange of the actual and reference configurations. We consider
the format the energy of Section 1.2 with m � n.

Given a state ���E�with � injective, the actual configuration of the body is �� ��
����, the actual configuration of the interface is �S �� y�S�, and the spatial interface
normal �n�y � 	��F n/| 	�� F n | � 	��F n/| 	�� F |� The fields of referential energy
densities f , f can be transformed to the actual configuration of the body via the
formulas

� � � � f /J � �f � y � f/J�

where
J � | ����|� J � | 	�� F |

are the bulk and interface jacobians. The deformation � is replaced by its inverse
�−� and hence the bulk deformation gradient � is replaced by the inverse �−�, the
surface deformation gradient F by the pseudoinverse F−� (see Section A.1) and the
referential interface normal n by the spatial normal �n�

Letting � stand for any of the energy functions ��� � � �� �� we thus find that
under the exchange of the actual and reference configurations the response functions
� and �f change to the response functions � � � U�� � and �f� � U�� � given by

� ���� � ���� � ��−���
�f��F�n� � | 	��F |�f�F−�� �n�

where �n � 	�� F n/| 	��F |, whenever

� � U� �� �� � ��� � �−� � U��

�F�n� � U� �� ��F�n� � ���� �n−� � �F−�� �n� � U��

In these definitions, we have denoted by � and �F�n� the natural variables of � � and
�f�� i.e. the variables previously denoted by �−� and �F−�� �n��We furthermore let ���
��� �S and �C denote the response functions for the stresses calculated from � and �f and
the same letters with the superscript � denote the response functions for the stresses
calculated from � � and �f� according to Definition 1.2.1.

Proposition 1.3.1. Under the passage from the response functions from � and �f to
� � and �f� the standard and configurational stresses exchange their roles according
to

������ � ���� ����−���−
� ������ � ���� ����−���−
�

for each � � U� and
�S��F�n� � | 	��F | �C�F−�� �n�F−
� �C��F�n� � | 	��F | �S�F−�� �n�F−


for each �F�n� � U�.

See [27; Proposition 4.1] for the proof.
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1.4 Frame indifference

Mechanically realistic energy functions must satisfy the principle of material frame
indifference. Letting � � U � � stand for any of the response functions ��� � � �� ��
this requires that for every � � U � �F�n� � U and 	 � SO�n� we have

	� � U � �	F�n� � U�

� �	�� � � ���� ���	�� � 	������ ���	�� � ������ (1.4.1)
�f�	F�n� � �f�F�n�� �S�	F�n� � 	�S�F�n�� �C�	F�n� � �C�F�n�� (1.4.2)

We note that of (1.4.1) and (1.4.2) only (1.4.1)� and (1.4.2)� are independent, (1.4.1)���
and (1.4.2)��� follow from the stress relations.

1.5 Change in the reference configuration and the symmetry group

Another restriction of the response functions comes from the symmetry of the ma-
terial. The latter include, e.g., the isotropy and the crystal symmetries of crystalline
materials; the symmetry also distinguishes fluids from solids etc. Roughly, the sym-
metry group of a material is the set of all changes of the reference configurations
that leave the response functions unchanged. There may be different symmetries of
the bulk responses of the phases � � �� �� and yet another symmetry of the interface
response. We consider the format the energy of Section 1.2, let � � U � � stand for
any of the functions ��� � � �� �� and assume

m � n� U � ���+ �� �� � ��� � ���� � ��� U � ��F�n� � � � ����F � n − ��

for simplicity.
We first derive the change of the response functions under a change in the

reference configuration. We thus consider a passage from the reference configuration
� to �� � 
−�� where 
 � ���+� Assume that in the reference configuration � the
global state of the body is described by the pair ���E� consisting of the deformation
� � � � �m and the region E ⊂ � occupied by the phase � � �� In the reference
configuration ��� the same state is described by the pair ������ where

������ � ��
���� � � 
−�E�

�� � ��� The interface is given by �S � ��� in the new reference configuration; hence

�S � 
−�S

and the deformations of the interface in the original and new reference configurations
are related by

�y���� � y�
����

�� � �S� At the points � and �� related by � � 
��� the deformation gradients � � ∇�,
�� � ∇��� F � V �� �F � V �� and the interface normals n and �n to S and �S are related
by

�� � �
� ��F� �n� � �F �
�n �
�

where we define
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n �
 � 

n/|

n|� F �
 � F
�� − n �
� n �
�

for any �F�n� � � and any 
 � ���+. One easily finds that

F � �
�� � �F �
� � �� n � �
�� � �n �
� � �

for any �F�n� � � and 
�� � ���+� Generally, the expressions for F �
 and n �

are nonlinear in F, n and 
� only if 
 � 	 is orthogonal, we have F � 	 � F	,
n �	 � 	
n and thus

��F� �n� � �F	�	
n��

The change of variables formula for the volume and surface integrals shows that
in the reference configuration �� the material is described by the bulk and surface

energies �� � � � ��
��f � �U� � given by

�� ���� � � ���
−��/J � ��f��F� �n� � �f��F �
−�� �n �
−��/J

whenever �� � U � ��F� �n� � U where

J � ���
−�� J � | 	��
−� �n|�
The stress relations then imply that the standard stress response functions in the
reference configuration �� are given by

������� � �����
−��
−
/J � ������� � 

�����
−��
−
/J �

��S��F� �n� � �S��F �
−�� �n�
−
/J�
��C��F� �n� � 

 �C��F �
−�� �n�
−
/J�

We define symmetry group of the bulk response as the set of all 
 � ���+ such
that the response functions in the reference configuration �� � 
−�� coincide with
the original ones; in view of the stress relations it suffices to require the invariance
of the response functions for the free energy.

Definition 1.5.1. The symmetry group G�� � of the bulk response is the set of all

 � ���+ satisfying

� ��
� � � ���/J

for all � � U where J � ���
−��

Definition 1.5.2. The symmetry group G��f� of the interface response is the set of all

 � ���+ satisfying

�f�F �
�n �
� � �f�F�n�/J�

for all �F�n� � U where J � | 	��
−� n|�
One easily finds that G�� � and G��f� are subgroups of ���+� Let G stand for G�� �

or G��f�. The common types of symmetry are

• isotropy: G � SO�n��

• fluidity: G � �
 � ���+ � ���
 � ���

• crystal symmetry: G is one of the �� crystallographic point groups [24; Chapters
3 and 5].
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Proposition 1.5.3. Consider bulk and interface responses � � U � � and �f � U� �
that satisfy the principle of material frame indifference.

(i) If the bulk response is isotropic then there exists a function � � ��� ��n � � that
is symmetric under the permutation of arguments such that

� ��� � � �λ��� � λn�
for each � � U where λ� �  � λn are the singular values of �� if the interface
response is isotropic then there exists a function !f � ��� ��n−� � � that is
symmetric under the permutation of arguments such that

�f�F�n� � !f�λ��� � λn−�� (1.5.1)

for each �F�n� � U where λ� �  � λn−� � � are the singular values of F�

(ii) if the bulk response is of fluid type then there exists a function � � ��� �� � �
such that

� ��� � � ������
for each � � U; if the interface response is of fluid type then there exists a σ � �
such that

�f�F�n� � σ | 	��F | (1.5.2)
for each �F�n� � U�

Proof (i): We omit the simple and standard proof in case of the bulk response.
Consider the case of an isotropic interface response. Let � � ��� ��n−� � � be
defined by

� �λ��� � λn−�� � �f�F��n��
for each λ��� � λn−� � ��� ��

n−� where

F� � �����λ��� � λn−�� ��� n� � ���� � �� ���
Elementary considerations show that if �F�n� � � is a pair such that F has the singular
values �λ��� � λn−�� �� with λ� �  � λn−� � � then there exist 	� � � SO�n� such
that

	F� � �����λ��� � λn−�� ��� �
n � ���� � �� ���
Here the existence of 	� � � O�n� follows from the singular value decomposition
theorem and the choice of 	� � � SO�n� is achieved using F n � �� Then the above
relations and

�f�	F���
n� � �f�F�n�
yield (1.5.1).

(ii): We omit the simple and standard proof in case of the bulk response. Consider
the case of a fluid like interface response. In particular, the response is isotropic and
thus the conclusions of (i) are available. Thus we have (1.5.1). Let �λ��� � λn−�� �
��� ��n−� be fixed, let F � ������λ��� � λn−�� ���
 � �����λ��� � λn−�� �/λ� λn−���
n � ���� � �� ��� and F� � �������� � �� ��� Then 
 � ���+, ���
 � �, and

F� �
 � F� n �
 � n

and thus we have
�f�F�n� � �f�F��n�/J

where J � | 	��
−�n| � �/λ� λn−� which reads
!f�λ��� � λn−�� � σ λ� λn−� � σ | 	�� F |

where σ � f���� � ��� Thus (1.5.1) gives (1.5.2). "
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1.6 Particular cases of interface response

In this section we consider some particular cases of the interface response: isotropic
materials, surface tension, Wulff’s energy, and energies depending on F � n and on
	��F n�which are motivated by the polyconvexity condition to be defined in Chapter
2. When the response reduces to surface tension the surface configurational stress
vanishes identically; when the free energy depends only on the referential interface
normal (the Wulff energy), the standard interface standard stress vanishes identically.
We describe the particular cases in Examples 1.6.1–1.6.5 below. In Proposition 1.6.6
we determine all energy functions leading to vanishing configurational stress and
show that among them only the surface tension is frame indifferent. We shall also
show that the Wulff energy is the only energy with vanishing standard stress. We
assume m � n.

Example 1.6.1 (Isotropy). Let �f � U� � be a frame indifferent isotropic response
with

U � ��F�n� � � � ����F � n − �� (1.6.1)

and with the representation

�f�F�n� � !f�λ��� � λn−��

for each �F�n� � U where λ� �  � λn−� � � are the singular values of F� where !f
is a continuously differentiable function. Let �F�n� � U be such that

F � 	 �����λ��� � λn−�� ���� n � �
���� � �� ��

for some 	� � � SO�n�� Then

�S�F�n� � 	 ������ !f�� �n−� !f � ���� (1.6.2)

�C�F�n� � �
 �����!f − λ�� !f �� � !f − λn−�n−� !f� ��� (1.6.3)

where !f and its derivatives are evaluated at �λ��� � λn−��� in particular, the configu-
rational stress tensor is symmetric.

Proof Let � � O � �n � � be defined by defining O as the set of all second order
tensors with at most one singular value �� and setting

� ��� � � !f�λ��� � λn−��

for each ��� � � O ��n with of the form

� � 	 �����λ��� � λn��

with 	� � � SO�n� and λ� � � � λn � �� A well known result on the derivatives of
isotropic functions gives that � is continuously differentiable and hence

 � ��� � � #	 ������ !f�� �n−� !f � ���� �$

where !f and its derivatives are evaluated at �λ��� � λn−��� Since the function � is
an extension of �f , we have  �f�F�n� � � � �F�n� where � � �����n �
������ �F�n�� is the orthogonal projection onto the tangent space of � at �F�n��



1.6. Particular cases of interface response 13

One finds from (1.2.1) that  � ��� � is already in the tangent space and thus
� � �F�n� �  � �F�n� and

 �f�F�n� � #	 ������ !f �� �n−� !f� ���� �$�

i.e.,
�
�f�F�n� � 	 ������ !f �� �n−� !f� ���� �

�f�F�n� � ��
The stress relations then give (1.6.2) and (1.6.3). "

Example 1.6.2 (Surface tension (i.e., fluid–like interface response)). Let �f � U� �
be a frame indifferent, fluid like inteface response with U given by (1.6.1) and

�f�F�n� � σ | 	��F | (1.6.4)

for each �F�n� � U where σ is a constant. Then a particular case of Example 1.6.1
with !f�λ��� � λn−�� � λ� λn−� gives

�S � σ | 	��F |F−
� �C � �

and the spatial surface stresses by
��S�F� θ� � σ �P

for all �F�n� � U where �P � � − �n� �n and �n is the spatial interface normal, i.e., any
of the two unit vectors such that F
 �n � ��

Example 1.6.3 (Wulff energy). Let �f � �� � be given by
�f�F�n� � ��n� (1.6.5)

for each �F�n� � � and � � �n−� � � is a function; we call �f the Wulff energy. It is
used to model the growth of crystals, with � restricted by the symmetry of the lattice.
One finds that � �f � ��� �f � � and hence the standard stress response functions
are

�S � �� �C � ��n�P − n���n� (1.6.6)
where P � � − n� n� The energy (1.6.5) produces no standard stress, the interface
equilibrium is governed solely by the configurational stress. Already the special case

�f�F�n� � τ � const � �

leads to nontrivial phenomena with �C � τP� The orientation dependent interface
energies � were introduced by Wulff [30].

Proof The derivative of �f is an element of the tangent space to � at �F�m� [see
(1.2.1)] such that

�
�f ċG + � �f ċm � � ċm

for all �G�m� from the tangent space, i.e., for all �G�m� such that

Gn + Fm � ��

The theorem on Lagrange multipliers gives a � � �n such that

�
�f ċG +� �f ċm � � ċm + � ċGn + � ċ Fm

for all �G�m� � �����n� This gives

�
�f � �� n� �

�f � � + F
��

One finds that � � −�� + FF
�−�F�� but this is not needed; indeed the stress
relations with undetermined � give (1.6.6). "
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Example 1.6.4 (“Self–dual” energy). Let n � � and let �f � �� � be given by

�f�F�n� � ��F � n�� (1.6.7)

for each �F�n� � � where � � ���� �. The stress relations read

�S � −� � n� (1.6.8)

�C � �P + F
� � n + n� P�F
��� (1.6.9)

where for any � � ���we define the axial vector �� � �� of a tensor � � ��� by
��ċ� � ������� for any � � ��� If � is positively � homogeneous function then the
function �f� corresponding to the exchange of the actual and reference configurations
(Section 1.3) is of the same format as �f in (1.6.7), viz.,

�f��F�n� � ���F � n� (1.6.10)

for each �F�n� � �� where �
 � ���� � is given by

���A� � ��−A
�

for each A � ���� In this sense �f is self–dual.

Proof Differentiating the relation (1.6.7) one obtains that the derivatives of �f at
�F�n� � U and the derivative of � at F � n satisfy

�
�f ċG +� �f ċm � −�� � n� ċG + �F
��� ċm (1.6.11)

for every �G�m� belonging to the tangent space to � at �F�m� [see (1.2.1)]. If
�G�m� � ��P� �� where � � ��� is arbitrary then the identity (1.6.11) gives

�
�f P � −� � n�

If �G�m� � �F��n� −P�� where � � �� is arbitrary then the identity (1.6.11) gives

F
�
�f −� �f � P�F
����

The stress relatinos then give (1.6.8) and (1.6.9). Assume now that � is positively �
homogeneous and prove (1.6.10). To this end, we note that

F−� � 	�� F n � −�F � n�
 (1.6.12)

for each �F�n� � �� By the singular value decomposition theorem we have

�F�n� � �	U���
 �n�

for some 	�� � SO��� where U � �����λ�� λ�� �� and n � �n � ��� �� ��. Using the
formula �� � �
� � �� � ��� one finds that (1.6.12) reduces to

U−� � 	��U �n � −�U � n�


which is easily verified. With (1.6.12), the definition of �f�gives immediately (1.6.10).
"



1.6. Particular cases of interface response 15

Example 1.6.5 (Generalized surface tension). Let �f � �� � be given by

�f�F�n� �  �	��F n�� (1.6.13)

for each �F�n� � �, where  � �n � � is a given function. One obtains

�S � #�� ċ ��P − �� $F−
� (1.6.14)

�C � # − �� ċ �$P (1.6.15)

where � � 	��F n, �P is the projector onto �� and  and its derivative are evaluated
at �� One finds that if �f is of the form (1.6.13) with  positively � homogeneous then
�f� is of the form considered in Example 1.6.3, with � �  � i.e.,

�f��F�n� �  �n�

for each �F�n� � �� In this sense the present example and Example 1.6.3 are dual
to each other. However, unlike Example 1.6.3, in the present example for a realistic
model the function  in (1.6.13) cannot be arbitrary. Namely, the objectivity requires
 ���� �  ��� for each � � ��� � � SO��� which implies that  is a multiple of the
euclidean norm,

 ��� � σ |�|
for each � � �� where σ is a constant. We thus obtain the surface tension.

Proof Let �v � �� �n be defined by

�v�F�n� � 	�� F n

for each �F�n� � �� Then for any �G�m� from the tangent space of � at �F�n� we
have

 �v�G�m� � �v F−
 ċG − F−
G
�v� (1.6.16)

Indeed, differentiating
F
�v � �� |�v| � | 	��F |

and using F | 	��F | � | 	��F |F−
 one obtains

F
 �v �G�m� +G
 �v � �� �v ċ �v �G�m� � | 	�� F |�F−
 ċG�

The first relation gives
 �v�G�m� � !�v − F−
G
�v

for some ! � � and the second relation ! � F−
 ċG� which proves (1.6.16). Hence
the differentiation of (1.6.13) gives

 �f ċ �G�m� � �v ċ �F−
 ċG� − ċ F−
G
�v

for all �G�m� from the tangent space of � at �F�n�� As in the proof of Example
1.6.3 we obtain the existence of � � �n such that

�
�f � #��v ċ ��P − �v�  $F−
 + �� n� �

�f � F
��

The stress relations then give (1.6.14) and (1.6.15). The rest is immediate. "
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Proposition 1.6.6. Consider an interface described by the free energy function �f �
U � � and by the response functions �S� �C � U � ��� for the standard stress and
configurational stress. Then

(i) the configurational stress �C vanishes identically if and only if there exists a class
� function  � �n−� � �

�f�F�n� � | 	��F | ��n�� (1.6.17)

�F�n� � U� where �n � 	��F n/| 	�� F n|; the response (1.6.17) is frame in-
different if and only if there exists a σ � � such that (1.6.4) holds for each
�F�n� � U�

(ii) the standard stress �S vanishes identically if and only if there exists a class �
function � � �n−� � � such that (1.6.5) holds for each �F�n� � U�

The classes of energy functions in (i) and (ii) are dual each to other: in (i) the
response depends on the spatial interface normal while in (ii) on the referential
interface normal; they are mapped to each other by the exchange of the actual and
reference configurations described in Proposition 1.3.1.

Proof (ii): Assume that the inteface standard stress vanishes identically; i.e.,� �f P �
�� hence � �f � a�F�n� � n where a � U� �n is some function. Let us prove that
�f�F�n� � �f�G�n� whenever �F�n�� �G�n� � U� Given such two tensors, there
exists a class � curve H � %�� �& � ��� with endpoints F� G such that �H�t��n� � U
for each t � %�� �&�A differentiation gives 'H�t�n � � and hence

d�f�H�t��
dt

� � 'H�t�n ċ a�H�t�� � �

and the integration provides �f�F�n� � �f�G�n�. Thus there exists a function � �
�n−� � � such that �f�F�n� � ��n� for and �F�n� � U. The proof of the direct
implication is complete. Conversely, if �f is of the form (1.6.5) then Example 1.6.3
gives that the standard stress vanishes identically.

(i): For the given �f let �f�� �S�� �C� be given as in Proposition 1.3.1; then the
standard stress tensor of �f vanishes identically if and only if the configurational stress
of �f� vanishes identically. By (ii) the last occurs if and only if �f� is of the form

�f��F�n� � ��n� (1.6.18)

for each �F�n� � U where n is any of the two unit vectors satisfying F n � � and
where � � �n−� � � is an even function. The defining relation of �f� gives

�f�F�n� � | 	��F |�f��F−��

for each �F�n� � U where we have used | 	�� F−�|−� � | 	��F |� a combination with
(1.6.18) then gives (1.6.17). This completes the proof of the equivalence asserted in
(i). The rest of (i) is immediate. "



Chapter 2

Equilibrium states

To obtain the existence of minimizers of energy, appropriate convexity conditions for
the bulk and interface energy have to be assumed. In case of the bulk response the
polyconvexity of each of the energy functions ��� � � �� �� appears appropriate. The
mutual relation of the minima of �� is arbitrary, so that the geometric incompatibility
induced by symmetry can occur and the gross bulk response, given by the energy
function ���

����� � "�� ������� �������

���� � �� exhibits two wells corresponding to the two phases of the material.
The existence theory for a single phase minimizers with polyconvex energy is well
understood [3, 11, 22, 12].

In case of two or more energy wells, in the absence of interfacial energy ��f ( �)
the problem of minimum energy state generally does not have a solution, since in
the approach to the least energy, the body exhibits states �� i�E i� with finer and finer
microstructure of coexistent phases and with the interfacial area tending to infinity.
As the theory does not have any length scale, there is no limit on the fineness of the
microstructure, i.e., it is infinitely fine in the limit. The Young measure minimizers
represent the idealized limiting states. The least energy is given by the quasiconvex
envelope � �� (see [6; Section 6.3] for the definition) of the minimum energy ��. In
particular, under the affine boundary conditions

���� � ��� � � ����

where � is a prescribed constant affine deformation gradient, one has

����E���E� � G � ���� � �� on ���� � � �� ���

where we assume the referential volume of � equal to � for simplicity; however, the
infimum is generally not achieved.
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The interface energy has a regularizing effect so that the minimizers of the total
energy E can exist. As in case of the bulk response, the interfacial energy has to
posses the right convexity properties. These are discussed in Sections 2.2 and 2.3,
and, from a more general viewpoint, in Chapter 3.

The interface quasiconvexity of �f ensures the stability of a planar homogeneously
deformed interface T against curved inhomogeneously deformed interfaces S with
the same boundary data. An interface null lagrangian is an interfacial energy �f such
that �f and −�f are interface quasiconvex. An explicit form is given below [(2.2.2)]. An
interface polyconvex surface energy is a convex, positively � homogeneous function of
interface null lagrangians; it is automatically interface quasiconvex, and our existence
result is based on the interface polyconvexity. We note that Parry [23] and Fonseca
[10] establish some particular cases of the present notion of interface quasiconvexity
as necessary conditions for metastable minima.

2.1 States, minimizers of energy and equilibrium equations

We now use the constitutive information from Definitions 1.2.1 to introduce global
states of the phase transforming body �, the fields of mechanical/thermodynamic
quantities over the bulk phases and on the phase interface, and the total energy. The
smoothness assumed in this section allows us to obtain the equilibrium equations for
standard and configurational stresses in the classical form. A less restrictive definition
of states is needed for the existence theory; that definition is given in Section 2.3
(below).

Definition 2.1.1 (States). We say that ���E� is a state if � � �� �m is a continuous
map and E is an open subset of � such that

(i) S �� �) ��E is a class � surface of dimension n − � of normal n � S� �n−�;

(ii) with the notation
E� �� E� E� � �∼ 	
E

the maps �� �� �|E�� � � �� �� and y �� �|S are of class � with their gradients
∇��� and V y having continuous extensions �� and F to the closure of their
respective domains;

(iii) we have ����� ⊂ U�� � � �� �� and ���F ⊂ U�

Here f |M denotes the restriction of a map f to a subset M of its domain of definition
��" f and ��� f � �f �x� � x � ��" f � denotes the range of f � One has

�� � ∇� in E, �� � ∇� in �∼ 	
E, (2.1.1)

and the values of �� on 	
E� ∼ E� are the limits of the gradients in (2.1.1). In
particular, �� are well defined on S and we denote by %�& �� �� |S − �� |S the jump
of the deformation gradient across the interface. However, let us emphasize that � is
continuous. Also,

F � V y � V � on S (2.1.2)

and F � 	
S� ��� is the continuous extension of the surface gradient in (2.1.2).
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Definition 2.1.2 (Energy and stresses associated with states). Let ���E� be a state.
We define

(i) the energy E���E� of the state by

E���E� � E����E� + E �����E� (2.1.3)

where
E����E� � �

E
���∇�� dL

n + �
	∼E

���∇�� dL
n� (2.1.4)

E �����E� � �
S

�f�V y�n� dHn−�

are the bulk and interfacial energies, respectively;

(ii) the bulk standard stress �� the bulk configurational stress � and the bulk energy
density f on �∼ S by

� �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

��� � �� on E�

��� � �� on �∼ 	
E�

and similarly for � and f � here and below ��� � �� denotes the composition of the
maps ��� and ��� i.e., ���� � ������ � ���������� for each � � ��"�� � 	
E and
similarly for compositions of general maps;

(iii) the jumps %�&� %�& %f & of the bulk stresses on S and of the bulk energy on S by

%�& � ��� � �� |S − ��� � �� |S
and similarly for %�&, %f & and %�n ċ �n&;

(iv) the interfacial standard stress S, interfacial configurational stress C, and the
interfacial energy density f on S by

S � �S � �F�n�

and similarly for C� and f � where we use the notation of Definition 2.1.1.

As in case of the jump of �� the jumps defined in (iii) are the differences of the limits
of the corresponding bulk fields from the two sides of the interface. Note that S and
C are superficial tensors, i.e., Sn � Cn � ��

Definition 2.1.3 (Local perturbations and minima).

(i) A state ��� F� is said to be a local perturbation of the state ���E� if there exists
a compact subset K of � with

�|��∼ K� � �|��∼ K�� F ) ��∼ K� � E ) ��∼ K��
(ii) The state ���E� is said to be a local minimizer of energy if E���E� 	 E��� F�

for each local perturbation ��� F� of ���E��

Thus a local perturbation ��� F� is identical with the state ���E� near the boundary
of � and (ii) considers the minima of total energy in this class of states. For the
considerations below, and in particular for the validity of the interfacial configuration
force balance, it is crucial that the interface in the state ��� F� can be different from
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that of ���E� (apart from the mentioned coincidence near the boundary of �). Thus
in passing from ���E� to ��� F�� part of the phase � is transformed into the phase
� and/or conversely. A stronger notion of minimum is considered in the existence
theorems in Section 2.3. The reader is referred to [23] and [10] for different but
related notions of minima.

The following proposition [27; Lemma 3.2] clarifies the roles of the standard and
configurational force systems by evaluating the variation of total energy under outer
and inner variations.

Lemma 2.1.4 (Outer and inner variations). Let ���E� be a state. With the notation
of Definitions 2.1.1 and 2.1.2 we have the following statements, in which t � � is a
parameter and δ � � a number with |t|, δ sufficiently small:

(i) Let � � C�� ����
m� and let �t � �� �m be defined by

�t � � + t��

Then ��t�E� is a state that is a local perturbation of ���E�, the function t *
E��t�E� is continuously differentiable and

dE��t�E�
dt

∣∣∣
t��
� �
	∼S

� ċ ∇� dLn + �
S

S ċV � dHn−�� (2.1.5)

The family ���t�E� � |t| , δ� is said to be an outer variation of ���E��

(ii) Let � � C�� ����
n� and let �t � �� �n be defined by

�t��� � � + t �����

� � �� Then �t maps � bijectively onto �; if we define

�t � � � �
−�
t � Et � �t�E�

then ��t�Et� is a state that is a local perturbation of ���E�, the function t *
E��t�Et� is continuously differentiable and

dE��t�Et�
dt

∣∣∣
t��
� �
	∼S

� ċ ∇� dLn + �
S

C ċV � dHn−�� (2.1.6)

The family ���t�Et� � |t| , δ� is said to be an inner variation of ���E��

The forms (2.1.5) and (2.1.6) justifies the particular forms of the interfacial stress
relations postulated above. The stress relations continue to hold also in dynamical
situations, although the variational arguments do not suffice [14, 26].

The minimum of energy then leads to equilibrium equations.

Proposition 2.1.5. If ���E� is a local minimizer of energy then

��# � � �� ��#� � � in �∼ S� (2.1.7)

div S + %�&n � �� div C + %�&n � � on S� (2.1.8)

where we use the notation of Definitions 2.1.1 and 2.1.2. Equation (2.1.7)� and the
tangential component of (2.1.8)� is a consequence of (2.1.7)� and (2.1.8)�� Granted
(2.1.8)�� the normal component of (2.1.8)� is equivalent to
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%f − �n ċ �n& − �fP − F
S� ċ L + div t � � on S�

where L � V n is the curvature tensor and t � S� �n is given by

t � F
�
�f � �F�n�n −� �f � �F�n��

See [7–8, 15, 17, 16, 13–14, 25–26, 28]. See also [14] for further references.
Assuming m � n and the invertibility of the deformation �, we can introduce the

spatial configuration �� � ���� of the body and the spatial interface �S � ��S�� and
the spatial stress tensors

�� � � � ��
/J � �� � � � ��
/J �
�S � y � SF
/J� �C � y � CF
/J�

where
J � ����� J � | 	�� F |�

The equilibrium equations take the forms

�# �� � �� �# �� � � in ��∼ �S�
Div �S + %��&�n � �� Div �C + % ��&�n � � on �S�

where �#�Div denote the spatial bulk and surface divergences.

2.2 Interface quasiconvexity, null lagrangians and polyconvexity

Let n � � and put
s �� "���m� n�� t �� "���m� n − ���

For the purpose of the following definition, by an oriented surface S of normal
n we mean a bounded class � surface in �n of dimension n − � for which n is a
continuous field of unit normal, such that the boundary ��S �� 	
S ∼ S is a class
� surface of dimension n − �, with the orientation of ��S dictated by the Stokes
theorem. We say that T is a planar surface of normal m if T is a subset of some n − �
dimensional hyperplane in �n�

Definitions 2.2.1. Let �f � �� �- ��� be a continuous function. We say that �f is

(i) interface quasiconvex if

�
S

�f�V y�n� dHn−� � Hn−��T ��f�G�m� (2.2.1)

for every �G�m� � �, every planar surface T of normal m, every orented surface
S of normal n and every continuous map y � 	
S� �m that is class � on S such
that

��S � ��T and y��� � G� if � � �� T �

(ii) an interface null lagrangian if �f is finite valued and± �f are interface quasiconvex
[in other words, (2.2.1) holds with the equality sign for each collection of objects
listed in (i)];

(iii) interface polyconvex if �f is the supremum of some family of interface null
lagrangians.
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Remarks 2.2.2.
(i) If �f is the supremum of some family of interface quasiconvex functions then �f

is interface quasiconvex; in particular any interface polyconvex function is interface
quasiconvex. Any standard (bulk) polyconvex function is also the supremum of some
family of standard (bulk) null lagrangians.

(ii) In Chapter 3 we will introduce generalizations of the notions in Definition
2.2.1 which involve integrations on surfaces of dimension r wirh � 	 r 	 n in �n�
Also the surfaces as considered above will be replaced by more general objects, viz.,
integral currents, etc.

(iii) The main motivation of the interface quasiconvexity comes from the low-
ersemicontinuity of the surface energy E�� with respect to a suitable convergence of
states ���E� with migrating interface. These matters are counterparts of the corre-
sponding “bulk” assertions [19–20, 3, 5]. We refer to Section 3.6 for a simple result
of this type.

We now give a complete description of interface null lagrangians as linear com-
binations, with constant tensorial coefficients, of the members of the list

.kF / n� k � ��� � t

for each �F�n� � �� The reader is referred to Section A.2 (below) for the notation.
In particular,

.� F / n � n�
and if m � n then

.n−� F / n � � �	��F n��

Theorem 2.2.3. A function �f � �� � is an interface null lagrangian if and only if
it is of the form

�f�F�n� �
t

0
k��

�k ċ �.kF / n�

for all �F�n� � � where

�k � ����.k+��
n� .k�

m�
are constants for all k � ��� � t� If m � n � � then a general form of an interface
null lagrangian is

�f�F�n� � � ċ n +� ċ �F � n� + � ċ 	�� F n (2.2.2)

for each �F�n� � � where �� � � �� and � � ���������� are constants.

Here F � n is a second order tensor defined by

�F � n�� � F�n � ��
for any vector �� in components,

�F � n�iA � εABCFiBnC
where εABC is the permutation symbol, summation convention applies, and FiB, nC
are the components of F and n with i � �� �� � the spatial indices and A�B�C � �� �� �
the referential indices. Since F n � � we have

F � −�F � n� � n�

thus F�n carries the same information as F� however, it is F�n, and not F� that enters
the interface null lagrangians. The reader is referred to Proposition 3.5.2 (below) for
a general form of Theorem 2.2.3.
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Theorem 2.2.4. A function �f � �� �- ��� is interface polyconvex if and only if
there exists a positively � homogeneous function � � $� �- ��� defined on

$ ��
t

1
k��

����.k+��
n� .k�

m� (2.2.3)

such that
�f�F�n� � ��.� F / n� .� F / n�� �.t F / n�

for each �F�n� � �. If m � n � � then �f is interface polyconvex if and only if there
exists a positively � homogeneous convex function % on the space & such that

�f�F�n� � %�n�F � n� 	��F n�

for each �F�n� � �.

The reader is referred to Proposition 3.5.3 (below) for a general form of this result.

We now consider some particular cases.

Proposition 2.2.5. Let m � n and let �f � �� � be an interface energy function.

(i) Let n � � and let g � %�� ��� � �� � � be a positively � homogeneous convex
function such that

– for each s � ��  � �� the function g�ċ� ċ� s� � is symmetric under the
exchange of its two arguments,

– for each  � �� the function g�ċ� ċ� ċ� � is nondecreasing.

If
�f�F�n� � g�λ�� λ�� λ�λ��n�

for each �F�n� � � where λ�� λ�� � are the singular numbers of F, then �f is
interface polyconvex; in particular, if g is independent of n then �f is an isotropic
interface polyconvex function.

(ii) Let
�f�F�n� � σ | 	��F |

for each �F�n� � U where σ is a constant. Then �f is interface polyconvex if and
only if σ � ��

(iii) Let
�f�F�n� � ��n�

for each �F�n� � � where � � �n−� � � is a positively � homogeneous function;
then �f is interface polyconvex if and only if � is convex.

(iv) Let n � � and
�f�F�n� � ��F � n�

for each �F�n� � � where � � ���� � is a positively � homogeneous function.
Then �f is interface polyconvex if and only if � is convex.

(v) Let
�f�F�n� �  �	��F n��
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for each �F�n� � �, where  � �n � � is a given positively � homogeneous
function. Then �f is interface polyconvex if and only if  is convex.

Proof (i): Let � � �� � ������ � � be defined by

%��
� �� � g�λ�� λ�� |�|� �
for each � � � �� and each 
 � ��� where λ� � λ� � λ� � � are the singular values
of 
� If �F�n� � � and F has the singular values λ� � λ� � � then F � n also has the
singular values λ� � λ� � � and 	��F n| � λ�λ�� Hence

�f�F�n� � %�n�F � n� 	��F n�

for each �F�n� � �� The symmetry and convexity of g imply that� g � � g and the
nondecreasing character that � g � � and � g � �� The von Neumann and Cauchy
inequalities give that % is a convex function and thus �f is polyconvex.

(ii): The sufficiency of σ � � is a particular case of (i). The necessity is immediate.
(iii): If � is convex and positively � homogeneous (by hypothesis) then the

definition immediately gives that �f is interface polyconvex. Conversely assume that
�f is interface polyconvex so that there exists a positively � homogeneous convex
function % such that

��n� � %�n� .�F / n�� �.n−�F / n�

for each �F�n� � �� For ���n� � � this gives

��n� � %�n� ��� � ��

which must hold for each unit vector n� The positive � homogeneity of � and % then
implies that

���� � %��� ��� � ��

for each � � �n and the convexity of % implies that � is convex.
(iv) and (v) are proved analogously. "

2.3 The existence of equilibrium states

This section outlines the existence theory for the minimizers of energy. We first
enlarge the state space in Definition 2.3.1. The reader is referred to Section A.2 for the
necessary notions of multilinear algebra (in particular the notion of interior derivative
of a k vectorfield occurring in (2.3.1) below); furthermore, M���V � denotes the set
of all measures on an open set� ⊂ �nwith values in a finite dimensional vectorspace
V � Throughout the section we assume m � n and consider the constitutive data of
Definition 1.2.1.

Definitions 2.3.1 (State space for the existence theory). Let � ⊂ �n be a bounded
open set with lipschitzian boundary and n − � 	 p 	 �� � 	 q 	 �� We denote by
G p�q����n� the set of all pairs ���E� such that

(i) � � W ��p����n�,

.n−�∇� � L
q�������.n−��

n� .n−��
n���
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(ii) E is an Ln measurable subset of ��

(iii) for each k with � 	 k 	 n − � there exists a measure Bk in the space
M�������.k+��

n� .k�
n�� satisfying

�
E
.k∇� 2� dL

n � �−��k+� �
	

d Bk � (2.3.1)

for each � � Dk+���� [in the integral on the right hand side of (2.3.1) the
integration measure Bk precedes the integrand � for algebraic reasons].

We call the elements ���E� � G p�q����n� states. We call the measure Bk the
interface null lagrangian of order k corresponding to ���E�. We write Bk � Bk���E�
to indicate the dependence on ���E�� we abbreviate L���E� � �B��� �Bn−���
Underlying the definition of the interface null lagrangians is the vanishing of the
exterior derivative of the bulk jacobian minors .k∇�� Namely, if � � W ��p����n�
with p � k then

�
	

.k∇� 2� dL
n � � (2.3.2)

for each � � Dk+����� we here recall that the interior derivative 2 is dual (formal ad-
joint) of the exterior derivative. The reader is referred to [12; Corollary 2, Subsection
3.2.3] for a coordinate version of (2.3.2). Since (2.3.1) involves the bulk integral over
E� one expects that the integration by parts will result in an object Bk concentrated
on the boundary of E� This is indeed the case, as we shall show now.

Remark 2.3.2. If ���E� � G p�q����n� with p � n − �� q � � then E is a set of finite
perimeter and

B� � n Hn−� ����E��� (2.3.3)

where ����E��� �� � ) ��� E and ��� E is the measure theoretic boundary of E�
Moreover, if � 	 k 	 n − � then

'(�Bk ⊂ 	
 ����E����

Proof For k � � Equation (2.3.1) reads

�
E
��# � dLn � − �

	

d B��

for each � � C�� ����
n� where B� � M��������n����� This shows that the

perimeter of E in � is finite and as the rest of the perimeter of E can be only a subset
of ���, the lipschitzian character of ��� implies that E is a set of finite perimeter.
Equation (2.3.3) is then a consequence. If � 	 k 	 n − � and � � Dk+���� satisfies
'(� �) 	
 ��� E � 3 then � � �� +�� where '(� �� ⊂ E and '(� �� ⊂ �∼E and thus

�
E
.k∇� 2� dL

n � �
E
.k∇� 2�� dL

n � �
�n
.k∇� 2�� dL

n � �

by (2.3.2). "

Remark 2.3.3. If ���E� is a pair where � � � � �n is lipschitzian and E ⊂ � is
a set of finite perimeter then ���E� � G p�q����n� for all p � n − � and q � �� the
measures Bk are given by

Bk � .kV y / n Hn−� ����E��� (2.3.4)
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were y � �| ����E��� and V y is the approximate surface gradient of the lipschitzian
map y on the Hn−� rectifiable set ����E����

Thus Bk are the measure theoretic generalizations of the interface null lagrangians.
See Section 3.6 (below) for the proof of (2.3.4).

Definition 2.3.4 (Energy functional for the existence theory). Let �� � ���� %�� �&,
� � �� �� be functions of the forms

����� � %��.���� �.s�� (2.3.5)

for all � � �� � and all � � ���� where %� � ) � %�� �& are continuous convex
functions on

) �
s

1
k��

����.k�
n� .k�

n��

Let �f � �� %�� �� be a function of the form

�f�F�n� � %�.� F / n�� �.n−� F / n� (2.3.6)

for each �F�n� � � where % � $ � %�� �� is a positively � homogeneous convex
function. If n − � 	 p 	 �, we define the total energy E � G p�q����n� � %�� �& by
(2.1.3) for each ���E� � G p�q����n� where E� is given by (2.1.4) and

E �����E� � �
�n
%�A� d |L���E�| (2.3.7)

where |L���E�| is the total variation of L���E� and A � �� $ satisfies L���E� �
A |L���E�|� cf. [2; Corollary 1.29 and Section 2.6].
The definition (2.3.7) reduces to

E �����E� � �
���	E�	


�f�V ��n� dHn−�

if ���E� consists of a lipschitzian map � and a set of finite perimeter E ⊂ ��

Theorem 2.3.5. Let n − � 	 p , �� n/�n − �� 	 q , � and assume that

(i) ��, � � �� �� are polyconvex in the sense of (2.3.5) where %� are continuous
convex %�� �& valued functions, �f is interface polyconvex in the sense of (2.3.6)
where % is a positively � homogeneous convex %�� �� valued function,

(ii) for all � � �� �� all � � ���� all * � $, some c � � and some d � � we have

����� � c�|�|p + | 	���|q� + d� %�*� � c|*|�
(iii) ����� � � if ���� 	 ��

Given �� � W
��p����n�, consider the Dirichlet class

A���� � ����E� � G p�q����n� � � � �� on ����

and let E be given by Definition 2.3.4. If E is finite at some element of A���� then
there exists an ���E� � A���� such that

E���E� 	 E��� F�

for all ��� F� � A����� Each solution ���E� of the problem satisfies
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���∇� � � for Ln a.e. point of ��

Proof Let ��μ� denote the mass of the measure μ �M���V �� i.e., ��μ� � |μ|���
where |μ| denotes the total variation of μ� Let �� i�E i� � A���� be a minimiz-
ing sequence. By the coercivity assumptions on �� and % the sequences |∇� i|Lp
and ��L�� i�E i�� are bounded. Combining the boundedness of |∇� i|Lp with the
Dirichlet boundary data, one obtains the boundedness of |� i|

W ��p
� Standard com-

pactness theorems for Sobolev space and for the spaces of measures give that for
some subsequence of �� i�E i�� denoted again �� i�E i�� and some � � W ��p����n�,
� �M���$� we have the following facts:

� i 4 � in W ��p����n�� (2.3.8)

.n−�∇� � 	��∇� bounded in Lq�������.n−��
n� .n−��

n��

L�� i�E i� 4� � in M���$� (2.3.9)

where $ is defined by (2.2.3). From B���
i�E i� � nE

i
Hn−� ����E

i��� we
deduce that the sequence  �E i is bounded in M����n�� The imbedding theorem
from BV functions (e.g., [2; Corollary 3.49, Chapter 3] implies

�E i � �E in L ����� (2.3.10)

for some set E ⊂ � of finite perimeter, i.e.,

Ln�+�E i�E�� � �� (2.3.11)

where +�E i�E� is the symmetric difference of E i and E� The inequality p � n − ��
Equation (2.3.8) and the weak sequential continuity of minors (e.g., [21; Theorem
2.3(ii)]) gives

.k∇�
i 4 .k∇� in Lp/	n−�
�������.k�

n� .k�
n��, � 	 k , n − �� (2.3.12)

The condition E�� i�E i� , � for each i and Hypothesis (iii) imply that ���∇� i � �
for every i and Ln a.e. point of �� By [22; Lemma 4.1] then

.n−�∇�
i 4 .n−�∇� in Lq�������.n−��

n� .n−��
n��, (2.3.13)

���∇� i4 ���∇� in L ��K ���

for each compact subset K of ��
The equiintegrability of the sequence .k∇�

i and (2.3.11) yield

�E i .k ∇�
i 4 �E .k ∇� in L ��������.k�

n� .k�
n��, � 	 k 	 n − �

and in particular,
�
E i
.k∇�

i 2� dLn � �
E
.k∇� 2� dL

n

for each � � Dk+���
n�� which can be rewritten as

�
	

d Bk��
i�E i��� �

E
.k∇� 2� dL

n� (2.3.14)

Hence (2.3.9) yields
�
E
.k∇� 2� dL

n � �
	

d�k �
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where we write � � ����� ��s� for the components of �. Thus ���E� �
G p�q����n� and Bk���E� � �k. Equations (2.3.14) and (2.3.13) reduce to

L�� i�E i� 4� L���E� in M���$�� (2.3.15)

Let , � � � )� %�� �& be defined by

,�τ�-� � |τ|%��-�
for each τ � � and - � $; note that the function ,�τ� ċ� is convex for each τ � �.
For each compact subset K of � we have

�
E i�K

���∇�
i� dLn � �

K
,��E i� .�∇�

i�� �.s∇�
i� dLn�

The Ioffe lowersemicontinuity theorem [2; Theorem 5.8, Chapter 5] and (2.3.10) and
(2.3.12) then give


�" ���
i��

�
K
,��E i� .�∇�

i�� �.s∇�
i� dLn � �

K
,��E � .�∇��� �.s∇�� dL

n�

Thus the nonnegativity of �� gives


�" ���
i��

�
E i
���∇�

i� dLn � �
E�K
���∇�� dL

n�


�" ���
i��

�
	∼ E i

���∇�
i� dLn � �

K ∼E
���∇�� dL

n

where the last relation is obtained analogously. The arbitrariness of K then gives


�" ���
i��

�
E i
���∇�

i� dLn � �
E
���∇�� dL

n� (2.3.16)


�" ���
i��

�
	∼E i

���∇�
i� dLn � �

	∼E
���∇�� dL

n� (2.3.17)

Using (2.3.15) and the Reshetnyak lowersemicontinuity theorem (e.g., [2; Theorem
2.38, Chapter 2]), one obtains


�" ���
i��

E ����
i�E i� � E �����E�� (2.3.18)

Thus (2.3.16), (2.3.17) and (2.3.18) provide


�" ���
i��

E�� i�E i� � E���E��

Clearly, ���E� � A����� "



Chapter 3

Graphs, currents, and quasiconvexity of degree r

This chapter deals with the convexity properties of integral functionals of the form

F�M����� � �
M

�f�∇���� dH r (3.0.1)

whereM is an r dimensional oriented surface in�n�with � 	 r 	 n� � is a lipschitzian
map from a bounded open subset � of �n to �m� ∇� is the surface gradient of �
relative to M and � is a vectorfield on M with values in r vectors on �n giving the
surface M an orientation. The surface M is varying, it is an independent variable of
the functional F � The function �f is called a standard integrand here. Quasiconvex and
polyconvex standard integrands will be defined and also standard integrands that are
null lagrangians will be introduced. The interface quasiconvexity and polyconvexity
and interface null lagrangians defined above in Section 2.2 will become particular
cases of the present notions corresponding to r � n−� and the standard “bulk” notions
of quasiconvexity, polyconvexity, and null lagrangians correspond to r � n�

The general form of the null lagrangians and of polyconvex functions will be
established and a lowersemicontinuity theorem for sequences with varying surfaces
Mi� �i and �i will be established. The proof of the structure of null lagrangians is
essentially noncomputational, but is based on a lifting of the picture of the map � on
M to the graph of � onM � The integral (3.0.1) can be expressed as

�
S
%��� dH r (3.0.2)

where S �� ���(.�M��� is interpreted as a surface of dimension r in �m+n� � is
an r vectorfield giving ���(.�M��� an orientation and % is some integrand that is
uniquely determined by �f� Following Federer [9; Subsection 5.1.2] we call % a para-
metric integrand of degree r� The correspondence between the standard integrands �f
and the parametric integrands is essentially bijective and a question arises how the
convexity properties of standard integrands translate into the language of parametric
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integrands. The central convexity notion for the parametric integrands is the semiel-
lipticity by Almgren [1; Section 1] (also Federer [9; Subsection 5.1.2]), which is
equivalent to the semiconvexity of the functionals (3.0.2) on surfaces under the flat
norm. The relationship between the semiellipticity of % and quasiconvexity of �f is
rather direct: the semiellipticity of % implies the quasiconvexity of �f and conversely
the quasiconvexity of �f implies the semiellipticity inequality on surfaces that can be
represented as graphs. In case of null lagrangians and of polyconvex functions the
relationship is even simpler: �f is a null lagrangian if and only if both % and −% are
semielliptic; �f is polyconvex if and only if % has a convex extension onto the convex
hull of ��"%�

3.1 Rectifiable currents

Our model of a surface of dimension r in �d is a rectifiable r dimensional current.
These will be our integration domains. Let U be an open subset of �d �

Definition 3.1.1 (Cf. [9]). An r dimensional current T in U (� 	 r 	 d) is an .r�
d

valued distribution on U � i.e., a continuous linear function T on the space D r�U� of
infinitely differentiable r forms on �d with compact support which is contained in
U � endowed with the Schwartz topology. We denote the value of T on � � D r�U�
by 〈T ��〉�We define the boundary 2T of an r dimensional current T in U as an r − �
dimensional current defined by

〈2T � 〉 � 〈T � 〉
for each  � D r−��U� where  � D r�U� is the exterior derivative of  and we
put D s�U� � ��� if s 	 ��

We now introduce special classes of currents which will play leading roles in
the developments below. We say that a subset M of �d is H r rectifiable if M is H r

measurable, H r�M� , � and H r almost all of M is contained in the set
�

5
i��

�i��
r�

where �i � �
r � �d are lipschitzian maps. It follows that the approximate tangent

space ��� r�M��� is an r dimensional linear subspace of �d for H r a.e. � � M �We
say that an r vectorfield � � M � .r�

d on a H r rectifiable set M ⊂ �d is tangential
if ���� is the product of r vectors from��� r�M��� for H r a.e. � � M � Let / denote
the set of all positive integers.

Definition 3.1.2 (Cf. [9]). An r dimensional current T in U is said to be

(i) rectifiable if
〈T ��〉 � �

M
〈���〉 dH r (3.1.1)

for each � � D r�U� where

M is a H r rectifiable subset of U ,

� � M � .r�
d is a H r integrable,

� is tangential toM�

��� |�| ⊂ /�

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1.2)
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we write
T � �H r M� (3.1.3)

(ii) integral if T and 2T are rectifiable.

We note that the objects in (3.1.2) and the formula (3.1.1) defines a rectifiable current
in any open subset of �d containing M� the currents corresponding to different
choices of U then differ by their domain of definition D r�U�� The integrality of the
current T depends strongly on the choice of U since the boundary 2T depends on U �
Indeed, if T� � D

r��d� � � is a current on �d defined by

〈T���〉 � �
M
〈���〉 dH r

for each � � D r��d� while if T � D r�U� � � is given by (3.1.1) for every
� � D r�U� then 2T � D r−��U� � � is the restriction of 2T� � D

r−���d� � � to
the set D r−��U�� One may say, informally, that 2T is the part of the boundary of T�
that is contained in U �

Definition 3.1.3. We say that an r dimensional current S represents a planar region
if there exists an r dimensional plane P ⊂ �d (i.e., and r dimensional affine subspace
of U) and a bounded H r measurable subset N of P such that

S � �H r N

where � is constant and equal to any of the two unit vectors associated with P�

Each r dimensional rectifiable current T is an r dimensional flat chain as defined
in [29, 9] and thus T can be put into the duality pairing 〈T ��〉 with flat r dimensional
forms �� i.e., essentially bounded Ld measurable forms on �d such that the weak
exterior derivative of � is essentially bounded Ld measurable. In the particular case
the flat form � is continuous, the duality pairing reduces to the integration

〈T ��〉 � �
M
〈���〉 dH r

where 〈���〉 denotes the duality pairing between r vectors and r covectors. If � �
�d � � e is a lipschitzian map and  a flat r form on � e we define the pullback �# 
as an r form on �d by

�# � .r�∇��
�  � �

for Ld a.e. � � �d �where∇� is the derivative of ��which exists for Ld a.e. point of
�d, �∇������ � .��

e � .��
d denotes the adjoint of∇����� so that.r�∇��

���� �
.r�

e � .r�
d . It turns out that �# is a flat form and the fundamental formula

��# � � �# 

relating the weak exterior derivatives holds. Dualizing, one defines the pushforward
�#T of a flat r dimensional chain T on �d by a lipschitzian map � � �d � � e as a
current that satisfies

〈�#T � 〉 � 〈T ��# 〉
for each  � D r�� e�� It is possible to prove that �#T is a flat chain. The following
proposition describes the pushforward in the particular case of rectifiable currents.
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Proposition 3.1.4 (Cf. [9; Subsection 4.1.30]). Let T be an r dimensional rectifiable
current in U of the form (3.1.3) where M and � satisfy (3.1.2). Let � � �d � � e be
a lipschitzian map and put ! �� �|M � Then S �� �#T is an r dimensional rectifiable
current on � e of the form

S � �H r !�M�

where for H r point � of !�M��

���� � 0
��−�	���


%.rV !���&����/Jr!���

is a simple r vector tangential to !�M� at � and

%.rV !���&����/Jr!��� � ± |����|����/|����|
for every � � !−�������

Here and below V !��� is the approximate surface gradient of the lipschitzian map !
relative to the H r rectifiable setM (see Section A.1, below) and Jr!��� � |.rV !���|
is the jacobian. We see that S � �#T is completely determined by ! �� �|M and we
write S � !#T �

3.2 Parametric integrands and semiellipticity

Let '�.r�
d denote the cone of all simple vectors from .r�

d .

Definitions 3.2.1 (Cf. [9; Subsection 5.1.1]).

(i) We say that % is a parametric integrand of degree r in �d if % is a positively �
homogeneous borelian function with values in � - ��� defined on some cone
contained in '�.r�

d and the negative part of % is locally bounded.

(ii) If % is a parametric integral of degree r in�d , we denote by ��" 〈%� ċ〉 the set of
all rectifiable currents T in �d with compact support, of the form (3.1.3) where
M�� satisfy (3.1.2) and ���� ⊂ ��"%� for any such a T we define

〈%�T 〉 � �% � � dH r

and call 〈%�T 〉 the parametric integral of the current T ; we note that 〈%�T 〉 �
� - ����

Definitions 3.2.2. Let % be a parametric integrand of degree r on �d� The integrand
% is said to be

(i) elliptic if there exists a c � � such that

〈%�T 〉 − 〈%� S 〉 � c#��T� −��S�$ (3.2.1)

whenever T � S � ��" 〈%� ċ〉 satisfy 2T � 2S and S represents a planar region.
Here ��T� is the mass (total variation) of the measure T �

(ii) semielliptic if
〈%�T 〉 � 〈%� S 〉

for any T � S as above;
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(iii) a semielliptic null lagrangian if ��"% � '�.r�
d � ���% ⊂ ��% is continuous

and both % and −% are semielliptic;

(iv) semielliptic polyconvex if ��"% � '�.r�
d and % is the supremum of some

family of semielliptic null lagrangians.

Proposition 3.2.3. Let % be a semielliptic integrand of degree r on �d with r , d�
Let ���� � �r � �

d be linearly independent and define

�� i �� �−�� i
r
.

k���k�i
�k� (3.2.2)

� 	 i 	 r� Then

%�
r

0
i��
�� i� 	

r

0
i��

%��� i� (3.2.3)

provided �� i and 0
r
i�� ��

i belong to ��"%� If % is continuous and ��"% � '�.r�
d

then the requirement that ���� � �r be linearly independent can be relaxed.

Proof We have
r

0
i��
�� i � �−��k+�

r
.

i���i�k
��i − �k�

for each k � ��� � r� thus � �� 0
r
i�� ��

i is a simple vector. If + is an r + � simplex in
�d with vertices �� ���� � �r then the r vector −�� i is tangent to the face Fi opposite
to the vertex �i and 0

r
i�� ��

i is tangent to the face M opposite to �� Putting

Ti � ��iH
r Fi� i � ��� � r� T ��

r

0
i��
Ti� S � �H r M�

we observe that the current represeting the boundary of+ isS−T and hence 2�S−T� �
�� i.e., 2T � 2S�Applying the semiellipticity condition to the testcurrents T and S, we
obtain (3.2.3). Finally, if % is continuous and ��"% � '�.r�

d then since r , d� one
approximates a given r + � tuple of vectors by an r + � tuple of linearly independent
vectors and uses the continuity. "

Proposition 3.2.4 ([29; Theorem 9A, Chapter 5]). Let % be a real valued function
defined on '�.r�

d such that
%�t�� � t%��� (3.2.4)

for any t � � and any � � '�.r�
d and
r

0
i��

%��� i� � %�
r

0
i��
�� i� (3.2.5)

for any r + � tuple of vectors ���� � �r � �
d � where �� i are given by (3.2.2). Then

there exists a unique � � . r�d such that %��� � 〈���〉 for any � � '�.r�
d .

Proof The uniqueness is clear. To prove the existence, set

������ � �r� �� %��� / / �r�

for any ���� � �r � �
d � and show that � is an r covector. Equation (3.2.4) implies

that � is antisymmetric with respect to premutations of ���� � �r and homogeneous
in each argument. Thus to show that� is an r form we have to prove that� is additive
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in each argument. It suffices to prove that � is additive in the first argument. Hence
let ���� � �r be given and show that

���� + �
�
� � ���� � �r� � ����� ���� � �r� + ���

�
� � ���� � �r� (3.2.6)

for any ��� �
�
� � �

d � Let an r + � tuple of vectors ���� � �r � �
d be defined by

�� �� ��� �� � �
�
� and �i � �i for � 	 i 	 r� One finds that

��� � � �� / / �r� ��
� � −�� / �� / / �r

and thus (3.2.5) reads

%�� �� / �� / / �r� − %��� / �� / / �r� +
r

0
r��

%��� i� � %��� (3.2.7)

where

� � � �� / �� / / �r − �� / �� / / �r +
r

0
r��
�� i�

Let an r + � tuple of vectors "��� � "r � �
d be defined by "� ��

�
�
��� + �

�
� �� "� � �

�
�

and "i � �i for � 	 i 	 r� One finds that

�"� � � �� / / �r� �" � � − �
�
��� + �

�
� � / �� / / �r�

�" i � �
�
�� i if � 	 i 	 r�

r

0
i��

�" i � �
�
��

Thus (3.2.5) reads

%�� �� / / �r� −
�
�
%���� + �

�
� � / �� / / �r� +

�
�

r

0
r��

%��� i� � �
�
%���

Multiplying by � and subtracting from (3.2.7) one obtains (3.2.6). "

Proposition 3.2.5. Let % be a parametric integrand of degree r with ��"% �
'�.r�

d� Then

(i) % is a semielliptic null lagrangian if and only if

%��� � 〈���〉
for any � � '�.r�

d and some � � . r�d �

(ii) % is semielliptic polyconvex if and only if % has a convex extension to .r�
d �

Proof (i): If % is a semielliptic null lagrangian, then the assumed continuity and
��"% � '�.r�

d imply that (3.2.3) holds with the equality sign for any r + � tupe of
vectors ���� � �r � �

d � Assuming thst �� � −�� we then obtain

%��� � %��� +%�−��

where � � 1
r
i�� �i� It follows that %�−�� � −%��� for each simple r vector �. Thus

%�t�� � t%��� for each simple r vector � and each t � �� Furthermore, we have
(3.2.3) with the equality sign and thus the restriction of % to the set of all simple
r vectors satisfies the hypotheses of Proposition 3.2.4 and (i) follows. (ii): Follows
immediately from (i). "



3.3. Standard integrands and degree r quasiconvexity 35

3.3 Standard integrands and degree r quasiconvexity

Throughout this section, let m� n� r be integers with m� n positive and � 	 r 	 n� We
denote by 0�m� n� r� the set of all pairs �F��� where � is a simple unit r vector in
�n and F � �����n��m� is such that F n � � for each n � �n that is orthogonal to
� (the last means � n � �).

Definitions 3.3.1.

(i) An �m valued map on an r current is any pair �T � #� consisting of an integral
r current T in �n with compact support and a lipschitzian map # with '(� T ⊂
��" # ⊂ �n and ��� # ⊂ �m�

(ii) A �m valued map on an r current �S�$� is said to be affine if S represents a
planar region and $ has an affine extension to a map from �n to �m�

(iii) We say that two �m valued maps on r currents �T � #� and �S�$� have matching
boundaries if

2T � 2S�
# � $ on '(� 2S�

Definition 3.3.2.

(i) A function �f � 0�m� n� r� � � - ��� is said to be a standard integrand of
degree r if �f is borelian and locally bounded from below.

(ii) If �T � #� be a �m valued map on an r current and �f � 0�m� n� r� � � - ��� a
standard integrand we put

I��f�T � #� � �
M

�f�V #��/|�|�|�| dH r (3.3.1)

where we assume that T has the representation (3.1.3) with M� � as in (3.1.2)
and V #��� is the approximate derivative of #which exists at H r a.e. � � M � The
value (3.3.1) is in�-��� and is independent of the particular representation of
T �

Definitions 3.3.3. A standard integrand �f � 0�m� n� r� � �- ��� is said to be

(i) degree r quasiconvex if
I��f�T � #� � I��f� S�$�

whenever �T � #� and �S�$� are �m valued maps on r currents with matching
boundaries and �S�$� is affine;

(ii) a degree r null lagrangian if ��" �f � 0�m� n� r�� ��� �f ⊂ �� �f is continuous,
and �f and −�f are degree r quasiconvex;

(iii) degree r polyconvex if it is the supremum of some family of degree r null
lagrangians.

The degree r quasiconvexity involves a variation of the domain of integration except
the case r � n. In the particular case r � n the domain remains the same and in
fact the degree n quasiconvexity, degree n null lagrangians and degree n polyconvex
functions are related to the standard counterparts of these notions, which we first
define and then explain the relationships.
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Definitions 3.3.4. A borelian function f � �����n��m� � � - ��� which is
locally bounded from below is said to be

(i) quasiconvex in the standard sense if

�
E
f �∇�� dLn � Ln�E�f ���

for every � � �����n��m�� for every bounded open subset E of �n with
Ln��� E� � �� and for every � � W ����E��m� such that ���� � �� on ��E�

(ii) null lagrangian in the standard sense if f is continuous, its range is � and both
f and −f are quasiconvex in the standard sense;

(iii) polyconvex in the standard sense if it is the supremum of some family of null
lagrangian in the standard sense.

Remark 3.3.5 (Degree n quasiconvexity). Since there are only two unit n vectors in
�n� viz., � � �n and � � −�n where

�n �� %� / / %n (3.3.2)

is the standard orientation of �n� we have

0�m� n� n� � �����n� � � � �����
n��m�� - ���� −�n� � � � �����

n��m���

Thus each function �f � 0�m� n� n� � �-��� can be identified with the pair ��+� �−�
where �± � �����

n��m� � �- ��� via

�f��� ±�n� � �±���� (3.3.3)

� � �����n��m��We have the following assertions:

(i) If �f is degree n quasiconvex then the functions �± are quasiconvex in the standard
sense; if �f is finite valued, then also the converse is true;

(ii) �f is a degree n null lagrangian if and only if �± are null lagrangians in the
standard sense;

(iii) �f is degree n polyconvex if and only if the functions �± are polyconvex in the
standard sense.

Proof (i): Each integral n current S in�n representing a planar region is of the form

T � �nL
n E or T � −�nL

n E

where E ⊂ �n is a bounded set of finite perimeter, and necessarily if T is an integral
n current with 2T � 2S then T � S� This follows from the fact that T � m�nL

n

where m in a ) valued integrable function, and the condition 2T � 2S means that
∇m � ∇�E in the weak sense and hence m − �E is constant, and as m has to be
integrable, necessarily m � �E � If �T � #� and �S�$� are �m valued maps on these n
currents, we have # � E � �m�$ � E � �m� Assuming that �S�$� is affine, we have
∇$ � � constant on E and thus the degree n quasiconvexity condition gives that if
�T � #� and �S�$� have matching boundaries, then

�
E
f±�V #� dLn � Ln�E�f±���� (3.3.4)
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This has to hold for every set E of finite perimeter, every lipschitzian # � E � �m�
and every � such that #��� − �� is constant on '(� 2S� and the latter set contains
��� E� In particular, this must hold for each ball. An argument of Ball & Murat [5]
then shows that the equality actually holds for all ��E� � as in the definition of the
standard quasiconvexity condition.

To prove the converse statement, we assume that �f is finite valued and that f±
are quasiconvex in the standard sense. Let E be a bounded set of finite perimeter in
�n, let W � '(��nL

n E and let # � W � �m be a lipschitzian map such that
#��� � �� on '(� 2�nL

n E ⊂ W for some �� The goal is to prove (3.3.4). Let
!& � �n � �m be defined by

!&��� �

⎧⎪⎪⎨
⎪⎪⎩
#��� if � � W �

�� otherwise,

� � �n� This is a lipschitzian continuous function and if B is any open ball in �n

which containsW then the standard quasiconvexity of f± gives

�
B
f±�∇!&� dL

n � Ln�B�f±���� (3.3.5)

For Ln a.e. point of B ∼W we have ∇!& � � and for Ln a.e. point of W we have
∇!& � V # and thus

�
B
f±�∇!&� dL

n � Ln�B∼W �f±��� + �
W
f±�V #� dLn� (3.3.6)

Using f±��� � � we deduce that (3.3.5) and (3.3.6) give (3.3.4).
(ii): Since the degree n null lagrangians are finite valued by definition, we see

that (i) immediately gives the assertion.
(iii): This follows from (ii) and the definition of degree n polyconvex and standard

polyconvex functions. "

Proposition 3.3.6. If �f is a standard integrand which is the supremum of some family
of degree r quasiconvex functions then �f is degree r quasiconvex. In particular, each
degree r polyconvex function is degree r quasiconvex.

3.4 Graphs of maps on rectifiable currents

Throughout this section, letm� n� r be integers withm� n positive and � 	 r 	 n� Recall
that the graph of a map f � M � N is the set

���(. f � ��x� f �x�� � x � M� ⊂ M � N

and the graph map of f is ��� � f �|M � M � M � N given by

��� � f �|M�x� � �x� f �x���
x � M �

Introduce the linear maps �� '� (� 	 by

�� � ��� ��� '� � ��� ��� (��� �� � �� 	��� �� � �



38 3. Graphs, currents, and quasiconvexity of degree r

for all � � �n and all � � �m�We note that for each r�

.r�
m+n �

s
6
k��

���.r−k� / ���.k'

where
s � "�� �m� r��

The vector � � .r�
m+n is said to be vertical if .r(� � ��

Proposition 3.4.1. Let Lr � 0�m� n� r� � .r�
m+n be defined by

L r�F��� � .r�� + 'F��/| .r �� + 'F��|
for each �F��� � 0�m� n� r�� it will be proved that the denominator is different from
�� Then

(i) Lr maps 0�m� n� r� bijectively onto the set

H r � �� � .r�
m+n � � is simple, nonvertical, and of unit length��

(ii) if we put
P r � �.r�� +'F�� � �F��� � 0�m� n� r���

B r �� 	� �� � '�.r�
n � |�| 	 ��

then
'(�� P r � .r�

m+n� (3.4.1)

	
 	� P r � �� � .r�
m+n � .r(� � B r�� (3.4.2)

(iii) if we put

Zr �
s

1
k��

����. r−k�n� .k�
m�

then there exists a unique linear map Mr � Zr � .r�
m+n such that

M r�.�F ��� �.rF �� � .r�� +'F�� (3.4.3)

for each �F��� � 0�m� n� r�� the map Mr maps Zr bijectively onto .r�
m+n�

Given �F��� � 0�m� n� r�� the simple r vector Lr�F��� is the unit r vector tangent
to the r dimensional graph of F|U in �m+n where U ⊂ �n is the r dimensional
subspace tangent to ��

Proof (i): From.r ( .r ��+'F�� � � one deduces that.r��+'F�� is nonzero,
nonvertical, and simple. Thus ��� Lr ⊂ Hr�

Conversely, let � � Hr and let V be the r dimensional subspace of �m+n

associated with �� Since � is nonvertical, V is the graph of some linear map F� �
U � �m where F� and U are uniquely determined by V � Extending F� to a linear
map F � �n � �m such that F vanishes on U � and denoting � �� .r(�/| .r (�|
we find that �F��� � 0�m� n� r� and Lr�F��� � ��

To prove the injectivity of Lr� let Lr�F��� � Lr�G���� Letting T and U be
the r dimensional subspaces of �n tangent to � and �� respectively, we deduce from
the above intepretation that the maps F|T and G|U have the same graphs. It follows
that F|T � G|U , T � U � Since F and G vanish on T � and U �� respectively, we
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deduce that F � G� From T � U then � � ±� and returning to the original equality
Lr�F��� � Lr�G��� with F � G we obtain � � �� Thus Lr is injective and (i) is
proved.

(ii): Equation (3.4.1): Let us first show that any simple vertical vector belongs to
'(�� Pr� Let � � 1

r
i�� �i be a simple vertival vector so that the space

V � '(�� �(�i � i � ��� � r�

has dimension d , r� Assume that the vectors are enumerated so that the system
S �� �(�i � i � ��� � d� is a basis of V � Let furthermore T �� ��d+��� � �r� ⊂ �n

be a system such that S - T is a basis of V � Consider the system of vectors

�� ��
d

1
i��

�i /
r

1
i�d+�

��i + 1i��i�

where 1 � �1d+��� �1r� and 1i � �−�� ��� Letting U denote the system of all 1 just
described, we see that each �� is a nonvertical vector and

� � �d−r 0
�U

���

By (i), each �� is in '(�� Pr and hence also � is in '(�� Pr, which then contains all
simple r vectors. Since each r vector is a linear combination of simple r vectors, the
proof of (3.4.1) is complete.

Equation (3.4.2): Let f be a linear function on .r�
m+n and let c be a constant

such that f ��� 	 c for all � � Pr � Using the definition of Lr this means

f #.r�� + 'F��$ 	 c (3.4.4)

for each �F��� � 0�m� n� r�� Expanding by the binomial theorem (A.2.2) we obtain
r

0
i��
f #.i� / .r−i�'F��$ 	 c� (3.4.5)

We now replace F by tF� divide the last inequality by t r and let t� � to obtain

f #.r�'F��$ 	 �� (3.4.6)

replacing � by −� we obtain the opposite inequality; thus we have the equality sign
in (3.4.6) and (3.4.5) reduces to

r−�

0
i��
f #.i� / .r−i�'F��$ 	 c�

Proceeding by induction, we obtain

f #.i� / .r−i�'F��$ � � i � ��� � r − �� f �.r��� 	 c�

This gives also
f #�$ � f #.r� .r (�$ (3.4.7)

for every r vector � of the form � � .r�� + 'F�� where �F��� � 0�m� n� r�� By
linearity (3.4.7) must hold for every ) from the span of the vectors ��which by (3.4.1)
gives that (3.4.7) holds for every � � .r�

m+n�
Thus each linear function f satisfying (3.4.4) for some c and all �F��� �

0�m� n� r� satisfies (3.4.7) and hence vanishes on all � � .r�
m+n with .r(� � ��
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Since 	
 	�Pr is the intersection of all closed halfspaces containing Pr, we deduce
that

	
 	� P r � �� � .r�
m+n � .r(� � C� (3.4.8)

for some subset C of .r�
n. One easily finds that C must contain Br and as the

choice C � Br already gives a convex set on the right hand side of (3.4.8), we have
(3.4.2).

(iii): Define Mr � Zr � .r�
m+n by

M r�*��� �*n−�� �
s

0
k��
�−��	r−k
k 0

II
.r−k�%I / .k'*k %

I (3.4.9)

for each �*��� �*s� � Zr where �%I � I � I� is any orthonormal basis in .r−k�
n

and �% I � I � I� is the dual basis in . r−k�n. Using the binomial theorem (A.2.2)
one finds that (3.4.3) is satisfied, which proves the existence of Mr � The uniqueness
follows from the existence and (3.4.9). Equation (3.4.9) also easily yields the bijec-
tivity. "

Definition 3.4.2. If T is a rectifiable r dimensional current of the form (3.1.3) withM�
� as in (3.1.2) and � � ��"�� �m is a lipschitzian map with '(� T ⊂ ��"� ⊂ �n,
then by Proposition 3.1.4,

graph�T ��� �� ��� � ��|M# T

is a rectifiable r dimensional current in �m+n� we call graph�T ��� the graph of T
under �. If T is an integral current then the general formula 2�#T � �#2T gives

2graph�T ��� � graph�2T ���� (3.4.10)

One finds that if � � D r�� � �m� is of the form

� � �(# /	#+ (3.4.11)

where � � C�� �� � �
m���, � 	 k 	 r�  � . r−k�n� and + � .k�m then

〈graph�T �����〉 � �−��k	r−k
 �
M
� � ��� � ��|M 〈.k V � � �+〉 dH r�

(3.4.12)
We now establish a correspondence between standard integrands �f and parametric

integrands%� If �f � 0�m� n� r� � �-��� is a standard integrand and% � ��"%�
� - ��� a parametric integrand we say that �f and % are related to each other if
��"% � !Hr �� �t � � t � �� � � H r� and

I��f �T ��� � 〈graph�T ����%〉 (3.4.13)

whenever � is a �m valued map on an r current T in �n. It turns out that �f and %
are related to each other if and only if ��"% � !Hr and

%�t .r �� +'F��� � t �f�F��� (3.4.14)

for every �F��� � 0�m� n� r� and t � �� Indeed, in view of the positive homogeneity
of % we obtain that (3.4.14) with arbitrary t � � is equivalent to (3.4.14) with
t � �/| .r �� + 'F��| and the necessity and sufficiency of the last special case of
(3.4.14) for the validity of (3.4.13) follows from the substitution formulas
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graph�T ��� � �H r ���(.�

where
� � � � .r�� +'V ���/| .r �� + 'V ��|�

� � ��� � ��|M�
and

〈graph�T ����%〉 � �
������

%��� dH r � �
M
%�� � ��| .r �� +'V ��| dH r�

From (3.4.14) we see that there is a one to one correspondence between standard
integrands �f and parametric integrands % with ��"% � !Hr� i.e., with parametric
integrands defined only on nonvertical vectors. The values of % on vertical vectors
is undetermined, but it must be born in mind that the set of nonvertical vectors is an
open dense set in '�.r�

m+n�
We have the following relations between the convexity properties of standard

and parametric integrands.

Proposition 3.4.3. Let �f and % be a standard and a parametric integrand, respec-
tively, and assume that �f and % are related to each other. Then

(i) If % is semielliptic then �f is degree r quasiconvex;

(ii) % is a semielliptic null lagrangian if and only if �f is degree r null lagrangian;

(iii)% is semielliptic polyconvex if and only if �f is degree r is degree r polyconvex.

Proof In this section we prove only (i); the proof of (ii) and (iii) is given in Section
3.5 (below). Thus assume that % is semielliptic, let �T � #� and �S�$� are �m valued
maps on r currents with matching boundaries and �S�$� is affine. It then follows that
2graph�T � #� � 2graph�S�$� and graph�S�$� represents a planar region. Thus
the semiellipticity gives

〈graph�T � #��%〉 � 〈graph�S�$��%〉
which by (3.4.13) reads

I��f�T � #� � I��f� S�$�� "

3.5 Degree r null lagrangians and degree r polyconvexity

In this section we prove the form of the degree r null lagrangians. The proofs are
based on the very simple form of the semielliptic null lagrangians stated in Section
3.2 and on the fact that when lifted to graphs, a degree r null lagrangian becomes a
semielliptic null lagrangian.

We first show that nondegenerate simplexes with nonvertical tangent vectors in
�m+n are graphs of affine maps on nondegenerate simplexes of the same dimension
in�n. We say that an p current T in�d represents a nondegenerate p simplex if '(� T
is a nondegenerate p simplex and T � �H p '(�T where � is any of the two unit p
vectors tangential to '(� T �
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Lemma 3.5.1. Let G be an r + � current in �m+n representing a nondegenerate
r + � simplex 2 in �m+n with tangent vector in Hr+�� Then G � graph�B� #� where
B � (# G and # is a unique affine map on B�

Proof Let C ⊂ �m+n be the r + � dimensional affine subspace of �m+n spanned
by the simplex 2 and let D � (C� Since the tangent vector � to C is in Hr+�� i.e.,
.r+�(� 7 �� the map (|C is injective and maps C onto D� Since ( is a projection,
the inverse �(|C�−� is necessarily of the form �(|C�−���� � ��� #���� for each
� � D where # � D � �m is an affine map. We put B �� (# G � �(|C�# G and
hence �(|C�−�# B � A. On the other hand, denoting by M the support of B� we have
graph�B� #� � ��� � #�|M# B � �(|C�−�# B� "

Proposition 3.5.2. A function �f � 0�m� n� r� � � is a degree r null lagrangian if
and only if one of the following two conditions holds:

(i) r � n and

�f��� ±�n� �
����m�n�

0
k��

�±
k ċ .k� (3.5.1)

for all � � �����n��m� and some �±
k � ����.k�

n� .k�
m�� here �n is the

standard orientation (3.3.2);

(ii) r 	 n − � and
�f�F��� �

s

0
k��

�k ċ �.kF �� (3.5.2)

for every �F��� � 0�m� n� r� and some �k � ����.
r−k�n� .k�

m��

Thus �f�F� −�� � −�f�F��� if r 	 n − � whereas this is not generally true if r � n�
This difference and more generally the difference in the forms of (3.5.1) and (3.5.2)
is related to the fact that unlike that case r 	 n− �� in the case r � n the quasiconvexity
inequality does not involve the variation of the domain of integration, as explained in
the proof Remark 3.3.5. These facts also reproduce in the different forms of degree r
polyconvex function is Proposition 3.5.3, below.

Proof (i): If r � n then in view of Remark 3.3.5, �f can be represented by a pair
�± of functions on �����n��m� via (3.3.3). Then �f in a degree n null lagrangian if
and only if �± are standard null lagrangians; the well known result says that the last
occurs if and only if �± are given by the two expressions in (3.5.1).

(ii): Let r 	 n − �� Assume that �f is a degree r null lagrangian and let % be the
unique parametric integrand with ��"% � !Hr such that �f and % are related to each
other.

Let ���� � �r � �
m+n be linearly independent vectors such that � � �� / / �r

satisfies (r+�� 7 �� let ��i be given by (3.2.2) for i � ��� � r� and let 2 be the r + �
simplex in �m+n with vertices �� ���� � �r � Then the r vector −�� i is tangent to the
face Fi opposite to the vertex �i with H r�Fi� � |�� i| and the vector � �� 0

r
i�� ��

i is
tangent to the face M opposite to � with H r�M� � |�|� Let G � �H r+� 2� then

2G � S � − T � where T � �
r

0
i��
T �i � S

� � �/|�|H r M

with
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T �i � ��i/|��i|H r Fi� i � ��� � r�

The relation 2� � � gives 2T � � 2S �� By Lemma 3.5.1 we have G � graph�B� #�
for an r + � current B � (#G in �n representing the nondegenerate r + � simplex +
with vertices ��(���� �(�r and for some affine map # � + � �m� Let T � (#T

��
S � (#S

� and observe that T � � graph�T � #�� S � � ���(.�S� #�� From 2T � �
2S � one finds that the �m valued maps �T � #�� �S� #� have matching boundaries;
furthermore, �S� #� is affine. Thus, since �f is a degree r null lagrangian, we have
I��f�T � #� � 〈�f� S� #〉� which can be rewritten as

〈%�T � 〉 � 〈%� S � 〉
by (3.4.13). The above description of the faces of 2 shows that the last relation reads
as

%�
r

0
i��
�� i� �

r

0
i��

%��� i�� (3.5.3)

which must hold for every r+� tuple ���� � �r � �
m+n such that.r+�(��/ /�r 7 ��

Let H be the Haar measure on the group G �� �3�m + n� of rotations in �m+n.
Observe that if � � '�.p�

m+n� � 7 �� with p 	 n� then

H#�� � G � .p( .p �� � ��$ � �� (3.5.4)

It suffices to consider the case |�| � �� write � � �� / / �p where ���� � �p is an
orthonormal system in �m+n� The goal is to prove that the map m � G � .p�

n given
by m��� � .p( .p �� for each � � G is different from � for H a.e. � � G� Since
m is an analytic map on an analytic manifold, the assumption that m vanishes on a
set of positive measure would lead to m vanishing identically. However, m does not
vanish identically: since p 	 n� there exists an � � G such that ��i, i � ��� � p� is
contained in the subspace �n � ��� of �m+n�

Let fρ � G � %�� ��, ρ � �� be a family of continuous functions with �G fρ dH � �
such that the support of fρ is contained in the ball in G of radius ρ and let %ρ �
'�.r�

m+n� � be defined by

%ρ��� � �
G

%�.r���fρ��� dH���

for each � � '�.r�
m+n� here we use fact that .r�� � D for H a.e. �, which

follows from (3.5.4). The function %ρ is a parametric integral of degree r in �m+n

with ��"%ρ � '�.r�
m+n� If ���� � �r � �

m+n are linearly independent vectors in
�m+n then forH a.e. � � G we have .r+�( .r+����/ /�r 7 � by (3.5.4). Hence
(3.5.3) gives

%�
r

0
i��
.r� ��

i� �
r

0
i��

%�.r� ��
i��

Multiplying this relation by fρ��� and integrating with respect to H��� we obtain

%ρ�
r

0
i��
�� i� �

r

0
i��

%ρ���
i� (3.5.5)

for every r + � tuple ���� � �r � �
m+n of linearly independent vectors. If ���� � �r �

�m+n are not linearly independent, then (3.5.5) still holds, since then the r + � tuple
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���� � �r � �
m+n can be approximated by a sequence of r + � tuples of linearly

independent vectors and the limit using the continuity of %ρ then gives (3.5.5).
If � � �� /  / �r � '�.r�

m+n then the application of (3.5.5) to the r + �
tuple gives %ρ�−�� � −%ρ���� Thus the function %ρ satisfies the hypothesis of
Proposition 3.2.4 and then for each ρ � � there exists an r form �ρ � .

r�m+n such
that

%ρ��� � 〈�ρ��〉
for each � � '�.r�

m+n� The properties of the family fρ and the continuity of %
imply that %ρ��� � %��� for each � � D� Thus 〈�ρ��〉� %��� for every � � D�
It follows from the linearity that the limit 
�"ρ�� 〈�ρ��〉 exists for every � from
'(��D� which is .r�

m+n by Proposition 3.4.1(iii). The limit defines a � � . r �m+n

and thus
%��� � 〈���〉 (3.5.6)

for each � � D� Let �k be defined by

〈��M r�*��� �*s�〉 �
s

0
k��

�k ċ*k (3.5.7)

for each �*��� �*s� � Zr; then (3.5.6) gives (3.5.2). Thus each degree r null
lagrangian is of the form (3.5.2).

To prove the converse implication, we let �T � #� and �S�$� be �m valued maps
on r currents in �n with mathching boundaries, in view of (3.5.2), the integrals
I��f�T � #� and I��f� S�$� can be converted to the integrals over the boundaries via
(3.6.2) (below); since the boundaries of �T � #� and �S�$� match, the boundary
integrals are the same for I��f�T � #� and I��f� S�$� and thus these integral agree. "

Proposition 3.5.3. A function �f � 0�m� n� r� � � - ��� is degree r polyconvex if
and only if

�f�F��� � ��.�F ��� �.rF �� (3.5.8)

for every �F��� � 0�m� n� r� and some convex function � � Z � �- ��� which is
additionally positively � homogeneous if r 	 n − ��

Proof (i): This follows from the fact that degree n null lagrangians are affine functions
of �.���� �.n��� thus the supremum of any family of degree n null lagrangians
induces a convex function of �.���� �.n�� and conversely.

(ii): This follows from the fact that degree r null lagrangians are linear
functions of �.�F ��� �.rF ��� thus the supremum of any family of de-
gree r null lagrangians induces a convex � positively homogeneous function of
�.�F ��� �.rF �� and conversely. "

Remark 3.5.4. A function �f � 0�m� n� n� � �- ��� is degree n polyconvex if and
only if

�f��� ±�n� � �
±�.���� �.n�� (3.5.9)

for all � � �����n��m� and some convex functions �± � Z �n � �- ��� where

Z �n �
s

1
k��

����.k�
n� .k�

m��
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Proof of Proposition 3.4.3 (completion) We note that the direct implications in
(ii) and (iii) follow from the direct implication in (i).

To prove the converse implication in (ii), we note that if �f is a degree r null
lagrangian then it is of the form asserted in Proposition 3.5.2(ii). Given the tensors�i�
there exists a unique � � . r �m+n such that (3.5.7) holds for every �*��� �*r� �
Zr� If one defines a parametric integrand % of degree r by

%��� � 〈���〉
for each � � '�.r�

m+n then % is a semielliptic null lagrangian and �f and % are
related to each other.

To prove the converse implication in (iii), we assume that �f is polyconvex of
degree r so that we have (3.5.8) with some positively � homogeneous convex function
� � Zr � �-���� Let !% �� ��M−�

r and% let be the restriction of !% to '�.r�
m+n�

Then % is semielliptic polyconvex and �f and % are relatred to each other. "

3.6 Convergence of graphs

We now discuss the convergence of graphs of varying �m valued maps on varying r
dimensional currents in�n�We view the domain currents and the graphs as measures.
We use the Reshetnyak lowersemicontinuity theorem to establish a lowersemiconti-
nuity result for integral functionals in this context. Throughout this section, let � be
an open subset of �n�

Proposition 3.6.1. Let T be an r dimensional integral current in � and write

T � �H r M� 2T � �H r−� N �

where 2T is the boundary of T in �� withM, � and N � � satisfying, respectively,

M, N are H r rectifiable and H r−� rectifiable subsets of �,

� � M � .r�
n and � � N � .r−��

n are H r and H r−� integrable,

� and � are tangential toM and N �

��� |�|� ��� |�| ⊂ /�

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6.1)

Let � � �� �m be lipschitzian, put # � �|M� $ � �|N � and let

�k � .kV # �� ,k � .kV $ ��

Then we have the identities

�
M
�k+ dH r � �−��k �

N
,k + dH

r−�� (3.6.2)

�
M
��k+�+� - + 〈-� #〉�k+ dH r � �−��k �

N
〈-��〉,k+ dH r−� (3.6.3)

for any k 	 r − �, any + � D r−k−���� and any - � . ��m�

Proof One finds that if . � D r��m+n� is given by . � (# /	#/where � 	 k 	 r�
. � D r−k��� and / � .k�m then

〈graph�T � #��.〉 � �−��	r−k
k �
M
〈�k �/〉 dH r � (3.6.4)
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Let now k and + be as in the statement and let � � Dk−���m+n� be defined by
� � (#+ /	#/� One easily finds that � � (#+ /	#/� applying (3.6.4) twice
one finds that (3.4.10) reads

�−��	r−k
k �
M
〈�k+�/〉 dH r � �−��k	r−k−�
 �

N
〈,k+�/〉 dH r−�

and the arbitrariness of / gives (3.6.2).
To prove (3.6.3), let � � �m+n � � be defined by ���� �� � 〈-� �〉 for each

��� �� � �m+n and let � � Dk−���m+n� be defined by � � �(#+/	#/� One finds
that

� � �−�� r−k−�(#+ /	#- / / + �(#+ /	#/�

Evaluating 〈graph�T � #���〉 and 〈graph�2T �����〉 via (3.6.4) and equating the
results we obtain (3.6.3) in the same way as in the preceding part of the proof. "

Proof of Remark 2.3.3 We apply (3.6.2) with r � n� T � �nL
n E, �n ��

%� / / %n� � � �, + � �n � where � � Dk+���� and �n � % � / / %n� Then
M � E� N � ��� E ) �� � � �n� � � �n n� Using + � �−��k�n 2� and
algebrain manipulations, one finds that (3.6.2) reduces to

�
E
.k� 2� dLn � �−��k+� �

���	E�	

�.kV y / n�� dHn−��

which in comparison with (2.3.1) gives (2.3.4). "

Proposition 3.6.2. Let T i�T � i � ��� � be integral r dimensional currents in � and
let � i�� � �� �m, i � ��� � be lipschitzian functions such that

T i � T in M��� .r�
n��,

'4( ���T i� +��2T i� � i � ���� , ��

� i � � uniformly on ��

'4(���(�� i� � i � ���� , ��

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6.5)

Then

(i)
graph�T i�� i� � graph�T ��� in M��m+n� .r�

m+n�� (3.6.6)

(ii) if � is bounded and �f � 0�m� n� r� � � is a continuous nonnegative polyconvex
function then we have


�" ���
i��

I��f�T i�� i� � I��f �T ���� (3.6.7)

Proof Write
Ti � �iH

r Mi� T � �H r M�

2Ti � �iH
r−� Ni� 2T � �H r−� N �

with M� �, N � � satisfying (3.6.1) and with Mi� �i� Ni� �i� satisfying the obvious
analogs of (3.6.1). Let #i� #, $i� $ be the restrictions of � to Mi� M� Ni� and N �
respectively. Let

� ik � .kV #i �i� , ik � .kV $i �i
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and let �k� ,k be given by analogous expressions without the index i� Prove first
that for each k satisfying � 	 k 	 r we have

� ikH r Mi 4
� �kH r M� (3.6.8)

, ikH r−� Ni 4
� ,kH r−� N (3.6.9)

in M�������.r−k�
n� .k�

m�� and M�������.r−k−��
n� .k�

m��, respectively.
Proceeding by induction on k� we note that for k � � this follows from (3.6.5)����
Assume now that the assertions hold for some k � � and prove it for k + �� By (3.6.3)
we have

�
Mi

� ik+�+ dH
r - + �

Mi

〈-� #i 〉� ik+ dH r � �−�� r−k �
Ni

〈-�$i 〉, ik+ dH r−�

(3.6.10)
for any - � . ��m and any + � D r−k−����� The induction hypothesis and (3.6.5)�
imply that the second and third integrals in (3.6.10) converge to

�
Mi

〈-� #〉�k+ dH r� �
N
〈-�$〉,k+ dH r−��

respectively, which in comparison with (3.6.3) implies

�
Mi

� ik+�+ dH
r -� �

M
�k+�+ dH

r -�

As - � . ��m is arbitrary and the involved measures have bounded masses by (3.6.5)��
we have (3.6.8) with k replaced by k + �. The application of the just proved assertion
to 2T i� 2T gives (3.6.9) with k replaced by k + �� This completes the proof of (3.6.8)
and (3.6.9).

(i): To prove (3.6.6), we note that the total mass of the measure graph�T i�� i�
is given by

�#graph�T i�� i�$ � �
Mi

| .r �� + '∇#i�||�| dH r

and thus �#graph�T i�� i�$ is bounded independently of i by (3.6.5)���. In view of
this it suffices to verify

〈graph�T i�� i���〉� 〈graph�T �����〉 (3.6.11)

on a dense set of �� which in turn implies that it suffices to verify (3.6.11) for each �
of the form (3.4.11). However, from (3.6.5)� follows that ����� i���� � ���������
uniformly in � � � which in combination with (3.6.8) and (3.4.12) gives (3.6.11).

(ii): To prove (3.6.7), we consider separately the case r 	 n − � and r � n�
If r 	 n − �� we let � be as in (3.5.8) and note that since �f is nonnegative, % can

be chosen nonnegative as well. Then (3.6.8) and the Reshetnyak lowesemicontinuity
theorem give (3.6.7).

If r � n� we have T i � �i�nL
n� T � ��nL

n for some �i� � � L
��Ln�)� and

(3.6.8) means that �i � � in L ��Ln���� We deduce that for any k with � 	 k 	 s
we have

.k∇�
i 4� .k∇� in L���n�����.k�

n� .k�
m��.

Let now �± be as in (3.5.9), which we can choose nonnegative. Let , � � � Zn be
defined by
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,�t�*��� �*s� � %t&+�
+�*��� �*s� + %t&−�

−�*��� �*s�

for each t � � and �*��� �*s� � Zn where %t&± denote the positive and negative
parts. Then

I�f�T i�� i� � �
�n
,��i� .�∇�

i�� �.s∇�
i� dLn� (3.6.12)

The function , is nonnegative and for each t, the function ,�t� ċ� is convex. In the
integrand in (3.6.12), we have a L � convergence in the first argument and the weak
convergence in the remaining arguments. It then follows from [2; Theorem 5.8,
Chapter 5] that


�" ���
i��

�
�n
,��i� .�∇�

i�� �.s∇�
i� dLn � �

�n
,��� .�∇��� �.s∇�� dL

n�

This completes the proof. "



Appendices

A.1 Differentiation on manifolds and on rectifiable sets

The main text uses the derivatives of maps defined on sets M ⊂ �n of dimension
, n in two different ways: (a) for the response function �f� which is a function defined
on the manifold �� (b) for fields defined on the phase interface S ⊂ �n. The phase
interface is interpreted either as a smooth n − � surface or as a Hn−� rectifiable set in
Chapter 2 and even as a H r rectifiable set with � 	 r 	 n in Chapter 3.

We are thus lead to consider both the classical derivatives of maps on manifolds
and approximate derivatives of maps on rectifiable sets. In the first situation we
deal with manifolds of (at least) class � embedded in finite dimensional vectorspaces
[9; Subsections 3.1.19–3.1.20], which we call simply manifolds or synonymously
surfaces and consider classically differentiable maps on these surfacers. We define
derivatives (gradients) of maps on manifolds, which we call surface derivatives or
surface gradients. In the second situation we deal with H r rectifiable sets, consider
lipschitzian maps and review the approximate surface derivatives [9; Subsections
3.1.1–3.1.10 and 3.1.22].

Throughout the section, let V �W be finite dimensional inner product spaces.
Let f be a map with the domain ��" f which is a relatively open subset of a

manifold M in V with the range ��� f in W � If x �M� we denote by ����M� x� the
tangent space to M at x� a k dimensional subspace of V where k is the dimension of
M�We say that f is differentiable at x � ��" f if there exists a f �x� � ����V �W �,
called the derivative of f at x� such that

 f �x�P �  f �x� (A.1.1)

where P is the orthogonal projection onto ������" f � x� and


�"
y�x

y��� f �y�x

|f �y� − f �x� − f �x��y − x�|/|y − x| � �� (A.1.2)

The map  f �x� is uniquely determined. We note that  f �x� is a linear transfor-
mation defined on the entire space V and not just on the tangent space; however, it
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vanishes on the orthogonal complement of the tangent space by (A.1.1). This con-
vection renders the derivatives of f at different points of M belong to the same linear
space ����V �W �� Other authors (e.g., [9; Subsection 3.1.22]) mean by the derivative
the restriction of the derivative in the present sense to the tangent space at the given
point. If the range W of f is �� we identify  f �x� � ����V ��� with an equally
denoted vector in V � such that

 f �x�a � a ċ f �x�

for each a � V � then  f �x� � ����M� x��
Let r be an integer, � 	 r 	 ��"V � and let f be a map such that ��" f is a H r

rectifiable subset of V and ��� f ⊂ W � If x � ��" f � we denote by ��� r���" f � x�
the approximate r dimensional tangent cone to ��" f at x. We say that f is approxi-
mately r differentiable at x � ��" f if ��� r���" f � x� is an r dimensional subspace
of V and there exists a  f �x� � ����V �W �, called the approximate derivative of
f at x� such that (A.1.1) holds with P the projection onto ��� r���" f � x� and we
have the limit (A.1.2) in the approximate sense, i.e., for each ε � � the r dimensional
density of the set

�y � ��" f � |f �y� − f �x� −  f �x��y − x�|/|y − x| � ε�
at the point x vanishes. A lipschitzian map on a H r rectifiable set has the r approximate
derivative at H r a.e. point of ��" f � When the integer r is clear from the context,
we abbreviate and speak of approximate differentiability and approximate derivative
in place of r approximate differentiability and r approximate derivative. We also use
the term approximate surface gradient whenever appropriate.

If T � ����V �W � is an injective map, we define the pseudoinverse T −� �
����W �V � as the unique linear map such that

T −�T � P� T T −� � Q

where P and Q are the orthogonal projections onto ����T�� and ��� T � One has

�T −��−� � T �

If T maps V bijectively onto W then the pseudoinverse coincides with the usual
inverse.

We retain the symbol  for the derivative of the response functions ��, � � �� ��
and �f� However, if the variable x in the definition above has the meaning of the
referential position � of a material point of �� we write ∇ for  in case of a map f
defined on an open subset of � and V for  in case f is a map defined on the phase
interface S in �� If � is a local parametrization of S then f is differentiable at � � S

if and only if f � � is differentiable at  �� �−���� and then

V f ��� � ∇�f � ����∇���−� �

If g is a extension of f to a neighborhood of � in �n that is differentiable at � then

V f ��� � ∇g���P���

where P��� is the orthogonal projection onto the tangent space of M at �� If f is a
map defined in a neighborhood of S we use the notation

V f �� V �f |S��
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A.2 Multilinear algebra

The exposition in the main text relies on notations and concepts of multilinear algebra.
We use the conventions from [9; Chapter One] with some extensions; see also [18;
Section 1.7].

If r is an integer with � 	 r 	 n, we denote by .r�
n the inner product space of

all r vectors in �n� i.e., the set of all r linear completely antisymmetric maps � from
the dual space of �n into �� Likewise, we denote by . r�n the inner product space
of all r covectors in �n� i.e., the set of all r linear completely antisymmetric maps
� from �n into �� We put .��

n � �, note that .��
n is canonically isomorphic

with �n and recall that .n�
n is unidimensional. We also put .r�

n � ��� if r is an
integer with r , � or r � n� We use the same conventions for . r�n� We denote by
〈���〉 the duality pairing of an r vector � with an r covector and ��

We use the symbol / to denote the wedge products of a family of r vectors with
varying r and the wedge product of a family of r convectors with varying r� If ���� � �r
are vectors in�n we abbreviate1

r
i�� �i �� ��/ /�r the wedge product of ���� � �r,

an element of .r�
n. In addition to the wedge product, we need the contraction

of vectors by convectors and vice versa. If � � .r, � � .s with s 	 r then the
contraction � � of � by � is an r − s vector satisfying 〈� �� 〉 � 〈�� / �〉
for all  � . r−s�n� Similarly, if � is an r vector in �n and � and s vector with s 	 r
we define a contraction � � of � by � to be an r − s vector in �n such that

�� �� ċ � � � ċ �� / ��

for each r − s vector ��
Furthermore, we need exterior products and powers of linear transformations. If

r� s are positive integers, a permutation 5 of ��� � r + s is said to be a shuffle of type
r� s if 5 is increasing on ���� � r� and on �r + ��� � r + s�� Denote by �.�r� s� the set
of all shuffles of type r� s� One has 	��� �.�r� s� � �r + s� ! /r ! s ! � If

0 � ����.r�
n� .r�

m�� 1 � ����.s�
n� .s�

m� (A.2.1)

where r� s are nonegative integers, then there exists a unique

0 /1 � ����.r+s�
n� .r+s�

m�

such that

�0 /1��
r+s

1
i��

�i� � C�r� s� 0
���	r�s


'��5 0�
r

1
i��

��	i
� /1�
r+s

1
i�r+�

��	i
�

for any ���� � �r+s � �
n where C�r� s� � r ! s ! /�r + s� ! �We call 0/1 the exterior

product of 0 and 1� The exterior product is commutative, i.e.,

0 /1 �1 /0�

and associative, i.e., assuming (A.2.1) and � � ����.t�
n� .t�

m� then

�0 /1� /� �0 / �1 /��

so that we can use unambiguously the notation 0 / 1 / �� If k is a positive
integer and 0 � ����.r�

n� .r�
m�� we define .k0 � ����.rk�

n� .rk�
m� by

.k0 �0 / /0 with k terms of the product. In particular, if � � �����n��m�
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then .r� � ����.r�
n� .r�

m�� If m � n then .n�� � ����� for each n vector ��
in the same situation, .n−�� � � 	��� � where � is the Hodge operator mapping
.r�

n isometrically onto .n−r�
n�We put .�� � � in all situations. Clearly, .r� � �

if r � "���m� n�. Gnerally, we have the binomial theorem

.k�0 +1� �
k

0
i��

(
k
i

)
.i0 / .k−i1 (A.2.2)

for each 0�1 � ����.r�
n� .r�

m��
If * � ����.r�

n� .r�
m� and � � �n we define * / � � ����.r+��

n� .r�
m�

by
�* / ��� � *�� ��

for each r + � vector � in�n� If 1 � ����.s�
n� .s�

m� and � � .r�
n with r � s� let

1 � � ����. r−s�n� .s�
m�

be defined by
�1 ��� �1�� ��

for each � � . r−s�n�
If � ⊂ �n is open, we denote by Dr��� the set of all infinitely differentiable

r vectorfields � � �n � .r�
n whose support is compact and contained in �� We

define the interior derivative 2� of � as an element of Dr−���� given by

2� � �−�� r
n

0
i��

i � % i�

wherei denote the partial derivatives and %��� � %n is the standard basis in �n� If �
is a � vectorfield then 2� � −��# �� The factor �−�� r is chosen so as to render valid
the integration by parts formula

�
�n
2� ċ � dLn � �

�n
� ċ� dLn

for every smooth r − � form � on �n where � denotes the exterior derivative.
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