
SupervisoryControl ofModular Systems

withGlobal SpecificationLanguages

J. Komenda aJ.H. van Schuppen bB. Gaudin cH. Marchand d

aInstitute of Mathematics, Czech Academy of Sciences, Brno Branch, Zizkova 22, 616 62 Brno, Czech Republic

bCWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

cSystem Research Group, School of Computer Science and Informatics, UCD Belfield, Dublin 4, Ireland.

dIRISA/INRIA Rennes, Campus universitaire de Rennes 1, 35042 Rennes, France

Abstract

The paper presents sufficient conditions for modular (supervisory) control synthesis to equal global control synthesis. In
modular control synthesis a supervisory control is synthesized for each module separately and the supervisory control consists
of the parallel composition of the modular supervisory controls. The general case of the specification that is indecomposable
and not necessarily contained in the plant language, which is often the case in practice, is considered. The usual assumption
that all shared events are controllable is relaxed by introducing two new structural conditions relying on the global mutual
controllability condition. The novel concept used as a sufficient structural condition is strong global mutual controllability. The
main result uses a weaker condition called global mutual controllability together with local consistency of the specification.
An example illustrates the approach.

Key words: Modular control of discrete-event systems; Partial controllability; Global mutual controllability; Supremal
controllable sublanguages

1 Introduction

In this paper supervisory control synthesis of modu-
lar discrete-event systems (DES; also called concurrent
DES) is studied. DES represented by finite automata
have been introduced by P.J. Ramadge and W.M. Won-
ham (see e.g. [11]). Large-scale modular DES are typ-
ically composed of a large number of relatively small
(in size) local DES that run concurrently (in parallel).
The global system is formed as a synchronous product of
these local components with synchronization on shared
actions.

The goal of the supervisory control is to impose a prop-
erty on the system by running another automaton (su-
pervisor) in parallel with the original plant so that the
specification given by a specification language or its au-
tomaton is met. One of the key issues in supervisory con-

Email addresses: komenda@ipm.cz (J. Komenda),
J.H.van.Schuppen@cwi.nl (J.H. van Schuppen),
benoit.gaudin@ucd.ie (B. Gaudin),
herve.marchand@irisa.fr (H. Marchand).

trol synthesis is the computation of the supremal con-
trollable sublanguage of the specification language, from
which the supervisor can be constructed. For modular
DES it is very much welcome if the supremal control-
lable sublanguage can be computed without building the
global plant since this computation may not be feasible
because of the complexity of the system. In [12] and [3]
quite a restrictive condition is imposed on events shared
by several local alphabets: they must be controllable for
all subsystems for modular (local) control synthesis to
yield the same optimal solution as global control syn-
thesis. This assumption has been generalized in [13] to
the condition that the shared events must have the same
control status for all subsystems that share a particu-
lar event. This rather general assumption together with
general specification languages for the global plant (i.e.
those that are not decomposable into local specification
languages) are considered in this paper. The more dif-
ficult case of global (indecomposable) specification lan-
guages has been first considered in [3] under the condi-
tions that all shared events are controllable. In this paper
this condition is weakened to that used in [13] using a
new concept of global mutual controllability, which can

Preprint submitted to Automatica 29 August 2007

Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-18 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic

be viewed as a natural counterpart of mutual control-
lability when dealing with general global specification
languages.

In this paper we face moreover the problem of indecom-
posable specification languages, i.e. we do not have lo-
cal specification languages. Nevertheless, as is shown in
[3], it is still possible to exploit the modular structure of
the plant and to avoid the manipulation with the global
plant. On the other hand, the solution proposed in [3] re-
lies on a structural condition, where all shared events are
required to be controllable for all subsystems that share
a particular event. We want to weaken this condition,
while still preserving the possibility of ”local” computa-
tion, i.e. without having to manipulate with the global
plant language. Thus, the main scope of the paper is to
generalize the results of [3] in two directions: 1) leave
out the structural condition that all shared events are
controllable and 2) leave out the restriction on the inde-
composable specification by finding a new structural (in-
volving only plant languages, i.e. specification indepen-
dent) condition under which the methodology proposed
in [3] can still be applied. Since it turns out that our new
structural condition is too strong, we take finally a com-
bination of a weaker structural condition together with
a specification dependent condition used previously in
[3]. A preliminary version of our results based on coalge-
braic approach of [10] has appeared in [6]. Since dealing
with global specification languages is in itself a difficult
problem, our attention is restricted to modular control
synthesis without blocking consideration as the blocking
issue would pose even more difficulties.

In Section 2 basic notions and concepts of supervisory
control theory are recalled. Section 3 is devoted to the
presentation and motivation of the main problem stud-
ied in this paper. Section 4 is devoted to our main results.
Two novel sufficient conditions (a specification depen-
dent and a structural one) are presented under which
optimal modular control synthesis with complete obser-
vations is possible without building the global plant and
without a loss of global optimality. At the end of Section
4 an example is given to illustrate our main results. In
conclusion we point out possible extensions of our work.

2 Notation and Problem Statement

This paper follows the standard notation of supervisory
control, e.g. the book [2]. DES are modelled as deter-
ministic generators that are finite automata with par-
tial transition functions. A (deterministic) generator G
over an event set A is G = (Q, A, f, q0), where Q is the
state set, A is the event set, f : Q × A → Q is the par-
tial transition function, and q0 ∈ Q is the initial state.
The marked states are not considered in this paper. If a
transition is defined then this is denoted by f(q, a)! The
transition function f can be extended to f : Q×A∗ → Q
by induction in the standard way. The behaviors of DES

generators are defined in terms of languages (subsets of
the free monoid of the words A∗). The prefix closure
prefix(L) of a language L is the set of all prefixes of all
its words. A language L ⊆ A∗ is said to be prefix-closed
if L = prefix(L). Recall that the language of the gener-
ator is L(G) = {s ∈ A∗|f(q0, s)!}.

A controlled generator is a structure (G, Ac, Γc), where
G is a generator, Ac ⊆ A is the subset of controllable
events, Au = A\Ac is the subset of uncontrollable events,
and Γc = {γ ⊆ A|Au ⊆ γ}, is called the set of control
patterns. A control supervisor for the controlled gener-
ator is a map g : L(G) → Γc. The closed-loop system
associated with a controlled generator and a supervi-
sor as denoted above is defined as the smallest language
L(S/G) ⊆ A∗ which satisfies

(1) ǫ ∈ L(S/G),

(2) if s ∈ L(S/G), sa ∈ L(G) and a ∈ g(s) then

sa ∈ L(S/G).

Note that at the automata level the supervision is im-
plemented by a parallel composition of the plant and
the supervisor. We only need to ensure that a supervisor
never disables uncontrollable events, which can be made
by adding selfloops of uncontrollable events around all
states of the supervisor. Otherwise stated, the active
event set of any state s of a supervisor (that corresponds
exactly to the control patern g(s) above) always contains
all uncontrollable events.

It is very well known that not every specification lan-
guage can be achieved by a supervisory controller [11].
Recall the basic definition of controllability that is
needed for a specification language K to be exactly
achieved by a supervisory controller.

Definition 2.1 (Controllability) Let L be a prefix-
closed language over an alphabet A and let Au ⊆ A. A
(specification) language K ⊆ A∗ is said to be controllable
with respect to L and Au, if prefix(K)Au∩L ⊆ prefix(K).

Since the blocking issue is not addressed in this paper,
only prefix-closed languages are considered in the paper.
This is a standard assumption if only safety issues are
studied, which are most often the issues under considera-
tion, i.e. the controlled behavior must be included in the
specification language. The goal is to find a supervisor V
such that L(V/G) = K. Such a supervisor exists if and
only if the specification language K is controllable. This
is why for specifications that are not controllable supre-
mal controllable sublanguages of K are considered. The
notation sup C(K, L, Au) is chosen for supremal control-
lable sublanguage of K with respect to L and Au. This
language always exists and corresponds to the union of
all controllable sublanguages (see e.g [2]).

Modular DES (also called concurrent DES) are DES
with the particular structure of the global plant that

2

is formed by the synchronous product of local subsys-
tems. For this purpose, for any integer n ∈ N, Zn =
{1, 2, . . . , n} denotes the set of the first n natural num-
bers.

Definition 2.2 A modular discrete-event system with
n ∈ Z modules is defined as the synchronous product
G = ‖n

i=1
Gi of the local generators Gi, where ‖ denotes

the classical parallel composition (see e.g [2] for more
details).

A denotes ∪n
i=1

Ai and Pi denotes the natural projection
from A to Ai: Pi : A∗ → A∗

i . The concept of inverse
projection P−1

i : Pwr(A∗
i) → Pwr(A∗) is also used. If

for all i ∈ Zn, Li represents a language of Gi, then the
parallel composition of these languages is defined by

‖i Li =
⋂

i

P−1

i (Li). (1)

It is known (e.g. [2]) that L(G1‖G2) = L(G1)||L(G2).

3 Modular Systems

In this section the concurrent behavior of local sub-
plants {Gi, i ∈ Zn} is considered. Consider the local al-
phabets of these sub-plants, {Ai, i ∈ Zn}, which are not
necessarily pairwise disjoint. For all i ∈ Zn, Ai is the
union of local controllable and local uncontrollable set
of events, Ai = Aiu ∪ Aic.

For such modular systems there is an important struc-
tural condition that concerns the controllability status
of events shared among the local sub-plants. It requires
that the events shared by two or more local sub-plants
must have the same controllability status in all these
sub-plants. The following assumption stems from [13],
where it was originally introduced.

The local sub-plants {Gi, i ∈ Zn} agree on the control-
lability of their shared events if

Aiu ∩ Aj = Ai ∩ Aju, ∀i, j ∈ Zn, i 6= j. (2)

In the following it will be assumed that the local sub-
plants satisfy (2). The set of controllable events of the
global plant is denoted Ac = ∪n

i=1
Aic. Equation (2) im-

plies that for all i ∈ Zn, Aic = Ac∩Ai. Also, if we denote
A = ∪n

i=1
Ai and Au = ∪n

i=1
Aiu then we still have the

disjoint union A = Ac ∪ Au.

The concept of decomposability is defined using the syn-
chronous product of languages:

Definition 3.1 ([12]) L ⊆ A∗ is decomposable with re-
spect to {Pi, i ∈ Zn} if there exist {Li ⊆ A∗

i , i ∈ Zn}

such that

L =‖n
i=1

Li =

n⋂

i=1

P−1

i (Li) (3)

Since we consider modular plants, the global plant lan-
guage L is decomposable into local plant languages:
L =‖n

i=1
Li.

In modular supervisory control of DES the concur-
rent behavior of the local sub-plants (finite automata)
G1, . . . , Gn is considered. Although the computational
complexity of the algorithm for supremal controllable
sublanguages is satisfactory (unlike several other prob-
lems of supervisory control), in the case of large modular
DES there is an exponential blow up of the computa-
tional complexity in terms of the number of local com-
ponents. In order to cope with this issue, the modular
structure should be exploited [13].

4 Supremal Controllable Sublanguages of Gen-
eral Specification Languages.

The global plant and the specification languages are re-
spectively denoted by L and K. Unlike the global spec-
ification language K, the global plant language L is not
given explicitly, but only through local plant languages:
L = L1 ‖ · · · ‖ Ln = ∩n

i=1
P−1

i (Li) (note that the Li may
have different alphabets). In most of the publications on
this topic, K is similarly decomposable into local speci-
fication languages and K ⊆ L. The general case is when
this condition is not satisfied. This case has been studied
in [3], where the assumption that all shared events are
controllable is used. It was shown that if K is a subset of
L, then local computations of the supremal controllable
sublanguage could be performed.

Instead of local specifications, languages Ki := K ∩
P−1

i (Li) are considered. These will play the role of local
components of specification languages, although their
alphabet is the global alphabet A. They can be viewed
as local over-approximations of K ∩ L, because clearly
K ∩ L = ∩n

i=1
Ki. However, it turns out that it is not in

most cases possible to compute simply the supremal con-
trollable sublanguages of Ki over P−1

i (Li) and then take
their intersection to obtain the most permissive super-
visor over the whole system. Instead, another approach
is proposed in [3] using the newly introduced concept of
partial controllability.

Definition 4.1 (partial controllability) A language
K ′ ⊆ K ⊆ L is said to be partially controllable with
respect to A′, A (with A′ ⊆ A), K, and L, if

(i) K ′ is controllable with respect to A′ and L;
(ii) K ′ is controllable with respect to A and K.

3

It is shown in [3] that the supremal partially controllable
sublanguage of K with respect to A′, A (with A′ ⊆ A),
K, and L, denoted by sup PC(K, A′, A, L), exists. Ac-
cording to [3] we know that sup PC(K, A′, A, L) always
exists and can be computed from the following formula:

sup PC(K, A′, A, L) = sup C(sup C(K, A′, L), A, K)

The concept, called G−controllability plays an impor-
tant role. We recall here that if L is a language over an
alphabet A and s ∈ A∗, then (L)s denotes the set of
suffixes t of s such that st ∈ L.

Definition 4.2 (G−controllability) A specification
language K is said to be G−controllable if ∀i ∈ Zn and
∀s ∈ Ki = K ∩P−1

i (Li), (Ki)s ∩A∗
u is controllable with

respect to (P−1

i (Li))s ∩ A∗
u and Aiu.

The notion of G−controllability 1 is important for
modular verification of controllability of global spec-
ification languages. Indeed, if a global specification
language turns out to be controllable, the whole pro-
cedure for synthesizing supremal controllable sublan-
guages that we present in the sequel can of course be
avoided. G−controllability is easy to verify, because
it is based on controllability of local languages. Since
G−controllability implies that all Ki, i ∈ Zn are par-
tially controllable with respect to Aiu, Au, P−1

i (Li) and
Ki, which in turn implies that K∩L is controllable with
respect to L and Au, the following Proposition holds
true.

Proposition 4.1 Assume that K is G−controllable and
assume that the local plants agree on the controllability
of their shared events. Then K ∩ L is controllable with
respect to L and Au, i.e. sup C(K ∩ L, L, Au) = K ∩ L.

This result offers an interesting and low complexity test
for controllability: in order to verify controllability of K∩
L, it is sufficient to check G−controllability,which can be
done without building the global plant, but using local
sub-plants only. In the rest of this paper constructive
conditions are provided. We need the following inductive
characterization of supremal controllable sublanguages
based on a formula from [1].

Proposition 4.2 For any (prefix-closed) language K ⊆
A∗ with K ⊆ L, the supremal controllable sublanguage
within K, denoted by sup C(K, L, Au), is characterized
by the following two conditions:

(i) ε ∈ supC(K, L, Au)
(ii) For s ∈ sup C(K, L, Au) and a ∈ A we have sa ∈

supC(K, L, Au) iff

sa ∈ K ∩ L and ∀u ∈ A∗
u : sau ∈ L ⇒ sau ∈ K

1 Note that the condition of G−controllability is stronger
than the condition of G−observability introduced in [3].

In this paper general specification languages are dealt
with. As mentioned above, the case where K 6⊆ L is of
great interest. In such a case, the specification to ensure
by means of control is actually K ∩ L. Because of the
complexity blow up associated to modular systems, the
computation of a recognizer for this language has to be
avoided.

We can use a structural condition similar to the mutual
controllability of [13]. Following the same idea as in the
case of decomposable specification [5] we introduce the
following concept:

Definition 4.3 Local plant languages {Li, i ∈ Zn}
are called strongly globally mutually controllable if
P−1

j (Lj)Au ∩ P−1

i (Li) ⊆ P−1

j (Lj), ∀i, j ∈ Zn, i 6= j.

Although the condition concerns languages P−1

i (Li)
over the global alphabet, these are easily derived from
the local plant languages Li and we still avoid building
the representation of the whole plant. We notice that
the recognizers of P−1

i (Li) are easily obtained from
the recognizers of Li by simply adding to all states the
self-loops of events that are not in Ai. Unlike a typical
situation in supervisory control, strong global mutual
controllability is a symmetric notion of controllability,
where it is not required that one language is a sub-
language of the other. Sufficient structural conditions
for modular control synthesis to equal global control
synthesis in the case of complete observations and of
indecomposable specifications are formulated below.

Theorem 4.3 Assume that {Li, i ∈ Zn} are strongly
globally mutually controllable and the local plants agree
on the controllability of their shared events. Then

supC(K∩L, L, Au) =

n⋂

i=1

sup PC(Ki, Aiu, Au, P−1

i (Li)).

(4)

Proof The proof by structural induction relies on the
inductive characterization of supremal controllable sub-
languages in Proposition 4.2. Since from the definitions
of the sup C and the sup PC operators it follows that
ε is in both sides of equality (4), the base step of the
structural induction is obvious.
(i) For the ”⊇” inclusion, see [3], where the assumption
that all shared events are controllable is not needed for
this inclusion.
(ii) Now show the inclusion ”⊆”. Assume that for s ∈ A∗

we have s ∈ sup C(K ∩ L, L, Au) ⇒
s ∈

⋂n

i=1
supPC(Ki, Aiu, Au, P−1

i (Li)). We show that
the implication remains true for sa with arbitrary
a ∈ A. If for a ∈ A we have sa ∈ sup C(K ∩ L, L, Au)
then it follows from Proposition 4.2 (with K re-
placed by K ∩ L) that sa ∈ K ∩ L and ∀u ∈ A∗

u :
sau ∈ L ⇒ sau ∈ K ∩ L. We need to show that

4

sa ∈ ∩n
i=1

sup C(sup C(Ki, Aiu, P−1

i (Li)), Au, Ki), i.e.

∀i ∈ Zn : sa ∈ sup C(sup C(Ki, Aiu, P−1

i (Li)), Au, Ki).

According to inductive characterization of the outer
supremal controllable sublanguage (cf. Proposition 4.2),
we need to show that ∀i ∈ Zn : sa ∈ Ki,
sa ∈ sup C(Ki, Aiu, P−1

i (Li)) and ∀u ∈ A∗
u :

sau ∈ Ki ⇒ sau ∈ sup C(Ki, Aiu, P−1

i (Li)). Accord-
ing to Proposition 4.2 applied to the inner supremal
controllable sublanguage this amounts to show also
that sau ∈ Ki implies sau ∈ P−1

i (Li) and ∀v ∈ A∗
iu :

sauv ∈ P−1

i (Li) ⇒ sauv ∈ Ki.

The first claim is obvious from (K ∩ L) =
⋂n

i=1
Ki:

sa ∈ K ∩ L implies that ∀i ∈ Zn : sa ∈ Ki. The
second claim is more difficult to show. Note that
sa ∈ sup C(Ki, Aiu, P−1

i (Li)) is a special case of
the claim ∀u ∈ A∗

u : sau ∈ (Ki) ⇒ sau ∈
sup C(Ki, Aiu, P−1

i (Li)) for u = ε.

Let sau ∈ Ki for a u ∈ A∗
u. We need to show that

sau ∈ sup C(Ki, Aiu, P−1

i (Li)), which according to
Proposition 4.2 applied to the inner supremal con-
trollable sublanguage means that sau ∈ P−1

i (Li),
sau ∈ Ki (trivially satisfied) and ∀v ∈ A∗

iu :
sauv ∈ P−1

i (Li) ⇒ sauv ∈ Ki. First of all,

sau ∈ P−1

i (Li) is obvious from sau ∈ Ki, because

∀i : Ki ⊆ P−1

i (Li). Let us show that ∀u ∈ A∗
u and

∀v ∈ A∗
iu : sauv ∈ P−1

i (Li) ⇒ sauv ∈ Ki. For
this implication strong global mutual controllability
is used. Let sauv ∈ P−1

i (Li) for some u ∈ A∗
u and

v ∈ A∗
iu. Since uv ∈ A∗

u we obtain that uv = v1 . . . vk

for some k ∈ N, where vi ∈ Au, i ∈ Zk. Now we
proceed by induction along the string v. Accord-
ing to strong global mutual controllability we ob-
tain sav1 ∈ P−1

j (Lj)(Au) ∩ P−1

i (Li) ⊆ P−1

j (Lj).

Thus, sav1 ∈ L = ∩n
i=1

P−1

i (Li). Similar argu-
ment is made for any vl, l ∈ Zk. Thus, we ob-
tain after an inductive application of the same ar-
gument that sauv = av1 . . . vk ∈ L. Recall that
uv ∈ A∗

u. A direct application of the assumption that
sa ∈ sup C(K ∩ L, L, Au) now yields sauv ∈ K ∩ L,
which means that sauv ∈ K ∩ L = ∩n

i=1
K ∩ P−1

i (Li),

i.e. ∀i ∈ Zn : we have sauv ∈ Ki = K ∩ P−1

i (Li), which
was to be shown. �

The last theorem provides a structural condition under
which supremal controllable sublanguages can be com-
puted without having to build the global plant. Moreover
as a structural condition, it does not depend on a par-
ticular specification, which is very important for inde-
composable specifications. Interestingly we notice that
strong global mutual controllability is equivalent to a
seemingly weaker condition, where Au is replaced by lo-
cal uncontrollable events Aju.

Proposition 4.4 Assume that the local plants agree

on the controllability of their shared events, then strong
global mutual controllability is equivalent to the following
property:

P−1

j (Lj)Aju ∩ P−1

i (Li) ⊆ P−1

j (Lj), ∀i, j ∈ Zn, i 6= j.

(5)

Proof Note that the only difference is that Au in strong
global mutual controllability (SGMC) is replaced by
Aju. Therefore the new property is clearly weaker than
SGMC. Surprisingly the converse implication is satis-
fied as well. Let condition (5) holds true. We show that
SGMC holds true as well. s ∈ P−1

j (Lj), u ∈ Au, and

su ∈ P−1

i (Li). Then we have two cases: either u ∈ Aj

or u 6∈ Aj . The former case entails that u ∈ Aju due
to shared event controllability status assumption. Us-
ing (5) we conclude su ∈ P−1

j (Lj). In the latter case

we notice that Pj(u) = ε, i.e. Pj(su) = Pj(s), hence

Pj(su) ∈ Lj and s ∈ P−1

j (Lj). Thus SGMC holds. �

In spite of Proposition 4.4, the condition of strong global
mutual controllability is restrictive. This condition in-
deed implies that whatever the sequence s of Lj ‖ Li,
any event of Aju, which is not shared by Ai, must be

eligible after s. This is due to the fact that P−1

i (Li) al-
ways allows such uncontrollable events from being trig-
gered. In the sequel, we thus adopt a weaker condition
than strong global mutual controllability. Nevertheless,
it turns out that we need moreover a specification de-
pendent condition from [3]. We obtain a combined, more
elaborate, approach and use the condition of local con-
sistency together with the much weaker notion of global
mutual controllability similar to mutual controllability
[13]. Very recently it was shown in [7] that global mutual
controllability is equivalent to to mutual controllability
of [13]. However the formulation below simplifies its us-
age in the proof of Theorem 4.5.

Definition 4.4 (Global mutual controllability)
Local plant languages {Li, i ∈ Zn} are called globally
mutually controllable if ∀i, j ∈ Zn, i 6= j

P−1

j (Lj)(Aju ∩ Ai) ∩ P−1

i (Li) ⊆ P−1

j (Lj).

Without any structural condition on the system, a con-
dition called local consistency is required in [3] to ensure
a modular computation of the supervisor. It should not
be surprising that the same condition appears in our set-
ting.

Definition 4.5 (Local consistency) A global specifi-
cation K is said to be locally consistent with respect
to Au and Li, i ∈ Zn if for any i ∈ Zn we have:
∀s ∈ Ki and ∀u ∈ A∗

u such that su ∈ Ki and ∀v ∈ A∗
iu:

sPi(u)v ∈ Ki and suv ∈ P−1

i (Li) ⇒ suv ∈ Ki.

5

We show that the only condition that is moreover re-
quired to make our method work in the presence of
shared uncontrollable events is the quite weak structural
condition of mutual controllability. The main result of
this paper is given by Theorem 4.5. It provides sufficient
conditions for modular control synthesis to equal global
control synthesis in the case of complete observations
and indecomposable specifications.

Theorem 4.5 Assume that K is locally consistent with
respect to Au and Li, i ∈ Zn; {Li, i ∈ Zn} are globally
mutually controllable; and the local plants agree on the
controllability of their shared events. Then

sup C(K∩L, L, Au) =
n⋂

i=1

sup PC(Ki, Aiu, Au, P−1

i (Li)).

(6)

Proof For the ”⊇” inclusion, see [3]. It remains to show
the opposite inclusion. Let sa ∈ sup C(K ∩ L, L, Au)
for a ∈ A. It follows from the inductive char-
acterization of the supremal controllable sublan-
guage that sa ∈ K ∩ L, sa ∈ L, and ∀u ∈ A∗

u :
sau ∈ L ⇒ sau ∈ K ∩ L. We need to show
that sa ∈

⋂n

i=1
sup PC(Ki, Aiu, Au, P−1

i Li), i.e. that

∀i ∈ Zn : sa ∈ sup PC(Ki, Aiu, Au, P−1

i Li). The
proof follows the same lines as (ii) of the proof of
the theorem 4.3. Therefore we only need to show
the part, where strong global mutual controlla-
bility is used. Let us show that ∀u ∈ A∗

u and
∀v ∈ A∗

iu : sauv ∈ P−1

i (Li) ⇒ sauv ∈ Ki. For
this implication global mutual controllability and local
consistency are used (instead of strong global mutual
controllability).

Let sauv ∈ P−1

i (Li) for some u ∈ A∗
u and v ∈ A∗

iu. Then

saPi(u)v ∈ P−1

i (Li) as well, because Pi(saPi(u)v) =
Pi(sauv). Since Pi(u)v ∈ A∗

iu we obtain after exclud-
ing the trivial case Pi(u)v = ε that Pi(u)v = v1 . . . vk

for some k ∈ N, where vi ∈ Aiu, i ∈ Zk. Now we pro-
ceed by induction along the string Pi(u)v. We know that
Pi(u)v ∈ A∗

iu. For any j ∈ Zn : j 6= i we have accord-
ing to our assumption that Aiu ∩ Aj = Ai ∩ Aju two
possibilities: either v1 ∈ Aju and then v1 ∈ Aiu ∩ Aj

or v1 6∈ Aj . The case v1 6∈ Aj is easy, because then
Pj(v1) = ε, i.e. Pj(sav1) = Pj(sa). Since sa ∈ L we have

also sa ∈ P−1

j (Lj), thus sav1 ∈ P−1

j (Lj) as well.

If v1 ∈ Aiu∩Aj , then according to global mutual control-

lability we obtain sav1 ∈ P−1

j (Lj)(Aju∩Ai)∩P−1

i (Li) ⊆

P−1

j (Lj). Thus, in both cases sav1 ∈ L = ∩n
i=1

P−1

i (Li).
Similar construction is made for any vm, m ∈ Zk, where
cases vm ∈ Aju and vm 6∈ Aj are distinguished. Thus,
we obtain after an inductive application of the same ar-
gument along the string Pi(u)v ∈ A∗

iu that saPi(u)v =
sav1 . . . vk ∈ L. Notice that in particular Pi(u)v ∈ A∗

u. A

direct application of the assumption that sa ∈ sup C(K∩
L, L, Au) now yields saPi(u)v ∈ K ∩ L = ∩n

i=1
K ∩

P−1

i (Li), i.e. saPi(u)v ∈ Ki = K ∩ P−1

i (Li). Let us re-

call that sauv ∈ P−1

i (Li). This implies using local con-
sistency with sa playing the role of s in definition 4.5
that sauv ∈ Ki. Therefore ∀i ∈ Zn : we have sauv ∈ Ki,
which was to be shown. �

Note that the sufficient conditions of Theorems 4.3 and
4.5 are not comparable in general, only global mutual
controllability is clearly weaker than strong global mu-
tual controllability. Finally we mention that all sufficient
conditions we have presented are checkable in polyno-
mial time and moreover in size of local systems and the
specification. We now present an example illustrating
Theorem 4.5.

Example 1 In this example, the system G un-
der consideration is a modular DES which con-
sists of two subsystems G1 and G2. G1 and G2 are
represented in Figure 1. Moreover, for i = 1, 2,
Σi = {ai, a

′
i, bi, c, d, s1, s2, s3, u, u’, ui} represents the

alphabet of Gi, with Σi,u = {u, u’, ui}. The set of shared
events corresponds to Σs = {c, d, s1, s2, s3, u, u’}.

u2

s2s1

s3
c

b1
a1

u’

a2
b2

o

1 2

d
u

s2s1

s3
c u’

o

1 2

d

u1
u

5 4 45

33

Fig. 1. Subsystems G1 and G2

Subsystems G1 and G2 interact as follows. For i = 1, 2,
there is an initialization phase which makes G1 (resp.
G2) evolve from its initial state triggering a1 or b1 (resp.
a2 or a′

2
or b2). Once this initialization phase is done, the

subsystems communicate by means of synchronization
events (sj)1≤j≤3, but system G1 can evolve independently
from state 1 to state 2 by occurrence of a′

1
. Then both

subsystems reach their state number 3, in which event
c can occur so that each Gi enters into its initial state
again. But it may happen that an uncontrollable event
u, triggered by the environment, occurs at state 3. Each
subsystem enters then into its state 4. In this state, either
the subsystems are allowed to synchronize with each other
triggering event d, or event u’ occurs so that each Gi

enters into its initial state again. If d occurs, then each
Gi waits for ui to be triggered. Since ui is the only event
which permits G to evolve from state 5, it is assumed to
be uncontrollable. This ensures indeed that state 5 cannot
be a deadlock state due to the action of a supervisor.

In this example, the specification language K, is given

6

in Figure 2 2 . This specification aims at ensuring sev-
eral properties. The first one is to avoid a blocking due
to the initialization phases of each subsystem. Let us in-
deed imagine that from the initial states, b1 and a2 are
triggered. In this case, G1 and G2 respectively enter into
states 2 and 1. The global system is then in a deadlock
state. Control specification K ensures that if b1 (resp. a2

or a′
2
) is triggered then neither a2 nor a′

2
(resp. b1) can be

triggered. Although there would not be any blocking issue,
the control specification also ensures that if a1 (resp. b2)
is triggered then b1 (resp. a1) can not be triggered. More-
over, K ensures two other properties: not only u must
not be triggered if s2 occurs, but also u1 and u2 must not
occur if s1 is triggered.

0 A | {b1,b2,a1,a2,a’2}

2

b2,b1

1

a2,a’2,a1

A | {b1,b2,a1,a2,a’2}

3

b2,b1

A | {b1,b2,a1,a2,a’2}

a2,a’2,a1

4

u’

A | {u1,u’,u2}

s1

A | {s1,s2}

5

s2

A | {u}

Fig. 2. Control specification K

The sup PC function, as well as an algorithm to check
for Global Mutual Controllability and Local Consistency
were implemented into a prototype called SynTool. The
system under consideration here is actually Globally Mu-
tually Controllable, and the control objective is Locally
Consistent according to G and Σu. The model of
sup PC(K1, Σ1,u, Σ1, P

−1

1
(G1)) is given in Figure 3 (the

one of sup PC(K2, Σ2,u, Σ2, P
−1

2
(G2)) as a similar struc-

ture and is not represented). According to theorem 4.7,
the synchronous execution of these two systems with G
exactly achieves the most permissive controllable behav-
ior included into K.

5 Conclusion

New methods for modular computation of supremal
controllable sublanguages of indecomposable specifi-
cation languages have been presented. The principle
of the proofs presented here is much simpler than the
one introduced in [6]. All the sufficient conditions we
have presented can be checked in polynomial time in
the number of states of each subsystem and the num-
ber of subsystems. Because each subsystem is usually
exponentially smaller than the global system, so is the
complexity of our approach compared to the usual one.
The structural condition of strong global mutual con-
trollability has been introduced and no conditions are

2 Note that on this figure, A actually denotes Σ1 ∪ Σ2 and
that | denotes the set difference operator \.

0,0 a’2, u2

1,1

a1

2,2

b1

0,1

a2

0,2

b2

5,1 a’2, u2

5,3

a2

u1

b2, a’2, a2, u2

1,3

u1

a’2, u2

a2

2,1

a’1

3,1

s1

3,3 b2, a’2, a2, u2

4,3

u

0,3

c

d

b2, a’2, a2, u2

u’

b2, a’2, a2, u2

a1

2,3

b1b2, a’2, a2, u2

a’1

3,4

s1 s3

b2, a’2, a2, u2

s3

a2

a’2, u2

s2

a2

a’2, u2

c4,1

u

b2, a’2, a2

4,4

u

0,4

c

u’

b2, a’2, a2b2, a’2, a2

1,4

a1

2,4

b1

1,2

b2

a’2, u2

a’1

3,2

s1

b2

s3

a’2, u2

s2

b2

a’2, u2

c4,2

u

s1

b2, a’2, a2

a’1

s2

s3

b2, a’2, a2

a2

a1

a’2, u2

d a2u’

a’2, u2

b2

b1

a’2, u2

b2 u’

a’2, u2

5,2

d

b2

u1

a’2, u2

Fig. 3. supPC(K1, Σ1,u, Σ1, P
−1

1
(G1))

required on the specification for a modular approach to
be effective. However, this condition is quite restrictive,
and our main result provides a weaker version, called
global mutual controllability. Thanks to this condition
a modular approach can still be applied, provided that
the specification fulfills some requirements.

A natural continuation of this paper would be to find a
partial controllability counterpart for partially observed
discrete-event systems. It is not yet clear at this point
what the right concept to be called partial normality
should be. However, in any case it seems promising to
investigate an iteration process which can achieve supre-
mal controllable and normal sublanguage by alterating
supremal partially controllable sublanguages and supre-
mal normal sublanguages built only using local plant
languages. Note that since the control synthesis of par-
tially observed DES suffers from exponential worst-case
complexity it is all the more important to find modu-
lar methods that can make supervisory control of large
scale and partially observed DES at least in some cases
feasible.

7

References

[1] R. D. Brandt, V. K. Garg, R. Kumar, F. Lin, S. I. Marcus
and W. M. Wonham, Formulas for Calculating Supremal
and Normal Sublanguages, Systems and Control Letters,
15(8)–111–117. 1990.

[2] S.G. Cassandras and S. Lafortune. Introduction to
Discrete Event Systems, Kluwer Academic Publishers,
Dordrecht 1999.

[3] B. Gaudin and H. Marchand. Modular Supervisory
Control of a Class of Concurrent Discrete Event Systems.
Proceedings WODES’04, Workshop on Discrete-Event
Systems, pp. 181-186, Reims, September 22-24, 2004.

[4] J. Komenda and J.H. van Schuppen: Control of
Discrete-Event Systems with Partial Observations Using
Coalgebra and Coinduction. Discrete Event Dynamical
Systems: Theory and Applications 15(3), 257-315, 2005.

[5] J. Komenda and J.H. van Schuppen. Supremal Normal
Sublanguages of Large Distributed Discrete-Event
Systems. Workshop on Discrete-Event Systems, pp. 73-
78, Reims, September 22-24, 2004.

[6] J. Komenda, J. H. van Schuppen, B. Gaudin, H.
Marchand. Modular Supervisory Control with General
Indecomposable Specification Languages. Proceedings of
Joint 44th IEEE Conference on Decision and Control and
European Control Conference, Sevilla, 12-15.12, 2005.

[7] J. Komenda and J.H. van Schuppen. Structural control
of concurrent DES. To appear in Proceedings of MSR
2007 (Modélisation des Systèmes Réactifs), ENS Lyon,
Editions Hermes, Paris, October 2007.

[8] F. Lin and W.M. Wonham. Decentralized Supervisory
Control of Discrete-Event Systems, Information Sciences
44:199-224, 1988.

[9] K. Rohloff and S. Lafortune. On the Computational
Complexity of the Verification of Modular Discrete-
Event Systems. In Proc. 41 st IEEE Conference
on Decision and Control, Las Vegas, Nevada, USA,
December 2002.

[10] J.J.M.M. Rutten. Coalgebra, Concurrency, and Control.
Research Report CWI, SEN-R9921, Amsterdam,
November 1999.

[11] P.J. Ramadge and W.M. Wonham. The Control of
Discrete-Event Systems. Proc. IEEE, 77:81-98, 1989.

[12] Y. Willner and M. Heymann. Supervisory Control
of Concurrent Discrete-Event Systems. International
Journal of Control, 54:1143-1166, 1991.

[13] K.C. Wong and S. Lee. Structural Decentralized Control
of Concurrent Discrete-Event Systems. European
Journal of Control, 8:477-491, 2002.

[14] K.C. Wong and W.M. Wonham. Modular Control and
Coordination of Discrete-Event Systems. Discrete Event
Dynamical Systems: Theory and Applications, 8:247-297,
1998.

[15] W.M. Wonham and P.J. Ramadge. Modular Supervisory
Control of Discrete-Event Processes, Mathematics of
Control, Signal and Systems, 1:13-30, 1988.

Jan Komenda received a M.Sc. degree in mathemat-
ics from the Masaryk University (Brno), Czech Repub-
lic, in 1994, and was awarded a Ph.D. degree in control

and computer science from Université de Franche-Comté
(Besançon), France in 1999. He worked at CWI Ams-
terdam (The Netherlands) in 2001-2003 in the group of
J.H. van Schuppen. He is researcher at the Institute of
Mathematics, Czech Academy of Sciences, branch Brno,
Czech Republic. His research interests are in supervisory
control of logical and timed discrete event systems using
methods of coalgebra and idempotent algebra.

Jan van Schuppen is affiliated with the research in-
stitute Centrum voor Wiskunde en Informatica (CWI)
in Amsterdam, The Netherlands and, in a part-time af-
filiation for one day a week, with the Department of
Mathematics of the Vrije Universiteit in Amsterdam. He
has studied at the Department of Applied Physics of
Delft University of Technology and was awarded a Ph.D.
diploma by the Department of Electrical Engineering
and Computer Science of the University of California
at Berkeley, CA, U.S.A. in 1973 where his research ad-
visor was Pravin Varaiya. Van Schuppen’s research in-
terests include control of discrete-event systems and of
hybrid systems, stochastic control, realization, and sys-
tem identification. In discrete-event systems his inter-
ests are primarily: system theory, the use of coalgebra,
decentralized control, and control and diagnosis of asyn-
chronous systems. In applied research his interests in-
clude engineering problems of control of motorway traf-
fic, of communication networks, and modeling, identi-
fication, and control in the life sciences. He is Editor-
in-Chief of the journal Mathematics of Control, Signals,
and Systems, and was Department Editor of the journal
Discrete Event Dynamic Systems.

Benôıt Gaudin graduated in mathematics in 1999 and
received a Ph.D degree in computer science in 2004,
both from the University Rennes 1. From October 2004
to August 2005, he held a research and teaching posi-
tion in the University of Rennes. From September 2005
to May 2006, he was a postdoctoral researcher in the
FOKUS Fraunhofer institute of Berlin. Since June 2006,
Dr Gaudin has been a postdoctoral researcher in Uni-
versity College Dublin. His research interests focus on
the control of Discrete Event Systems and graph visual-
ization.

Hervé Marchand received the master’s degree in
mathematics from Université de Rennes 1 in 1993 and
a Ph.D degree in computer science from the Univer-
sity of Rennes 1 in October 1997. From November
1997-October 1998, he was a Postdoctoral fellow at the
University of Michigan, Ann Arbor, MI. Since 1998, he
holds an INRIA research position at IRISA in Rennes
in the VerTeCs project. His research interests include
Supervisory Control, automatic test generation and
diagnosis of Discrete Events Systems. He is also inter-
ested in high-level languages for reactive and real-time
systems programming.

8

