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Abstract

We construct explicit bases of single-conclusion and multiple-conclusion admissible
rules of propositional  Lukasiewicz logic, and we prove that every formula has an admissibly
saturated approximation. We also show that  Lukasiewicz logic has no finite basis of
admissible rules.

1 Introduction

Investigation of nonclassical logics usually revolves around provability of formulas. When we
generalize the problem from formulas to inference rules, there arises an important distinction
between derivable and admissible rules, introduced by Lorenzen [15]. A rule

ϕ1, . . . , ϕn / ψ

is derivable if it belongs to the consequence relation of the logic (defined semantically, or by
a proof system using a set of axioms and rules); and it is admissible if the set of theorems of
the logic is closed under the rule. These two notions coincide for the standard consequence
relation of classical logic, but nonclassical logics often admit rules which are not derivable.
(A logic whose admissible rules are all derivable is called structurally complete.) For example,
all superintuitionistic (si) logics admit the Kreisel–Putnam rule

¬p→ q ∨ r / (¬p→ q) ∨ (¬p→ r),

whereas many of these logics (such as IPC itself) do not derive this rule.
Research into admissible rules was stimulated by a question of H. Friedman [5], asking

whether admissibility of rules in IPC is decidable. The problem was extensively investigated
in a series of papers by Rybakov, who has shown that admissibility is decidable for a large class
of modal and si logics, found semantic criteria for admissibility, and obtained other results
on various aspects of admissibility. His results on admissible rules in transitive modal and
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si logics are summarized in the monograph [18]. He also applied his method to tense logics
[19, 20, 21]. Ghilardi [7, 8] discovered the connection of admissibility to projective formulas
and unification, which provided another criteria for admissibility in certain modal and si logics,
and new decision procedures for admissibility in some modal and si systems. Ghilardi’s results
were utilized by Iemhoff [9, 10, 11] to construct an explicit basis of admissible rules for IPC and
some other si logics, and to develop Kripke semantics for admissible rules. These results were
extended to modal logics by Jeřábek [12]. We note that decidability of admissibility is by no
means automatic. An artificial decidable modal logic with undecidable admissibility problem
was constructed by Chagrov [1], and natural examples of bimodal logics with undecidable
admissibility (or even unification) problem were found by Wolter and Zakharyaschev [23]. In
terms of computational complexity, admissibility in basic transitive logics is coNE -complete
by Jeřábek [13], whereas derivability in these logics is PSPACE -complete.

In contrast to the situation in modal and superintuitionistic logics, only very little is
known about admissibility in other nonclassical logics. Here we are particularly interested
in substructural and fuzzy logics (cf. [6]). Structural completeness of various substructural
logics was investigated by Olson et al. [17] and by Cintula and Metcalfe [3]. Dzik [4] studied
unification in n-contractive extensions of Hájek’s Basic Logic (BL).

In this paper we study admissible rules of  Lukasiewicz logic ( L). We have shown in [14]
that admissibility in  L is decidable (in PSPACE ). Here we expand the methods of [14] to
construct a simple explicit basis of  L-admissible rules, with both a single-conclusion and a
multiple-conclusion version. To this end we provide a semantic characterization of admissibly
saturated formulas in  L (i.e., formulas that are not premises of any nonderivable admissible
rule), and show that every formula has a finite approximation by admissibly saturated formu-
las. We use a syntactic conservativity argument to construct a single-conclusion basis from a
multiple-conclusion basis. We also show that our basis is independent; since it is infinite, it
follows that  L does not have a finite basis of admissible rules.

2 Preliminaries

The language of  Lukasiewicz logic ( L) consists of propositional formulas built from variables
pn, n ∈ ω, using connectives → and ⊥. A substitution is a mapping of propositional formulas
to propositional formulas which commutes with all connectives. A formula ϕ is derivable from
a set of formulas Γ, written as Γ ` L ϕ, if there exists a finite sequence of formulas ϕ1, . . . , ϕn

such that ϕn = ϕ, and each ϕi is a member of Γ, an instance of one of the axioms

ϕ→ (ψ → ϕ),

(ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ)),

((ϕ→ ψ) → ψ) → ((ψ → ϕ) → ϕ),

⊥ → ϕ,

or it is derived from some ϕj , ϕk, j, k < i by an instance of the rule of modus ponens

ϕ,ϕ→ ψ / ψ.
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We can introduce other connectives as abbreviations

¬ϕ ≡ ϕ→ ⊥,
ϕ · ψ ≡ ¬(ϕ→ ¬ψ),

ϕ⊕ ψ ≡ ¬ϕ→ ψ,

ϕ ∨ ψ ≡ (ϕ→ ψ) → ψ,

ϕ ∧ ψ ≡ ϕ · (ϕ→ ψ),

ϕ↔ ψ ≡ (ϕ→ ψ) · (ψ → ϕ),

> ≡ ¬⊥,

and we write ϕn = ϕ · . . . · ϕ, nϕ = ϕ ⊕ · · · ⊕ ϕ with n occurrences of ϕ (if n = 0, we put
ϕ0 = >, 0ϕ = ⊥).

A single-conclusion rule is an expression of the form Γ / ϕ, where Γ is a finite set of
formulas, and ϕ is a formula. We will usually omit set-builder braces when giving Γ by a list
of formulas, and we will write Γ,∆ for Γ ∪ ∆. A rule Γ / ϕ is  L-derivable if Γ ` L ϕ. An
 L-unifier of a formula ϕ is a substitution σ such that ` L σϕ. A rule Γ / ϕ is  L-admissible,
written as Γ |∼ L ϕ, if every common unifier of Γ is also a unifier of ϕ. A (finitary structural)
consequence relation is a set R of single-conclusion rules such that

(i) ϕ / ϕ ∈ R,

(ii) weakening: if Γ / ϕ ∈ R, then Γ,Γ′ / ϕ ∈ R,

(iii) cut: if Γ / ϕ ∈ R and Γ, ϕ / ψ ∈ R, then Γ / ψ ∈ R,

(iv) if Γ / ϕ ∈ R, then σΓ / σϕ ∈ R,

for all sets of formulas Γ, Γ′, all formulas ϕ, ψ, and all substitutions σ. We will usually
write R ` % instead of % ∈ R. The set of  L-derivable rules, denoted by  L, and the set of
 L-admissible rules, denoted by |∼1

 L, are consequence relations. If R is a consequence relation,
and X is a set of rules, then R+X denotes the smallest consequence relation which includes
both R and X. The set X is called a basis of R+X over R. We take R =  L if unspecified; in
particular, a basis of single-conclusion  L-admissible rules is a set X such that |∼1

 L=  L +X.
The concepts above can be generalized to rules with more (or less) than one formula in

the conclusion (cf. e.g. [22]). A multiple-conclusion rule (or simply a rule) is an expression of
the form Γ / ∆, where Γ and ∆ are finite sets of formulas. We will omit braces from Γ and ∆
as in the case of single-conclusion rules, however we will usually retain explicit set-theoretic
notation when ∆ is empty: Γ / ∅. A rule Γ / ∆ is  L-derivable if Γ ` L ϕ for some ϕ ∈ ∆,
and it is  L-admissible if every common unifier of Γ also unifies some formula from ∆. A
multiple-conclusion consequence relation is a set R of rules such that

(i) ϕ / ϕ ∈ R,

(ii) weakening: if Γ / ∆ ∈ R, then Γ,Γ′ / ∆,∆′ ∈ R,

(iii) cut: if Γ / ϕ,∆ ∈ R and Γ, ϕ / ∆ ∈ R, then Γ / ∆ ∈ R,
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(iv) if Γ / ∆ ∈ R, then σΓ / σ∆ ∈ R,

for all sets of formulas Γ, Γ′, ∆, ∆′, all formulas ϕ, and all substitutions σ. The set of
 L-admissible multiple-conclusion rules, denoted by |∼ L, is a multiple-conclusion consequence
relation. The set of  L-derivable rules is also a multiple-conclusion consequence relation; more
generally, if R is any single-conclusion consequence relation, then we can identify R with the
multiple-conclusion consequence relation

R′ = {Γ / ∆ | ∃ϕ ∈ ∆ (Γ / ϕ ∈ R)}.

Conversely, if R is a multiple-conclusion consequence relation, then its single-conclusion frag-
ment R1, consisting of all single-conclusion rules which belong to R, is a single-conclusion con-
sequence relation. The R+X notation, and bases, are introduced as in the single-conclusion
case.

We now turn to the semantics of  Lukasiewicz logic. An MV -algebra is a structure
〈A,⊕,¬, 0〉 which satisfies the identities

(x⊕ y)⊕ z = x⊕ (y ⊕ z),

x⊕ 0 = x,

x⊕ y = y ⊕ x,

¬¬x = x,

x⊕ ¬0 = ¬0,

¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

We can define other operations on an MV -algebra by

x→ y = ¬x⊕ y,

x · y = ¬(¬x⊕ ¬y),

x ∨ y = (x→ y) → y,

x ∧ y = x · (x→ y),

x↔ y = (x→ y) · (y → x),

1 = ¬0.

The operations ∧,∨ turn A into a distributive lattice with bounds 0, 1, which induces a partial
order ≤ on A. We can identify propositional formulas with terms in the language of MV -
algebras in a natural way. A valuation in an MV -algebra A is a homomorphism v from the
term algebra to A. If ϕ is a formula in the first k variables, a ∈ Ak, and v is the valuation such
that v(pi) = ai, we also write ϕ(a) = v(ϕ). A valuation v satisfies a formula ϕ if v(ϕ) = 1,
and it satisfies a rule Γ / ∆ if v(ϕ) 6= 1 for some ϕ ∈ Γ, or v(ϕ) = 1 for some ϕ ∈ ∆. A rule
Γ / ∆ is valid in an MV -algebra A, written as A � Γ / ∆, if the rule is satisfied by every
valuation in A. In other words, A � Γ / ∆ if and only if the open first-order formula∧

ϕ∈Γ

(ϕ = 1) →
∨

ϕ∈∆

(ϕ = 1)
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is valid in A.
 Lukasiewicz logic is algebraizable, and the variety of MV -algebras is its equivalent alge-

braic semantics. It follows that a rule Γ / ∆ is  L-derivable iff it is valid in all MV -algebras.
The standard MV -algebra [0, 1] L is the algebra 〈[0, 1],⊕,¬, 0〉, where

x⊕ y = min{x+ y, 1},
¬x = 1− x.

Notice that the rational interval [0, 1]Q = [0, 1]∩Q is a subalgebra of [0, 1] L. Both [0, 1] L and
[0, 1]Q generate the variety of MV -algebras, even as a quasivariety, hence a single-conclusion
rule is  L-derivable iff it is valid in [0, 1] L iff it is valid in [0, 1]Q (Chang [2]).

A free MV -algebra over a set X of generators is an MV -algebra F ⊇ X such that every
mapping from X to an MV -algebra A can be uniquely extended to a homomorphism from
F to A. As another corollary to algebraizability of  L, free MV -algebras can be described as
Lindenbaum–Tarski algebras of  L: F consists of equivalence classes of formulas using elements
of X as propositional variables modulo the equivalence relation ϕ ∼ ψ iff ` L ϕ ↔ ψ, with
operations defined in the natural way. Note that valuations in F correspond to substitutions
whose range consists of formulas using variables from X, and a formula ϕ is satisfied under
a valuation given by such a substitution σ if and only if ` L σϕ. We obtain the following
characterization of admissibility: a rule Γ / ∆ is  L-admissible iff it is valid in all free MV -
algebras iff it is valid in all free MV -algebras over finite sets of generators. In the case of
 Lukasiewicz logic, we can in fact do better:

Theorem 2.1 ([14])  L is 1-reducible with respect to admissible rules. That is, for every
 L-inadmissible rule Γ / ∆, there exists a substitution σ using formulas in only one variable
such that ` L σ

∧
Γ and for every δ ∈ ∆, 0 L σδ.

In algebraic terms, a rule Γ / ∆ is  L-admissible if and only if it is valid in the free
MV -algebra over one generator. �

A description of free MV -algebras over finite sets of generators was given by McNaughton.
Let n ∈ ω. A function f : [0, 1]n → [0, 1] is called piecewise linear with integer coefficients, if
there are finitely many functions Lj : [0, 1]n → [0, 1] such that for every x ∈ [0, 1]n there exists
j such that f(x) = Lj(x), and each Lj(x0, . . . , xn−1) is of the form

∑
i<n aixi + b for some

~a, b ∈ Z. Let Fn be the MV -algebra of continuous piecewise linear functions f : [0, 1]n → [0, 1]
with integer coefficients, with operations defined pointwise (i.e., Fn is a subalgebra of the
Cartesian power [0, 1][0,1]n

 L ).

Theorem 2.2 (McNaughton [16]) Fn is the free n-generated MV -algebra. The projection
functions πi(x0, . . . , xn−1) = xi for i < n are its free generators. �

If f = 〈f0, . . . , fk−1〉 is a k-tuple of functions fi ∈ Fn, we will identify f with the corresponding
function f : [0, 1]n → [0, 1]k. A (convex rational) polytope is a set of the form C = {x ∈ Rn |
∀i < k Li(x) ≥ 0}, where Li are linear functions with integer (or rational, it makes no
difference) coefficients. Bounded (i.e., contained in some [−r, r]n) polytopes are exactly the
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convex hulls of finite sets of rational points. For each f ∈ Fn, there exists a finite set of
polytopes {Ci | i < k} such that

⋃
i<k Ci = [0, 1]n, and f is linear on each Ci [16].

Since Fn is isomorphic to the Lindenbaum–Tarski algebra of  L in n variables, elements
f ∈ Fn represent formulas in n variables up to  L-provable equivalence. We will therefore
identify formulas in n variables with elements of Fn. In particular, we will sometimes define
formulas by describing their McNaughton function instead of an explicit representation using
connectives of  L. In the same way, homomorphisms σ : Fn → Fm will be identified with
substitutions mapping formulas in n variables to formulas in m variables. Notice that such
substitutions can be uniquely described by n-tuples of formulas giving σ(pi) for each i < n.
In the algebraic setting, this corresponds to representation of a homomorphism σ : Fn → Fm

by an n-tuple f ∈ Fn
m. Explicitly, the correspondence is given by f = 〈σ(πi) | i < n〉,

and σ(g) = g ◦ f for g ∈ Fn (where we consider f as a function [0, 1]m → [0, 1]n, by our
above-mentioned convention). We say that σ is the substitution induced by f .

In view of Theorem 2.1, we will often work with F1 and its powers Fm
1 , hence it is

useful to introduce notation for their elements. If t0 < t1 < · · · < tk and x0, . . . , xk ∈ Rm,
then we denote by f = L(t0, x0; t1, x1; . . . ; tk, xk) the continuous piecewise linear function
f : [t0, tk] → Rm such that f(ti) = xi, and f is linear on each interval [ti, ti+1]. Also, if
L : [0, 1]n → R is a linear function with integer coefficients, then L= ∈ Fn is the function
f(x) = min{1,max{0, L(x)}}.

We will also need some concepts and results from [14]. (We warn the reader that some
of the notation in [14] is slightly different than here, since there we defined Fn to consist of
functions f : [0, 1]nQ → [0, 1]Q rather than f : [0, 1]n → [0, 1].) If X ⊆ Rn, let C(X) and A(X)
denote the convex hull and affine hull of X, respectively. That is, C(X) is the smallest convex
subset of Rn that includes X, which can be explicitly expressed as

C(X) =
{∑

i<k

αixi

∣∣∣ k ∈ ω, αi ∈ R, αi ≥ 0, xi ∈ X,
∑
i<k

αi = 1
}
,

and A(X) is the smallest affine subspace of Rn that includes X, which we can express as

A(X) =
{∑

i<k

αixi

∣∣∣ k ∈ ω, αi ∈ R, xi ∈ X,
∑
i<k

αi = 1
}
.

Notice that we count the empty set as an affine subspace. We say that X ⊆ Rn is anchored,
if A(X) ∩ Zn 6= ∅. We have the following characterization:

Lemma 2.3 ([14]) The following are equivalent for any X ⊆ Qn.

(i) X is anchored.

(ii) For every u ∈ Zn and a ∈ Q, if uTx = a for all x ∈ X, then a ∈ Z.

�

(Here we view x ∈ Qn as column vectors, hence uTx is the inner product of u and x, where
T denotes the matrix transpose operator.) The next lemma essentially describes elements of
Fn

1 up to a change of parameter.
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Lemma 2.4 ([14]) Let x0, . . . , xk ∈ [0, 1]nQ.

(i) If there are rationals 0 = t0 < t1 < · · · < tk = 1 such that L(t0, x0; t1, x1; . . . ; tk, xk) ∈
Fn

1 , then x0, xk ∈ {0, 1}n, and {xi, xi+1} is anchored for each i < k.

(ii) If x0, xk ∈ {0, 1}n, and {xi, xi+1} is anchored for each i < k, then there exist rationals
0 < t0 < t1 · · · < tk < 1 such that L(0, x0; t0, x0; t1, x1; . . . ; tk, xk; 1, xk) ∈ Fn

1 .

�

(Lemma 4.10 in [14] does not explicitly state that we can take 0 < t0 < tk < 1, but this is
obvious from its proof. Then the extra end-segments L(0, x0; t0, x0) and L(tk, xk; 1, xk) have
integer coefficients as they are constant functions with values x0, xk ∈ {0, 1}n.)

Finally, we will use the lemma below.

Lemma 2.5 ([14]) Let X be an anchored subset of Qn, and x0, . . . , xk ∈ Qn. Then there
exists w ∈ C(X) ∩Qn such that {xi, w} is anchored for each i ≤ k. �

The reader may find it generally helpful to be familiar with Section 4 of [14].

3 Admissibly saturated formulas

Definition 3.1 A formula ϕ is admissibly saturated in a logic L if for every finite set ∆ of
formulas, ϕ |∼L ∆ implies ϕ `L ψ for some ψ ∈ ∆.

In this section, we will semantically characterize admissibly saturated formulas in  L,
and we will show that every formula can be approximated (see below for the definition) by
admissibly saturated formulas.

We first observe that since formulas ϕ, ψ such that ϕ a` ψ are indistinguishable with
respect to admissibility, we only need to care about the “truth sets” of our formulas rather
than their full McNaughton functions:

Definition 3.2 If ϕ ∈ Fn, let t(ϕ) = {x ∈ [0, 1]n | ϕ(x) = 1}.

In this notation, we can reformulate the completeness of [0, 1] L for derivable rules as follows:

Corollary 3.3 Let ϕ,ψ ∈ Fn. Then ϕ ` L ψ if and only if t(ϕ) ⊆ t(ψ). �

Lemma 3.4 If X ⊆ [0, 1]n is a finite union of polytopes, there exists ϕ ∈ Fn such that
t(ϕ) = X.

Proof: Let X =
⋃

iCi, and Ci = {x | ∀j Li,j(x) ≥ 0}, where Li,j are linear functions with
integer coefficients. Then X = t(ϕ), where ϕ =

∨
i

∧
j(Li,j + 1)=. �
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Theorem 3.5 A formula ϕ ∈ Fn is admissibly saturated in  L if and only if

(i) t(ϕ) ∩ {0, 1}n 6= ∅,

(ii) t(ϕ) is connected, and

(iii) t(ϕ) is a finite union of anchored polytopes.

Proof: Right-to-left: assume that ϕ satisfies (i)–(iii), and let ∆ be a finite set of formulas
such that ϕ 0 L ψ for each ψ ∈ ∆. The conditions (i)–(iii) remain valid if we reconsider ϕ as
a member of Fm for any m ≥ n, hence we may assume ∆ ⊆ Fn without loss of generality.
We enumerate ∆ = {ψi | i < k}, and for each i < k we choose xi ∈ [0, 1]nQ such that
ϕ(xi) = 1 > ψi(xi) using Corollary 3.3. We fix w ∈ t(ϕ) ∩ {0, 1}n, and write t(ϕ) =

⋃
j Cj ,

where each Cj is an anchored polytope.
Let i < k. As t(ϕ) is connected, there exists a sequence {ju | u ≤ ri} such that w ∈ Cj0 ,

xi ∈ Cjri
, and Cju ∩ Cju+1 6= ∅ for each u < ri. Put xi,0 = w, xi,2ri+2 = xi, and choose

xi,2u+2 ∈ Cju ∩ Cju+1 for each u < ri. We can assume xi,2u+2 ∈ [0, 1]nQ as Cj have integer
coefficients. Since Cju is anchored and convex, we can find xi,2u+1 ∈ Cju ∩ [0, 1]nQ such that
{xi,2u, xi,2u+1} and {xi,2u+1, xi,2u+2} are anchored by Lemma 2.5.

Let {yi | i ≤ s} be the enumeration of the sequence

w = x0,0, x0,1, . . . , x0,2r0+2, x0,2r0+1, . . . , x0,1, x0,0 = x1,0, x1,1, . . . ,

. . . , xk−2,0 = xk−1,0, xk−1,1 . . . , xk−1,2rk−1+2, xk−1,2rk−1+1, . . . , xk−1,1, xk−1,0 = w.

(If k = 0, we understand it as s = 0, y0 = w.) By Lemma 2.4, there exist rationals 0 <

t0 < · · · < ts < 1 such that f = L(0, w; t0, y0; . . . ; ts, ys; 1, w) ∈ Fn
1 . Let σ : Fn → F1 be

the substitution induced by f . For each i < s there exists j such that yi, yi+1 ∈ Cj , hence
rng(f � [ti, ti+1]) = C(yi, yi+1) ⊆ Cj , where rng denotes the range of a function. It follows
that rng(f) ⊆ t(ϕ), thus ` L σϕ. On the other hand, for any ψ ∈ ∆ there exists i such that
ψ(yi) < 1, hence 0 L σψ. Consequently ϕ 6|∼ L ∆.

Left-to-right: if t(ϕ) ∩ {0, 1}n = ∅, then ϕ is classically unsatisfiable and therefore not
 L-unifiable, thus ϕ |∼ L ∅, and ϕ is not admissibly saturated.

Assume that t(ϕ) is disconnected, and fix open sets U0, U1 such that Xi = t(ϕ) ∩ Ui are
nonempty, disjoint, and X0 ∪ X1 = t(ϕ). As t(ϕ) is a finite union of polytopes, and any
polytope is connected, Xi are also finite unions of polytopes. Let ψ0 and ψ1 be formulas
such that Xi = t(ψi) by Lemma 3.4. Let σ : Fn → F1 be a substitution induced by f ∈ Fn

1

such that ` L σϕ. Then rng(f) ⊆ t(ϕ), and rng(f), being a continuous image of a connected
space, is connected, hence rng(f) ⊆ Xi for some i = 0, 1, i.e., ` L σψi. Thus, ϕ |∼ L ψ0, ψ1 by
Theorem 2.1, but ϕ 0 L ψi as Xi ( t(ϕ), hence ϕ is not admissibly saturated.

Write t(ϕ) =
⋃

i<k Ci where Ci are polytopes, and assume that k is smallest possible.
In particular for every i < k, Ci *

⋃
j 6=iCj . Assume that Ci is not anchored, and using

Lemma 3.4 find a formula ψ such that t(ψ) =
⋃

j 6=iCj . Clearly ϕ 0 L ψ. We claim ϕ |∼ L ψ,
hence ϕ is not admissibly saturated. Let σ : Fn → F1 be a substitution induced by f ∈ Fn

1

such that ` L σϕ, i.e., rng(f) ⊆ t(ϕ). We can write f = L(t0, x0; t1, x1; . . . ; ts, xs) for some
rationals 0 = t0 < t1 < · · · < ts = 1 and x0, . . . , xs ∈ [0, 1]nQ. The preimage f−1(Cj)∩ [tu, tu+1]
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(if nonempty) is an interval with rational endpoints for each u and j, hence we can refine the
sequence of tu’s to ensure that for each u < s there exists j < k such that rng(f � [tu, tu+1]) =
C(xu, xu+1) ⊆ Cj . However, {xu, xu+1} is anchored by Lemma 2.4, hence Cj is anchored,
too. In particular, j 6= i, i.e., rng(f) ⊆ t(ψ), and ` L σψ. �

Definition 3.6 An admissibly saturated approximation of a formula ϕ in a logic L is a set
Aϕ such that

(i) Aϕ is a finite set of admissibly saturated formulas,

(ii) ϕ |∼L Aϕ, and

(iii) ψ `L ϕ for each ψ ∈ Aϕ.

Notice that admissibly saturated approximations can be used to reduce admissibility to
derivability (we assume for simplicity that the logic has a well-behaved conjunction connec-
tive):

Observation 3.7 Γ |∼L ∆ if and only if for each ψ ∈ AV
Γ there exists δ ∈ ∆ such that

ψ `L δ.

Proof: Left-to-right: if ψ ∈ AV
Γ and Γ |∼L ∆, then ψ |∼L ∆. As ψ is admissibly saturated,

there exists δ ∈ ∆ such that ψ `L δ.
Right-to-left: we have Γ |∼L A

V
Γ, and ψ |∼L ∆ for every ψ ∈ AV

Γ, hence Γ |∼L ∆. �

Theorem 3.8 Every formula has an admissibly saturated approximation in  L.

Proof: Let ϕ ∈ Fn, and write t(ϕ) =
⋃

i<k Ci for some polytopes Ci. Let

I = {i < k | Ci is anchored},

X =
⋃
i∈I

Ci.

Since polytopes are connected, all connected components of X are of the form
⋃

i∈I′ Ci for

some I ′ ⊆ I. We can therefore write I as a disjoint union I =
.⋃

j<l Ij so that the sets
Xj =

⋃
i∈Ij

Ci are the connected components of X. Let

J = {j < l | Xj ∩ {0, 1}n 6= ∅},

and using Lemma 3.4 we find formulas ψ and ψj such that t(ψ) = X and t(ψj) = Xj . We
claim that Aϕ = {ψj | j ∈ J} is an admissibly saturated approximation of ϕ.

Clearly ψj ` L ϕ by Corollary 3.3, and the formulas ψj ∈ Aϕ are admissibly saturated by
Theorem 3.5. It remains to show ϕ |∼ L Aϕ. Let σ : Fn → F1 be a substitution such that
` L σϕ, induced by f = L(t0, x0; t1, x1; . . . ; ts, xs) ∈ Fn

1 . We have rng(f) ⊆ t(ϕ). The same
reasoning as in the proof of Theorem 3.5 shows that actually rng(f) ⊆ X. Being a continuous
image of a connected space, rng(f) is connected, hence rng(f) ⊆ Xj for some j < l. As
f(0) ∈ rng(f) ∩ {0, 1}n, we have j ∈ J , hence ` L σψj and ψj ∈ Aϕ. �
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Remark 3.9 Following Iemhoff [10], a maximal admissible consequence of a formula ϕ in a
logic L is a formula ϕ such that

ϕ |∼L ψ ⇔ ϕ `L ψ

for every formula ψ. Since
∨

i ϕi ` L
∨

i ϕ
n
i , it is easy to see from Theorem 3.8 that every

formula has a maximal admissible consequence in  L, namely ϕ =
∨
Aϕ.

Remark 3.10 Admissibly saturated formulas are related to projective formulas, which have
proved valuable for investigation of admissible rules in many modal and superintuitionistic
logics. Recall that a formula ϕ is projective in a logic L if there exists an L-unifier σ of ϕ
such that

ϕ `L ψ ↔ σψ

for every formula ψ. It is easy to see that every projective formula is admissibly saturated,
and thus a projective approximation of a formula is also its admissibly saturated approxima-
tion. Moreover, an admissibly saturated formula can have a projective approximation only if
it is itself projective. Thus for any fixed logic L, all formulas have projective approximations
if and only if all formulas have admissibly saturated approximations and all admissibly satu-
rated formulas are projective. It is not clear whether admissibly saturated formulas of  L are
projective.

4 Bases of admissible rules

In this section, we will construct bases of multiple-conclusion and single-conclusion admissible
rules of  L, and we will show that there are no finite bases.

We start by presenting the rules we are going to work with.

Definition 4.1 We introduce the rules

p ∨ ¬p / p,¬p,(WDP)

¬(q ∨ ¬q)n / ∅,(CC n)

¬(q ∨ ¬q)n / ⊥,(CC 1
n)

(q ∨ ¬q)n → p, p ∨ ¬p / p,(RCC n)

⊥ / ∅(Con)

for n ∈ ω. For any k ≥ 2, let χk ∈ F1 be a formula such that t(χk) = { 1
k}. For definiteness,

we may take χk = L(0, 0; 1
k , 1; 2

k , 0; 1, 0), which can be represented as

χk(q) =

{
kq ∧ 2(¬q)k/2, k even,

kq ∧
(
(¬q)k−1 ⊕ (¬q · 2(¬q)bk/2c)

)
, k odd.

We introduce the rules

(NAk) p ∨ χk(q) / p,

and we put NA = {NAp | p is a prime}.
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(WDP denotes “weak disjunction property”. CC stands for “classical contradiction”, as it
derives rules Γ / ∅ where Γ is inconsistent in classical logic, cf. [14]. RCC means “relativized
CC ”. NA stands for “not anchored”; as we will see below, the rule allows us to delete non-
anchored polytopes from t(ϕ). Con means “consistency”, as it is admissible in a logic L iff L

is consistent.) The basic relations between these rules are summarized in the next lemma.

Lemma 4.2

(i)  L + CC n =  L + CC 1
n + Con.

(ii)  L + WDP + CC 1
n ` RCC n,  L + RCC n ` CC 1

n.

(iii)  L admits WDP, CC n, RCC n, and NAk, k ≥ 2.

(iv)  L ` CC 1
0,CC 1

1,RCC 0,RCC 1, and  L + NA2 ` CC 1
2,RCC 2.

(v) If k | l, then  L + NAk ` NAl.

(vi)  L + CC 3 ` CC n, and  L + RCC 3 ` RCC n.

Proof: (i) and (ii) are straightforward.
(iii): We will show that the rules are valid in F1.
WDP : let f ∈ F1 be such that f ∨¬f = 1. Then rng(f) ⊆ {0, 1}, and rng(f) is connected,

hence f = 0 or f = 1.
CC n: if f ∈ F1, then f(0) ∈ {0, 1}, hence (¬(f ∨ ¬f)n)(0) = 0, and ¬(f ∨ ¬f)n 6= 1.
RCC n follows by (ii).
NAk: let f, g ∈ F1 be such that f ∨ χk(g) = 1. This means that for each t ∈ [0, 1],

f(t) = 1 or g(t) = 1
k . Write g = L(t0, x0; t1, x1; . . . ; ts, xs). If g(t) = 1

k for two distinct
t ∈ [ti, ti+1], then g � [ti, ti+1] is the constant 1

k function, which is not a linear function with
integer coefficients, contradicting g ∈ F1. Thus g(t) = 1

k can only hold for finitely many
t ∈ [0, 1]. It follows that f−1({1}) contains all of [0, 1] except for finitely many points, and
being a continuous preimage of {1}, it is closed, hence it equals [0, 1], and f = 1.

(iv): RCC 0 is trivial.
RCC 1: we assume p ∨ ¬p and q ∨ ¬q → p. The latter gives ¬q → p and q → p, hence

¬p→ ¬q, thus ¬p→ p. Using p ∨ ¬p we get p ∨ p, i.e., p.
RCC 2: it suffices to show

p ∨ ¬p, (q ∨ ¬q)2 → p ` L p ∨ χ2(q).

Let v be a valuation in [0, 1] such that v(p ∨ ¬p) = v((q ∨ ¬q)2 → p) = 1, and put x = v(p),
y = v(q). We have x ∨ ¬x = 1, thus x = 1 or x = 0. In the latter case, (y ∨ ¬y)2 = 0, hence
y ∨ ¬y ≤ 1

2 . This can only happen for y = 1
2 , hence x ∨ χ2(y) = 1.

(v): If l = km, then
p ∨ χl(q) ` L p ∨ χk(mq).

Indeed, if x ∨ χl(y) = 1, then x = 1 or y = 1
l . In the latter case my = 1

k , hence in both cases
x ∨ χk(my) = 1.
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(vi): We will prove  L + CC 3 ` CC n, the case of RCC is similar. It suffices to show
 L + CC n ` CC n+1 for every n ≥ 3. Consider the formula

ϕ = L
(
0, 0; 1

3 ,
2
3 ; 2

3 ,
1
3 ; 1, 1

)
∈ F1.

It is easy to see that ϕ([1/(n + 1), 1 − 1/(n + 1)]) ⊆ [1/n, 1 − 1/n]. Since ¬(x ∨ ¬x)n = 1 if
and only if x ∈ [1/n, 1− 1/n], we obtain

¬(q ∨ ¬q)n+1 ` L ¬(ϕ(q) ∨ ¬ϕ(q))n. �

Theorem 4.3 WDP + CC 3 + NA is a basis of multiple-conclusion  L-admissible rules.

Proof: On the one hand, the given rules are admissible by Lemma 4.2. On the other hand,
consider an admissible rule Γ / ∆, and put ϕ =

∧
Γ. For each ψ ∈ Aϕ, the rule ψ / ∆ is

derivable in  L, hence it suffices to show that

 L + WDP + CC 3 + NA ` ϕ / Aϕ.

As in the proof of Theorem 3.8, we write t(ϕ) =
⋃

i<k Ci, and put

I = {i < k | Ci is anchored}, X =
⋃
i∈I

Ci, t(ψ) = X,

I =
.⋃

j<l

Ij , Xj =
⋃
i∈Ij

Ci, t(ψj) = Xj ,

so that Xj are the connected components of X,

J = {j < l | Xj ∩ {0, 1}n 6= ∅}.

Assume that Ci is not anchored, and let t(ϕ′) =
⋃

i′ 6=iCi′ . By Lemma 2.3, there exists u ∈ Zn

and a ∈ Q r Z such that uTx = a for all x ∈ Ci. We can multiply u and a by a suitable
integer to ensure a = t/p for some prime number p. Since a /∈ Z, t is coprime to p, hence
there exists s such that ts ≡ 1 (mod p). We can multiply u and a by s, hence we can assume
that a ∈ Z + 1/p. Let L(x) = uTx − bac, and ϑ(x) = L= ∈ Fn. We have ϑ(x) = 1/p for all
x ∈ Ci, hence ϕ ` L ϕ′ ∨ χp(ϑ), thus  L + NAp ` ϕ / ϕ′. By repeating this construction for
every i < k, i /∈ I in turn, we obtain

(∗)  L + NA ` ϕ / ψ.

The next task is to derive ψ / {ψj | j < l}. If l = 1, there is nothing to prove. If l = 0,
i.e., X = ∅, we have ψ ` L ⊥, hence

 L + CC 3 ⊇  L + Con ` ψ / ∅.

Assume l > 1, and put ψ′ =
∨

j 6=0 ψj . We have t(ψ0) ∩ t(ψ′) = ∅, thus ψ0, ψ
′ ` L ⊥, hence

there exists an m such that ` L ψ
m
0 ·ψ′m → ⊥. Put α = ψm

0 . We have ψ0 ` L α and ψ′ ` L ¬α,
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hence ψ ` L α ∨ ¬α. Also ψ, α ` L ψ0 and ψ,¬α ` L ψ′, thus  L + WDP ` ψ / ψ0, ψ
′. We can

continue in a similar way with ψ′; by repeating this construction (l − 1)-times, we obtain

(∗∗)  L + WDP ` ψ / ψ0, . . . , ψl−1.

Let j < l, j /∈ J , and put β =
∧

i<n(pi ∨ ¬pi). We have t(β) = t(β ∨ ¬β) = {0, 1}n,
hence ψj , β ∨ ¬β ` L ⊥. It follows that there exists m such that ψj ` L ¬(β ∨ ¬β)m, hence
 L + CC m ` ψj / ∅. Using Lemma 4.2 (vi), we obtain

(∗∗∗)  L + CC 3 ` ψj / ∅.

If we put (∗), (∗∗), and (∗∗∗) together using cuts, we get  L + WDP + CC 3 + NA ` ϕ /

{ψj | j ∈ J} = Aϕ. �

In order to find a basis of single-conclusion  L-admissible rules, we have to axiomatize
the single-conclusion fragment of  L + WDP + CC 3 + NA. We will prove a general result
characterizing single-conclusion fragments of consequence relations involving the WDP rule.
(The characterization actually holds for all logics extending FLew in place of  L with the same
proof, but we do not want to bother with defining FLew just for this reason as we have no
further use for it.)

Theorem 4.4 Let X be a set of single-conclusion rules. Then the following are equivalent.

(i)  L +X + WDP is conservative over  L +X wrt single-conclusion rules.

(ii) For every Γ / ϕ ∈ X,  L +X derives Γ ∨ r, r ∨ ¬r / ϕ ∨ r, where r is a fresh variable.

Here, Γ ∨ r denotes {γ ∨ r | γ ∈ Γ}.

Proof: On the one hand, Γ ∨ r, r ∨ ¬r / ϕ ∨ r is clearly derivable in  L + X + WDP . On
the other hand, assume that (ii) holds, we will show that for every rule Γ / ∆ derivable in
 L +X + WDP , and every finite set of formulas Π ∪ {ϕ}, we have

(∗) ∀δ ∈ ∆ ( L +X ` Π, δ / ϕ) ⇒  L +X ` Π,Γ / ϕ.

The result then follows by taking ∆ = {ϕ}, Π = ∅. We will show (∗) by induction on the
length of the derivation of Γ / ∆ in  L +X + WDP .

If Γ / ∆ is derivable in  L+X, then (∗) follows by a cut. The induction step for weakening
is trivial. Assume that Γ / ∆ was derived by a cut

Γ / ∆, α Γ, α / ∆
Γ / ∆

.

If  L + X ` Π, δ / ϕ for each δ ∈ ∆, then  L + X ` Π,Γ, α / ϕ by the induction hypothesis.
Thus  L + X ` Π,Γ, δ / ϕ for each δ ∈ ∆ ∪ {α}, hence  L + X ` Π,Γ / ϕ by the induction
hypothesis.

Claim 1 If  L +X ` Γ / ϕ, then  L +X ` Γ ∨ α, α ∨ ¬α / ϕ ∨ α.

Proof: By induction on the length of derivation. If Γ / ϕ is an axiom of  L or an instance of
modus ponens, then Γ∨α ` L ϕ∨α. If Γ / ϕ is an instance of a rule from X, the result holds
by assumption. The induction steps for cut or weakening follow by an application of cut or
weakening, respectively. � (Claim 1)
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We return to the proof of (∗). The only remaining case is when Γ / ∆ is an instance of
WDP . We assume that  L + X derives Π, α / ϕ and Π,¬α / ϕ. Using the Claim, we have
Π∨α, α∨¬α / ϕ∨α, hence also Π, α∨¬α / ϕ∨α. Symmetrically, we have Π, α∨¬α / ϕ∨¬α.
As ϕ ∨ α, ϕ ∨ ¬α ` L ϕ, we obtain Π, α ∨ ¬α / ϕ. �

Theorem 4.5 RCC 3 + NA is a basis of single-conclusion  L-admissible rules.

Proof: By Theorem 4.3, it suffices to show that  L + WDP + CC 3 + NA is conservative over
 L + RCC 3 + NA wrt single-conclusion rules. Consider a derivation of Γ / ϕ in  L + WDP +
CC 3 + NA. We include ⊥ in the conclusion of every rule in the proof, fix instances of axioms
from  L+WDP +NA using weakening, and derive Γ / ϕ from Γ / ϕ,⊥ and the  L-derivable rule
⊥ / ϕ by a cut. We obtain a proof of Γ / ϕ in  L + WDP + CC 1

3 + NA, which is contained in
 L+WDP +RCC 3 +NA. It thus suffices to show that  L+WDP +RCC 3 +NA is conservative
over  L + RCC 3 + NA wrt single-conclusion rules. We demonstrate it using Theorem 4.4.

Clearly,  L + NAk derives p ∨ r ∨ χk(q) / p ∨ r, and a fortiori p ∨ χk(q) ∨ r, r ∨ ¬r / p ∨ r.
Since p ∨ ¬p ∨ r, r ∨ ¬r ` L p ∨ r ∨ ¬(p ∨ r), the rule

((q ∨ ¬q)3 → p) ∨ r, p ∨ ¬p ∨ r, r ∨ ¬r / p ∨ r

is derivable from the instance

(q ∨ ¬q)3 → p ∨ r, (p ∨ r) ∨ ¬(p ∨ r) / p ∨ r

of RCC 3. �

Definition 4.6 A basis of (multiple-conclusion or single-conclusion) admissible rules of a
logic L is independent if none of its proper subsets is a basis.

Theorem 4.7 The bases WDP + CC 3 + NA and RCC 3 + NA are independent.

Proof: We have to show that none of the rules is derivable from the others over  L.
WDP : The 4-element Boolean algebra satisfies NA and CC n (even RCC n), but does not

satisfy WDP .
CC 3 and RCC 3: Let A be the MV -algebra {f � [13 ,

2
3 ] | f ∈ F1}. The same argument as

in Lemma 4.2 shows that A � NA and A � WDP . On the other hand, A 2 CC 1
3: we have

¬(f ∨ ¬f)3 = 1 for f = L(1
3 ,

1
3 ; 2

3 ,
2
3) ∈ A.

NAp: Let Ap be the MV -algebra of continuous piecewise linear functions f : [0, 1] → [0, 1]
with coefficients from 1

pZ such that f(0) ∈ {0, 1}. We have A � WDP and A � CC n (hence
also A � RCC n) as in Lemma 4.2. Also A � NAk for k 6= 1, p by the same argument, as the
constant 1

k function does not have coefficients in 1
pZ. On the other hand, Ap 2 NAp: we have

f ∨ χp(g) = 1 and f 6= 1, where f = L(0, 1; 1
2 , 1; 1, 0) and g = L(0, 0; 1

p ,
1
p ; 1, 1

p). �

For the sake of completeness, we also mention that we cannot simplify the basis of single-
conclusion  L-admissible rules to CC 1

3 +NA. Let A be the MV -algebra of functions f : [0, 1] →
[0, 1] such that f is piecewise linear with integer coefficients, and continuous except for a finite
set where it is right-continuous. Then A � NA and A � CC n, but A 2 RCC 3.
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If  L has a finite basis of multiple-conclusion or single-conclusion admissible rules, then a
finite subset of WDP + CC 3 + NA or RCC 3 + NA, respectively, is also a basis. However, this
cannot happen, as these two bases are infinite and independent. Thus:

Corollary 4.8  L does not have a finite basis of admissible rules (in either the multiple-
conclusion or single-conclusion setting). �

On the other hand, the bases WDP + CC 3 + NA and RCC 3 + NA use only finitely many
(in fact, two) propositional variables.
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