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Abstract For interfacial interactions of “separable type” the existence is proved of stable multiphase
equilibrium states minimizing the total energy which includes a sharp interface contribution along
interfaces separating the phases. The second gradients of deformation do not occur; the theory is
based on interfacial null lagrangians as determined in [11–12]. The interfacial interaction is always of
separable type if the number of phases does not exceed 3Û for the number of phases ³ 4Ù the separable
nature of the interface interaction is an assumption.

1 The interfacial energies

We consider a body that can exist in states consisting of r inhomogeneous solid
phases indexed by a ¨ 1ÙÜ Ù rØ We identify the body with the reference configuration
represented by a bounded open set © ⊂ R3 with lipschitzian boundary. The states
are pairs �yÙP� where y Ú © r Rn is a deformation function and P ¨ �E1ÙÜ ÙEr�
is a partition of© into subsets Ea of © where Ea is the region occupied by phase aØ
That one or several of the sets Ea is empty is not excluded. The total energy E�yÙP�
of the state �yÙP� is given by

E�yÙP� ¨ Eb�yÙP� + E if�yÙP� (1.1)

where Eb�yÙP� and Eif�yÙP� are the bulk and interfacial energies defined as follows.
The bulk energy is

Eb�yÙP� ¨ r�
a¨1

�
Ea

ta�∇y� dL3 (1.2)

where ta Ú Lin+ r R is the bulk free energy density of phase a expressed as a
function of the deformation gradient
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F ¨ ∇yØ
Throughout, Lin denotes the set of all second order tensors in R3Ù interpreted as
linear transformations fromR3 toR3Ù Lin+ is the set of all second order tensors with
positive determinant, and L3 denotes the Lebesgue measure in R3Ø The interfacial
energy is given by

E if�yÙP� ¨ �
1²a°b²r

�
B

aÙb

Ðf aÙb�V yÙnaÙb� dH2Ø (1.3)

Here H2 is the 2 dimensional Hausdorff measure, ÐfaÙb Ú Gr R are the densities of
the interfacial energy between the phases a and bÙ defined on the set G of all pairs�FÙn� X Lin� S2 (where S2 is the unit sphere in R3) satisfying F n ¨ 0Ù

BaÙb Ú¨ bd  Ea P bd  Eb

is the common part of the measure–theoretic boundaries bd  Ea and bd  Eb of phases
a and b, naÙb the measure theoretic normal pointing from Ea to Eb ,

F ¨ V y

is the surface deformation gradient [8, 7, 11–12] with V the surface gradient [11–12],
defined on the union of boundaries

U
1²a°b²r

BaÙb

and satisfying the constraint

F naÙb ¨ 0 on BaÙb

as a consequence of the definition of the surface gradient.
The equilibrium states correspond to minimum energy among all states satisfying

the boundary conditions. The present paper considers interface interactions of “sepa-
rable type” as defined below and formulates hypotheses which give the existence of
states of minimum energy. For states of at most 3 phases each interface interaction is
of separable type and the result extends that of [11–12] where the energy minimizers
are proved in the class of 2 phase states. Apart from the separable nature of the inter-
face interaction, the constitutive theory is identical with that of [11–12]; in particular
the interfacial stress and Eshelby tensors are derived from the interfacial energy by
the same formulas.

Appropriate convexity of the response functions ta and ÐfaÙb is needed to prove
the minimizers of energy.

The bulk response ta , a ¨ 1ÙÜ Ù rÙ of the individual phases a is assumed to be
stable in the sense that ta is a polyconvex function [2]; hence

ta�F� ¨ §a�FÙ cofFÙdet F� (1.4)

for all F X Lin where §a Ú W r R T  ð( is a convex function on W ¨
Lin�Lin�RØ We note that the polyconvexity assumption of ta is consistent with
the existence of r wells (one for each phase) of the minimum energy t Ú Lin+ r R
defined by

t �F� ¨ min !ta�F� Ú a ¨ 1ÙÜ Ù r)Ù
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F X Lin+Ø
The interface free energies Ðf aÙb Ù 1 ² a ° b ² rÙ are assumed to satisfyÐfaÙb�FÙn� ¨ ÐfaÙb�FÙ −n�

for each �FÙn� X G; the separable nature of the interface interaction is the assumption
that ÐfaÙb ¨ Ðga + Ðgb (1.5)

if 1 ² b ° a ² r for some functions Ðga Ú G r RÙ a ¨ 1ÙÜ Ù rØ We note that the
functions Ðga automatically exist if r ² 3 Ú one can put Ðg1 ¨ Ðf1Ù2Ù Ðg2 ¨ 0 if r ¨ 2 and
if r ¨ 3 then Ðga are unique and given by

Ðga ¨ 1
2
�ÐfaÙb + Ðf aÙc − ÐfbÙc�

for each a X  1Ù 2Ù 3( where bÙ c X  1Ù 2Ù 3( ∼  a(, b © c and we have setÐf aÙb ¨ Ðf bÙa if 1 ² b ° a ² 3Ø
Returning to the case of a general rÙwe make the basic convexity assumption about

the interface response by requiring that the functions Ðga are interface polyconvex
[11] for a ¨ 1ÙÜ Ù r in the sense thatÐga�FÙn� ¨ ¨a�nÙF � nÙ cof F n� (1.6)

where¨a is a positively 1 homogeneous convex nonnegative function and F � n is a
second order tensor defined by �F � n�a ¨ F�n � a� for each a X R3Ø

For the existence theory, states are pairs �yÙP� as before where y satisfies the
requirements necessary to apply the existence theorems based on bulk polyconvexity
and such that the expressions F �n and cofF n exist in a weak sense. See Definition
3.1 below; note that every pair �yÙP� where y is lipschitzian and P a partition into
sets of finite perimeter is a state. For this generalized notion of states and under the
hypotheses outlined above one can define the total energy which is an extension of
(1.1), (1.2) and (1.3). Assuming appropriate coercivity of ta and Ðga and imposing
the Dirichlet boundary conditions, we prove the existence of global minimizers of
energy.

The existence of minimizers of energy is in a sharp contrast with the theory in
which the interface energy is neglected: in the latter theory the minimizers generally
do not exist. As is well known, in the sequence of states approaching the infimum
energy the phases form a mixture which is finer and finer [3–4] with more and more
complicated interface. In the present approach the interfacial energy penalizes the
formation of the interfaces and thus induces limited fineness of the microstructure.

The framework discussed above assumes a separate bulk energy for each of
the phases. Moreover, the regions Ea are treated as unknowns independent of y.
This differs from an alternative view in which all the phases are described at once
by a single stored energy and the only unknown is the deformation yØ In the later
theory, one can, in principle, distinguish the phases constitutively and spatially. On the
constitutive level, individual phases correspond to various subregions of the space of
all deformation gradients. Spatially, phases are regions separated by interfaces defined
as sets of material points of the jump of the deformation gradient. The coercivity of
the model requires the dependence of the bulk energies on the second deformation
gradient
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∇F ¨ ∇2y
and the solution is to be sought in the space of deformations y with bounded hessian.
The reader is referred to [5] for a consistent model of this type. The interface part of
the constitutive theory of the present model and that of [5] are rather disjoint.

2 Interface quasi– and poly–convexity and interface null lagrangians

We start the detailed exposition with a discussion of the convexity properties of the
interface energy functions Ðf aÙb and Ðga occurring in (1.5). The basic notions are the
interface null lagrangians and interface polyconvex functions to be introduced below;
these, in turn, are based on interface quasiconvexity. The last appears to be the right
convexity notion for the interfacial energies Ðf Ú¨ Ðf aÙb Ø
Definition 2.1. A continuous function Ðf Ú G r R T  ð( is said to be interface
quasiconvex if �

S

Ðf�V yÙn� dH2 ³ H2�T �Ðf�GÙm� (2.1)

for every �GÙm� X GÙ every planar 2 dimensional region T of normal m, every
(curved) surface S of normal n and every smooth map y Ú S r R3 such that

bdS ¨ bd T Ù y�x� ¨ GxÙ x X bd T Ø
Here bdS andbd T denote the (relative) boundaries of the 2 dimensional surfaces

S and T in R3Ø We emphasize that the surface S is not the deformed interface T but
instead a different interface consisting of material points different from those of T Ø
Thus testing (2.1) involves implicitly a change of the interface. This is mathematically
reflected by the variation of the integration domain, from T to SÙ with H2�S� ³
H2�T �, and physically reflected by the transformation of one phase into another.
The variation of domain of integration, which has no counterpart in the standard bulk
quasiconvexity notion, has strong consequences which we shall mention below. Here
we note that while the constant bulk energies are trivially quasiconvex, a constant
interfacial energy Ðf is interface quasiconvex if and only if the constant value of Ðf
is nonnegative. The interface quasiconvexity rules out surface wrinkling and prefers
homogeneous surface deformations over the inhomogeneous ones.

Working in a different format of the interfacial energy than the present one, Parry
[10] and Fonseca [6] established two related but weaker quasiconvexity properties of
the interfacial energy; we refer to a discussion in [11; Introduction].

Approaching the notion of interface polyconvex functions, we introduce the
interface null lagrangians and determine their form.

Definition 2.2. A function Ðf Ú G r RT  ð( is said to be interface null lagrangian
if it is finite-valued, continuous and both Ðf and −Ðf are interface quasiconvex.

Theorem 2.3. A function Ðf Ú Gr R is an interface null lagrangian if and only ifÐf�FÙn� ¨ c ċ n +© ċ �F � n� + a ċ cof F n (2.2)
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for each �FÙn� X G where c and a are constant vectors and © a constant second
order tensor.

Recall that we work in the space of dimension 3Û see [12; Proposition 3.5.2] for a
general dimension and proof. (2.2) shows that the triple

nÙ F � nÙ cofF n (2.3)

is the basic list of 15 scalar interface null lagrangians.

Definition 2.4. A continuous function Ðf Ú G r R T  ð( is said to be interface
polyconvex if it is the supremum of some family of interface null lagrangians.

Clearly, any interface polyconvex function is interface quasiconvex.

Theorem 2.5. A function Ðf Ú G r R is an interface polyconvex if and only if and
only if Ðf�FÙn� ¨ §�nÙF � nÙ cofF n�
for any �FÙn� X G where § Ú X r R is a positively 1 homogenous convex function
onX ¨ R3 � Lin�R3Ù where the positive 1 homogeneity of § means

§�tA� ¨ t§�A�
for each t ³ 0 and each argument A X XØ
3 The main result

We introduce the state space for the existence theory, i.e., the competitors in the
minimum energy principle.

Definition 3.1. Let © ⊂ R3 be a bounded open set with Lipschitz boundary, and let
2 ² p ° ðÙ 3/2 ² q ° ð and let r be an integer 1 ² r ° ðØ We denote by G pÙqr �©� the
set of all pairs �yÙP� where

(i) y X W 1Ùp�©ÙR3�Ù cof∇y X Lq�©ÙLin�,

(ii) P ¨ �E1ÙÜ ÙEr� is a partition of © into sets of finite perimeter Ea Ù a ¨ 1ÙÜ Ù rÙ
i.e., the sets Ea Ù a ¨ 1ÙÜ Ù rÙ are pairwise disjoint and

rU
a¨1
Ea

differs from© by a set of Lebesgue measure 0Û
(iii) for each a X  1ÙÜ Ù r( there exist measures Ha and pa on© with values in LinÙ

and R3Ù respectively, such that

− �
Ea

∇y curl v dL3 ¨ �
©

dHavÙ �
Ea

cof∇y ċ ∇v dL3 ¨ �
©

v ċ dpa

for every v X Cð0 �©ÙR3�Ø
We call the elements �yÙP� of G pÙqr �©� states. The measure Ha and pa are uniquely
determined by �yÙP� and we write Ha�yÙP� and pa�yÙP� to indicate the depen-
dence on �yÙP�Ø
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If �yÙP� is a state with y is smooth then the integration by parts and the identities

curl∇y ¨ 0Ù div�cof∇y� ¨ 0
show that the measures Ha and pa as in Definition 3.1(iii) automatically exist and
are given by

Ha ¨ F � na H2 SaÙ pa ¨ cofF na H2 Sa (3.1)

where H2 Sa is the area measure restricted to the interface Sa Ú¨ ©Pbd  Ea with
bd  Ea the measure theoretic boundary of Ea ØHence in the general case the measures

ba ¨ na H2 SaÙ Ha Ù pa

provide measure theoretic generalizations of the basic interface null lagrangians
(2.3). The requirement (i) in the above definition comes from the refinement of Ball’s
existence theory [2] given in [9].

We now introduce the interface energy of separable type for states at the level of
generality of Definition 3.1.

Definition 3.2. Let pÙ qÙ and r be as in Definition 3.1. Let Ðga Ú G r RÙ a ¨ 1ÙÜ Ù rÙ
be functions satisfying Ðga�FÙ −n� ¨ Ðga�FÙn�
for each �FÙn� X G and assume that Ðga are interface polyconvex in the sense that
there exist even convex functions ¨a Ú X r RÙ a ¨ 1ÙÜ Ù rÙ such that (1.6) holds.
We define the interfacial energy Eif Ú G pÙqr �©� r R by

E if�yÙP� ¨ r�
a¨1

�
©

¨a�Aa� d |Ja | (3.2)

for each �yÙP� X G pÙqr �©�Ù where Aa and |Ja| are as follows. We associate with�yÙP� the measures Ha and pa as in Definition 3.1, define ba Ú¨ na H2 Sa Ù
where na is the measure theoretic normal to Sa ¨ © P bd  Ea , interpret the triplet
Ja Ú¨ �ba ÙHa Ùpa� as a measure with values inX, denote by |Ja| the total variation
measure of Ja and let Aa Ú © r X be a vectorfield such that we have the polar
decomposition identity Ja ¨ Aa |Ja|Ø

We note that the individual terms

�
©

¨a�Aa� d |Ja|

in (3.2) are the convex functions¨a of the measure Ja under the standard definition.
We refer to [1; Corollary 1.29] for the discussion of the polar decomposition of a
measure in a general context and to [1; Section 2.6] for the function of a measure. If�yÙP� is a state with y sufficiently smooth then (3.1) show that

E if�yÙP� ¨ r�
a¨1

�
Ea

¨a�na ÙF � na Ù cofF na� dH2 ¨ r�
a¨1

�
Ea

Ðga�FÙna� dH2
where na is the measure theoretic normal toEa and F ¨ V y is the surface deformation
gradient defined for H2 a.e. point of U raEa . This in turn, using the even nature of Ðf a

and the formulas (3.1) enables one to rewrite Eif�yÙP� in the initial form (1.3).
The following is the main result of the paper. We refer to [11–12] for the case

r ¨ 2Ø
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Theorem 3.3. Let 2 ² p ° ðÙ 3/2 ² q ° ð and let r be an integer, 1 ² r ° ðÙ let
ta Ú Linr �0Ù ð�,¨a Ú Xr �0Ù ð�, a ¨ 1ÙÜ Ù rÙ be given functions. Assume that

(i) ta , a ¨ 1ÙÜ Ù rÙ are polyconvex in the sense of (1.4) where §a Ú W r �0Ù ð� are
continuous convex functions;

(ii) the functions¨a are positively 1 homogeneous even convex functions, a ¨ 1ÙÜ Ù rÛ
(iii) for all a ¨ 1ÙÜ Ù r all F X LinÙ allA X X, some c ± 0 and some d X R we have

ta�F� ³ c�|F|p + | cofF|q� + dÙ ¨a�A� ³ c|A|Ù
(iv) ta�F� ¨ ð if det F ² 0Ø
Let the energy functional E Ú G pÙqr �©� r �0Ù ð� be defined by (1.1) where Eb is
given by (1.2) and Eif is as in Definition 3.2. If z0 X W 1Ùp�©ÙR3� and E is finite for
some element of the set

A�z0� ¨ !�zÙQ� X G pÙqr �©� Ú z ¨ z0 on bd©)
then there exists an �yÙP� X A�z0� such that

E�yÙP� ² E�zÙQ�
for all �zÙQ� X A�z0�Û we have

det∇y ± 0 for L3 a.e. point of ©Ø (3.3)

We allow ta to take the value ð not only to incorporate Condition (iv), which leads
to the orientation preserving property (3.3), but also to allow the effective domains

eff dom ta ¨  F X Lin Ú ta�F� ° ð(
be proper subsets of the set Lin+. Thus one may assume that the effective domains
are disjoint, and/or exclude states with deformation gradient in the spinodal region.

Proof Let M�©ÙV � denote the space of measures on © with values in a finite di-
mensional vectorspace V and letM�µ� denote the mass of the measure µ X M�©ÙV �Ù
i.e.,M�µ� ¨ |µ|�©� where |µ| denotes the total variation of µØ Let �y iÙP i� X A�z0�
be a minimizing sequence where we write P i ¨ �E ia ÙÜ ÙE ir �. By the coerciv-
ity assumptions on ta and ¨a the sequences |∇y i|L p , | cof∇y i|L q , H2�bd  E ia�,
M�Ha�y iÙP i�� and M�pa�y iÙP i�� are bounded. Combining the boundedness of
|∇y i|L p with the Dirichlet boundary data, one obtains the boundedness of |y i|

W 1ÙpØ
Standard compactness theorems for Sobolev space and for the spaces of measures
give that for some subsequence of �y iÙP i�Ù denoted again �y iÙP i�Ù we have

y iu y in W 1Ùp�©ÙR3�Ù (3.4)

cof∇y i u C in Lq�©ÙLin��n iaH2 bd  E
i
a ÙHa�y iÙP i�Ùpa�y iÙP i�	 u  ¡a in M�©ÙX� (3.5)

a ¨ 1ÙÜ Ù r, for some y X W 1Ùp�©ÙR3�, C X Lq�©ÙLin�Ù and ¡ X M�©ÙX�
where n ia is the measure theoretic normal to E ia Ø The boundedness of n iaH2 E ia
says that the sequence of the derivatives of the characteristic functions 1

E ia
of E ia in

© is bounded in M�©ÙR3�Ø The imbedding theorem from BV functions (e.g., [1;
Corollary 3.49, Chapter 3]) implies
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1E ia
r 1Ea

in L 1�©�Ø (3.6)

for some set Ea ⊂ © of finite perimeter, i.e.,

Ln�¡�E ia ÙEa�� r 0Ù (3.7)

where ¡�E ia ÙEa� is the symmetric difference of E ia and Ea Ø Moreover, the limit in� ra1E ia ¨ 1 on © gives � ra1Ea
¨ 1 and thus P Ú¨ �E1ÙÜ ÙEr� is a partition of © into

sets of finite perimeter. Furthermore, if we write

¡a ¨ �¡ 1a Ù¡2a Ù¡3a� (3.8)

for the components of theX valued measure ¡a in the productX Ú¨ R3 � Lin�R3,
then

n iaH2 bd  E
i
a u  ¡ 1a in M�©ÙR3� (3.9)

and
¡ 1a ¨ na H2 bd  Ea

where na is the measure theoretic normal to Ea Ø The condition E�y iÙP i� ° ð for
each i and Hypothesis (iv) imply that det∇y i ± 0 for every i and Ln a.e. point of ©Ø
From (3.4) by [9; Lemma 4.1] then

cof∇y i u cof∇y in Lq�©ÙLin�, (3.10)

det∇y iu det∇y in L 1�K ÙR� (3.11)

for each compact subset K of ©Û recall also that [see (3.4)]

∇y i u∇y in Lp�©ÙLin�. (3.12)

The equiintegrability of the sequences ∇y i and cof∇y i and (3.12) and (3.7) yield

1E ia
∇y i u 1Ea

∇yÙ 1E ia
cof∇y i u 1Ea

cof∇y in L 1�©ÙLin�
and in particular,

�
©

dH�y iÙP i�v ¨ �
E ia

∇y i curl v dLn r �
Ea

∇y curl v dLnÙ
�
©

d p�y iÙP i�v ¨ �
E ia

cof∇y i ċ ∇v dLn r �
Ea

∇y ċ ∇v dLn
for each v X Cð0 �©ÙR3�Ø Hence (3.5) yields

�
Ea

∇y curl v dLn ¨ �
©

d¡2a vÙ �
Ea

cof∇y ċ ∇v dLn ¨ �
©

d¡3a v

where we use the notation (3.8). Thus �yÙP� X G pÙqr �©� and Ha�yÙP� ¨ ¡2a and
pa�yÙP� ¨ ¡3a . Equations (3.5) and (3.9) give

�n iaH2 bd  E
i
a ÙHa�y iÙP i�Ùpa�y iÙP i�	 u 

�naH2 bd  Ea ÙHa�yÙP�Ùpa�yÙP�	 in M�©ÙX�Ø (3.13)

We now recall that§a is nonnegative and convex and apply the Ioffe lowersemi-
continuity theorem [1; Theorem 5.8, Chapter 5]. One then deduces from the weak
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convergences (3.12), (3.10) and (3.11) and the strong convergence (3.6) that for any
compact subset K of © we have

lim inf
irð

�
E ia

ta�∇y i� dLn ³ lim infirð
�

E iaPK
§a�∇y iÙ cof∇y iÙdet∇y i� dLn

³ �
EaPK

§a�∇yÙ cof∇yÙdet∇y�
¨ �
EaPK

ta�∇y� dLnØ
The arbitrariness of K then gives

lim inf
irð

�
E ia

ta�∇y i� dLn ³ �
Ea

ta�∇y� dLnÙ
which implies

lim inf
irð

Eb�y iÙP i� ³ Eb�yÙP�Ø (3.14)

Using (3.13) and the Reshetnyak lowersemicontinuity theorem (e.g., [1; Theorem
2.38, Chapter 2]), one obtains

lim inf
irð

E if�y iÙP i� ³ E if�yÙP�Ø (3.15)

Thus (3.14) and (3.15) provide

lim inf
irð

E�y iÙP i� ³ E�yÙP�Ø
Clearly, �yÙP� X A�z0�Ø è
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