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Abstract

The article introduces a new mechanism for selecting individuals to

a Pareto archive. It was combined with a micro-genetic algorithm and

tested on several problems. The ability of this approach to produce indi-

viduals uniformly distributed along the Pareto set without negative im-

pact on convergence is demonstrated on presented results. The new con-

cept was confronted with NSGA-II, SPEA2, and IBEA algorithms from

the PISA package. Another studied effect is the size of population versus

number of generations for small populations.

Keywords: multi-objective optimization; micro-genetic algorithms; di-

versity preserving; Pareto archive; selection to archive
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1 Introduction

The field of multiobjective design optimization has evolved very fast during last

years, reflecting the need of solving tasks with several conflicting criteria, which

is common in practical problems. From the mathematical point of view, this

corresponds to minimization/maximization of a vector-valued function, which

rarely leads to a single solution. Consequently, a whole hyperplane of trade-off

solutions, called Pareto-optimal set, is expected as the result instead of a single

optimum.

A number of algorithms have been presented that generate a set of solutions

approximating this hyperplane. The quality of the approximation is usually

considered from two points of view: (i) the closeness to the exact trade-off

surface and (ii) its distribution. The former is related to convergence properties

of an algorithm while the latter describes its ability to maintain diversity. An

ideal algorithm should produce well converged solutions perfectly distributed

along the Pareto front. However, these requirements are conflicting, and many

current approaches concentrates on one of them finding reasonable compromise

in the other.

In this study, our attention is focused on the second aspect of diversity of the

Pareto-optimal set, namely we present a new strategy for maintaining variety

of members of a Pareto archive.

The problem of maintaining uniform distribution at an affordable cost has

been addressed by many algorithms. It is known that the notion of crowding

distance proposed by Deb et al. for algorithm NSGA-II [5, 6] is not sufficient

to maintain diversity of the evolution for more than two objectives (e.g. [7, 8]).

On the other hand, SPEA2 by Zitzler et al. [18] is usually able to produce well

spread solutions even for three or more objectives. The concept of archiving

promising design vectors was first introduced for SPEA by Zitzler and Thiele
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[19]. Knowles and Corne presented the Pareto Archived Evolutionary Strategy

(PAES) [11] and proposed the adaptive grid algorithm ([12]) to maintain diver-

sity. However, it is difficult to keep the efficiency of this approach in cases with

more than three objectives.

The new mechanism presented in this paper was implemented in micro-

genetic algorithm µARMOGA proposed by Szöllös et al. [15], and results for

three standard three-objective benchmark problems are presented.

Our second aim is to investigate the effect of population size for small (some-

times called micro) populations on the performance of µARMOGA. It was re-

ported by Krishnakumar [13] for single-objective optimization and by Coello

and Pulido [3] for multiple objectives, that very small populations can lead to

fast convergence to the Pareto front. In this context, most experiments were

performed using populations of 4, 10 and 20 individuals.

Results got by µARMOGA equipped with the new archiving mechanism

are compared with those obtained by two leading methods in the field, namely

NSGA-II by Deb et al. [6] and SPEA2 by Zitzler et al. [18], and a recent inter-

esting algorithm IBEA by Zitzler and Künzli [17]. All these are implemented

in the Platform and Programming Language Independent Interface for Search

Algorithms (PISA) 1 [2]. PISA is an interesting open source package developed

by the team of Prof. E. Zitzler at ETH Zürich. The software implements various

selection, crossover, and mutation operators and objective function evaluations.

An important idea of the project is to separate the selection of promising candi-

dates from objective function evaluation, crossover and mutation and implement

these in two separate programs, interchanging information via formatted files.

These programs are called selectors and variators in the PISA context. There is

an increasing number of ready-to-use variators and selectors that can be down-

loaded from the web page of the PISA project. Therefore, the system offers
1http://www.tik.ee.ethz.ch/sop/pisa
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a simple way to produce fair comparisons of various selection schemes with the

same variator. While the described scheme of splitting an evolutionary algo-

rithm into two separate programs is very useful for some techniques, in our

opinion, it does not fit to algorithms with strong coupling between both stages

via the use of an archiving procedure. That is the reason why our implemen-

tation of µARMOGA was used, instead of integrating the proposed archiving

technique into the PISA framework.

Three metrics, measuring both convergence to the exact front and diversity

of the approximate set, are used for the comparison. It is observed, that the

new algorithm produces very good distribution of individuals outperforming in

this respect the other algorithms in many cases. The archiving strategy does

not seem to affect its convergence. Moreover, diversity is maintained in an

affordable way as suggested by presented numerical experiments.

The rest of the paper is organised as follows. In Section 2, µARMOGA is

recalled with an emphasis on its main aspects. Section 3 contains the main

contribution, which is the proposition of a new archiving mechanism. Tests and

comparisons with the other evolutionary techniques can be found in Section 4,

where we describe the test problems (4.1), metrics used for evaluating the per-

formance (4.2), detailed setting of particular algorithms (4.3), and organization

of the experiments (4.4), respectively. Our findings are discussed in detail in

Section 5, while Section 6 contains summary of the work and concluding re-

marks.
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2 µARMOGA – Multiobjective micro-genetic al-

gorithm with range adaptation: A Brief Intro-

duction

To minimize the costly evaluation of individuals, it is straightforward to see that

one way to go is to minimize their number. It is well known for evolutionary

practitioners, that using smaller populations and applying the evolutionary op-

erators many times is often more favourable than vice versa (e.g. [14]). This

idea can be brought to an extreme by using a micro-population (e.g. 4, 5, 10

individuals), what we really did when we utilized some ideas of Krishnakumar

[13] and of Coello and Pulido [3]. Krishnakumar came with the concept of

micro-genetic approach first, and used it for single-objective optimization. His

algorithm contained only selection and crossover operators, and no mutation

operator. Instead, the author introduced a reinitialization technique, which was

invoked once in a few generations to ensure diversity for the evolution. The

latter two researchers proposed a micro-genetic algorithm enabling to tackle

multi-objective problems. Their concept was similar to that of Krishnakumar,

i.e. it contained selection, crossover, and reinitialization operators supplemented

by a mutation operator. Both algorithms were verified on various test problems.

In both the cases, the micro-genetic variants converged to the optimum (Pareto-

front) much faster than their macrogenetic counterparts used for comparison.

In the approach by Szöllös [15], microgenetic algorithm is supplemented by

range adaptation and “knowledge-based” reinitializion procedure exploiting the

Pareto-archive to generate better individuals.

The concept of range adaptation was originally introduced by Arakawa and

Hagiwara [1], who used it with binary coding of the design variables. Its essence

lies in ability to promote the evolution towards promising regions of the design
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space via sophisticated manipulation with the population statistics. Due to

the coding, it contained some artificial parameters which were hard to guess in

general. Oyama [14] used range adaptation in real domain and was successful in

avoiding this drawback via encoding a design variable to a real number ri ∈ (0, 1)

defined by integration of the Gaussian distribution N(0, 1)

ri =
∫ epi

−∞
N(0, 1)(z)dz, (1)

where p̃i is linked to the original design variable pi by

pi = σi · p̃i + µi. (2)

We are using this encoding scheme too, with one important difference: Oyama

originally calculated the average µi and the standard deviation σi by sampling

the upper half of the population, which is justified as long as macro-populations

are used (e.g. with more than fifty individuals). But such approach would be

too restrictive in the case of microevolution, since the upper half of the microp-

opulation contains too little information to keep the diversity. Consequently,

the evolution quickly ends up in premature convergence. Thus, we calculate

both by taking into account the whole population.

“Knowledge based” reinitialization resulted from an attempt to use the mem-

bers of the Pareto-archive to get new members, superseding the old ones by

putting several of them into the reinitialized population. Moreover, only a sub-

set of the archive is considered. For instance, two archive members with extreme

values of two different objectives chosen randomly are usually exploited. In this

way, it is possible to further improve the whole archive by improving its subsets.

The functioning of µARMOGA can be seen in Figure 15. After initialization of

the population by Latin hypercube sampling (LHS) and evaluation depicted as

6



archive update, the evolution goes through selection, mating and mutation to

evaluation of the new population. Each n-th generation the population statistics

is updated, range-adaptation takes place, followed by knowledge based (elitist-

random) reinitialization. A thorough description of the algorithm is to be found

in [15].

Our approach contains two new system parameters: adaptation factor δ and

minimal standard deviation σmin. In short, µARMOGA strives to keep the evo-

lution in a permanently “excited” state via forced modification of the population

statistics. It practically means that the standard deviation is not allowed to fall

under certain minimal value of σmin for any design variable. This helps to pre-

vent the micro-genetic algorithm from getting stuck in premature convergence.

The role of the adaptation factor δ lies in controlling the frequency of range

adaptation: if reinitialization is necessary, and the new standard deviation of

a design variable is changed by more than δ · σold, where σold is the standard

deviation when the last reinitialization took place, then the range of that design

variable is adapted.

3 The archiving algorithm

Pareto archive is a key component of many evolutionary algorithms. It acts as

a collector of good individuals during the evolution, and is often used to give

the resulting Pareto front approximation at the end of the evolution. After new

individuals are evaluated, the archive is improved if these individuals dominate

or are non-dominated with respect to the existing individuals of the archive.

During reinitialization, the micro-genetic algorithm retrieves information from

the archive, using it to explore the promising regions of the search space.

Obviously, in any real setup we must limit the number of individuals stored

in an archive. This is necessary not just to keep the amount of information pro-
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cessed feasible, but also to get a good diversity of the resulting approximation.

In our strategy, we use a fixed upper limit on the number of individuals stored

in the archive. Ideally, we want to end up with a full archive of Pareto-optimal

solutions that is “well spread” over the true Pareto front of the problem. Our

approach is an archive dealing with a single new individual at a time. This is

particularly suitable for micro-evolutionary approaches, where we only have a

few new individuals from each generation.

When a new individual arrives, it is first checked for Pareto dominance with

all existing members of the archive. Now, we distinguish among three cases:

• The new individual is dominated by one or more members of the archive.

In this case, the new individual is discarded.

• The new individual dominates one or more members of the archive. The

dominated ones are removed, and the new individual is added to the

archive and the internal information of the archive is updated (see be-

low).

• The new individual is non-dominated and non-dominating. If the number

of members of the archive has not yet reached the upper limit, the new

individual is added as in the previous case. In the opposite case, we need

to discard at least one individual (either the newcomer or one from the

archive), but we can not decide this by Pareto dominance. In this case,

we proceed to the secondary decision procedure described below:

If we arrive at the case that can not be resolved by Pareto dominance, our

secondary goal is to maximize the distance between neighbouring individuals,

based on some distance-measure in the objective space. In this paper, we use

the standard Euclidean distance, which is meaningful for any dimension of the

objective space.
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First, we consider the minimum pairwise distance, i.e.,

min
i,j∈P
i 6=j

‖fi − fj‖, (3)

where P denotes the set of archived individuals and fi stands for the vector of

objective values of individual i. We take the pair of individuals that achieves

the minimum in the above expression. If there are multiple pairs, we take any

of them. Without the loss of generality, we assume that the minimum pair is

f1, f2. Further, we denote the vector of objective values of the new individual

as h. If

min
k∈P
k 6=1

‖fk − h‖ > ‖f1 − f2‖, (4)

we can replace f1 by h. Alternatively, if

min
k∈P
k 6=2

‖fk − h‖ > ‖f1 − f2‖, (5)

we can replace f2 by h. If either of the above conditions is satisfied, the overall

minimum pairwise distance will be improved by the substitution or, if there

were multiple minimal pairs, it will stay the same but the number of minimal

pairs will reduce. We call this as the global improvement check.

If neither of these conditions is satisfied, we consider the closest archived

individual to h, say, fc instead. If

min
k∈P
k 6=c

‖fk − h‖ > min
k∈P
k 6=c

‖fk − fc‖, (6)

we replace fc by h. If this condition holds, there is a certain subset of the

archived individuals whose pairwise minimum will improve. This is the local

improvement check.
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If neither check is successful, we discard the new individual.

Searching for the minimum-distance pair of the archive afresh each time an

individual is considered would be too costly. To make the procedure efficient, we

maintain for each archived individual a pointer to its closest neighbour (or any

of them). Therefore, searching for the pairwise minimum in (3) requires only

one pass through the archive. Similarly, the right-hand side of equation (6) is

simply the distance of fc to its closest neighbour. Hence, these two checks only

require computing the distances of the new individual to all archived individuals,

and computing the minima on left-hand sides of the equations (4), (5), and (6).

Thus, deciding whether to add a new individual has linear complexity in terms

of number of archived individuals (evaluating mutual pairwise dominance also

has linear complexity).

If the new individual is to be added, the existing closest-neighbour links need

to be updated. Each resulting archive member is considered in turn. If the link

is valid (i.e. the closest neighbour in the archive was not discarded), we simply

check if the newcomer is closer, and possibly update the link. This takes only

constant time. However, if the link became invalid (the former closest neighbour

was discarded), we need to compute the closest neighbour afresh by computing

objective distances of the updated individual to all others.

It can be proven by a simple argument based on k-dimensional ball volumes

that the maximum number of points in k-dimensional space having a single

common closest neighbour is bounded from above by a constant depending on

k. Since the Pareto archive consists of mutually non-dominating vectors, which

can not be arranged arbitrarily, in our case the constant is even smaller. For

instance, for a two-objective optimization, i.e. k = 2, a single archive member

can be the closest neighbour to at most two other members at the same time.

Using this argument, it can be easily seen that the complexity of a single
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archive update has complexity O(N +MN), where N is the size of the Pareto

archive and M is the number of archive members dominated by the new indi-

vidual. As was already said, merely deciding whether the newcomer is to be

added costs O(N). If the decision is positive, there are two cases: either the

newcomer dominates some M existing archive members, or it was added based

on the secondary decision procedure. In the former case, M members will be

discarded, so at most cM nearest-neighbour links will need to be updated, c

being the upper bound constant discussed in the previous paragraph. In the

latter case, one existing member is discarded, so at most c existing links must

be updated. Given that updating a single link costs O(N), together we have

the cost O(N + c(1 +M)N) which can be simplified to O(N +MN), given that

c is a constant independent of M,N .

While in principleM can be as high asN , in practice it drops toM � N very

quickly as the convergence proceeds and new dominating individuals become

increasingly rare. It should also be noted that if M is high at one step, the

evolution continues with an archive of N−M which will be significantly smaller

than N . Numerical experiments confirm that in real evolutionary runs, the

average number of invalid links per archive update is very small, even much

smaller than the theoretical bounds suggested above. This might be observed

from Tables 19 and 20. Therefore, we can conclude that the procedure of adding

new individual to our archive is essentially of linear complexity.

4 Comparison of results

The abilities of the new archiving mechanism are first demonstrated on test

functions DTLZ1, DTLZ2 and DTLZ4, suggested by Deb et al. [8]. To exam-

ine the influence of population size, our algorithm was run separately with 4,

10 and 20 individuals. Obviously, it is preferable to maintain the number of
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function evaluations as low as possible, therefore we study the behaviour of the

aforementioned approaches for three fixed numbers of evaluations, 4 000, 20 000

and 40 000. For test problem DTLZ1, the number of function evaluations is

extended to 100 000 and 200 000, since the algorithms were unable to converge

to the global Pareto front with just 40 000 computations.

To further investigate the behaviour of the proposed method, we performed

an experiment with test problem WFG1 suggested by Huband et al. [10]. For

this difficult problem, it was necessary to run the evolution to as many as

2 000 000 evaluations to obtain reasonable convergence to the Pareto front.

4.1 Test problems

The algorithms are compared on three benchmark problems introduced in [8].

The following form of them is considered:

• DTLZ1

Minimize f1,f2,f3, where

f1(x) =
1
2
x1x2(1 + g(xM )), (7)

f2(x) =
1
2
x1(1− x2)(1 + g(xM )), (8)

f3(x) =
1
2

(1− x1)(1 + g(xM )), (9)

g(xM ) = 100

(
5 +

∑
xi∈xM

(
(xi − 0.5)2 − cos(20π(xi − 0.5))

))
,(10)

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , 7.

Here x = (x1, x2, x3, x4, x5, x6, x7) and xM = (x3, x4, x5, x6, x7).

• DTLZ2
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Minimize f1,f2,f3, where

f1(x) = (1 + g(xM )) cos(x1π/2) cos(x2π/2), (11)

f2(x) = (1 + g(xM )) cos(x1π/2) sin(x2π/2), (12)

f3(x) = (1 + g(xM )) sin(x1π/2), (13)

g(xM ) =
∑

xi∈xM

(xi − 0.5)2, (14)

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , 12.

Here x = (x1, x2, . . . , x12) and xM = (x3, x4, . . . , x12).

• DTLZ4

Minimize f1,f2,f3, where

f1(x) = (1 + g(xM )) cos(x100
1 π/2) cos(x100

2 π/2), (15)

f2(x) = (1 + g(xM )) cos(x100
1 π/2) sin(x100

2 π/2), (16)

f3(x) = (1 + g(xM )) sin(x100
1 π/2), (17)

g(xM ) =
∑

xi∈xM

(xi − 0.5)2, (18)

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , 12.

Here x = (x1, x2, . . . , x12) and xM = (x3, x4, . . . , x12).

Problem WFG1 is a benchmark problems introduced in [10]. The following

form is considered:

• WFG1
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Minimize f1,f2,f3, where

f1(x) = 2 [(1− cos(z1π/2))(1− cos(z2π/2))] , (19)

f2(x) = 4 [(1− cos(z1π/2))(1− sin(z2π/2))] , (20)

f3(x) = 6
[
1− z1 −

cos(10πz1 + π/2)
10π

]
, (21)

where z1 = z1(x), and z2 = z2(x) are auxiliary variables obtained from

design variables x = (x1, x2, . . . , x24) by a series of nonlinear transforma-

tions (see [10] for their definition). However, there is a slight difference in

our application of transformation b poly, which we use with exponent 0.2

instead of 0.02 suggested in [10] due to numerical issues in floating point

arithmetic. Design variables have range 0 ≤ xi ≤ 2i, for i = 1, 2, . . . , 24.

The exact front of this problem is visualized in Figure 16.

4.2 Metrics

The results are evaluated according to three measures. The distance of members

of the Pareto archive to the true Pareto front is measured using the genera-

tional distance (GD) [16], which is defined as

GD =

√√√√ 1
n

n∑
i=1

d2
i , (22)

where n is the number of nondominated solutions found by an algorithm, and

di is the Euclidean distance of the i-th solution to the exact front. In order to

evaluate the distance accurately, we implemented an approach, that is able to

iteratively find the closest point of the exact front for each approximate solution,

provided the analytic expression of the exact front is known. This point is then

used for measuring the distance. Zero value of GD corresponds to all members

14



of the archive on the exact front.

We evaluate also another measure of convergence, denoted as TOL5. It

is defined as the lowest value, such that di > TOL5 holds for at most 5 %

of individuals. In statistics, it is called the 95-th percentile with respect to

distance. Again, the lower value of TOL5 the better convergence. Zero value

indicates, that at least 95% of archive members are on the exact front. This

metric is less sensitive to remote individuals than the GD value.

The uniformity of distribution of archive members is measured by spacing

defined in [4]. It is based on the distance to the nearest neighbour for each

member of the archive, which is defined as

dni = min
j∈P
j 6=i

‖fi − fj‖. (23)

Now spacing is the ratio of standard deviation of values of these squared dis-

tances and their average, i.e.

spacing =
1
dn

√√√√ 1
n− 1

n∑
i=1

(dni − dn)2, (24)

where dn stands for the mean value

dn =
1
n

n∑
i=1

dni. (25)

Consequently, zero spacing corresponds to uniform distribution of distances to

the nearest neighbour. Although this does not assure global uniformity of dis-

tribution (e.g. for pairs of individuals), our experience with this metric is satis-

factory.

The coverage of the Pareto front is not evaluated by means of a metric, but

rather compared qualitatively at presented plots.
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4.3 Setting of algorithms

All the algorithms from PISA package [2] (in the PISA context called selectors),

i.e. NSGA-II, SPEA2, and IBEA, are used with the following setting of variator

DTLZ:

• individual mutation probability . . . 1,

• individual recombination probability . . . 1,

• variable mutation probability . . . 0.01 ,

• variable swap probability . . . 0.5,

• variable recombination probability . . . 1,

• η mutation . . . 20,

• η recombination . . . 15,

• use symmetric recombination . . . 1,

For variator WFG, these values are the same except the value of variable mu-

tation probability preset to 1 (default).

The simulations with PISA are performed with population of 100 individu-

als. All of them are selected for mating, producing 100 new individuals in each

generation. The tournament of 2 individuals is used in these selectors. Ex-

periments with IBEA are performed using the additive ε-indicator with scaling

factor κ equal to 0.05.

The µARMOGA is run with 4, 10 and 20 individuals in population, marked

as µARMOGA(4), µARMOGA(10) and µARMOGA(20), respectively (for WFG1,

only 4 members of population are considered). The archive size is always set to

100 to produce results comparable with those of PISA algorithms. Simple one-

point crossover scheme without mutation is used. It was reported by Oyama

16



[14], that this scheme derived for binary coded algorithms [9] works reasonably

well also for real-domain. The version with 4 members uses reinitialization in

each generation (DTLZ1, DTLZ2, DTLZ4) or once in four generations (WFG1),

while for larger populations, the reinitialization is performed once per 3 gener-

ations for all problems. After reinitialization, several existing archive members

are put into the new population. Their number is 2, 4 and 6 for the popula-

tion of 4, 10 and 20 members, respectively. Random selection of individuals for

mating is then performed with this modified population. The other important

parameters of µARMOGA are set to the following values:

• adaptation factor δ . . . 1.4,

• minimal standard deviation σmin . . . 0.8 (DTLZ1, WFG1), 0.005 (DTLZ2,

DTLZ4),

• recombination probability . . . 1.

Larger value of σmin helps to attain the global Pareto optimal front of mul-

timodal problems such as DTLZ1 and leads to faster convergence also in the

case of WFG1. In general, its large values emphasizes global exploration of the

design space while small values lead to refined search.

4.4 Experiments

The results for problems DTLZ1, DTLZ2 and DTLZ4 are summarized in Ta-

bles 1–11, and visualized in Figures 1–11. For problem WFG1, results are

summarized in Tables 12–18 and Figures 12–14. The values in tables are ob-

tained as averages for 20 different seeds and where it makes sense, the best value

is emphasized by bold font. The approximation with the best distribution is

selected out of the twenty runs of each algorithm for visualization. The exact

Pareto front is marked by grid of small dots in presented figures. However,
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not all twenty seeds lead to a successful approximation of the Pareto set in

some instances, especially for problem DTLZ4. Most of the algorithms suffer

from problems with robustness with respect to initial population and produce

degenerated fronts for some seeds. We consider a front as degenerated, if all in-

dividuals have almost identical value of an objective, and thus cover just a line

on the three dimensional surface of the exact front. Numbers of degenerated

fronts for all problems and methods are summarized in Table 21.

The efficiency of the proposed archiving technique is further demonstrated in

comparison with the same approach, i.e. µARMOGA, using crowding distance

[5, 6]. That algorithm was described in [15]. Outputs of these experiments are

summarized for DTLZ1 in Tables 22 and 23, for DTLZ2 in Tables 24 and 25,

for DTLZ4 in Tables 26 and 27, and for WFG1 in Tables 28 and 29. Obtained

Pareto fronts are plotted in Figures 17–28.

5 Discussion of results

5.1 DTLZ1

This problem with three objectives has a linear Pareto optimal front that inter-

sects the axes of the objective space at value 0.5. Apart of the exact front, there

exist a number of other parallel planes corresponding to local Pareto fronts. As

these also attract an evolution, problem DTLZ1 tests the ability of a genetic

algorithm to cope with multi-modality.

As can be seen in Figure 1, none of the algorithms is able to reach the global

Pareto front in 4 000 evaluations for any seed, and metrics in Table 1 do not

provide much valuable information. However, we can remark that IBEA and

µARMOGA(4) provide one order better convergence than the other algorithms

and µARMOGA for all sizes of population provides reasonable spacing.
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However, all algorithms except NSGA-II are able to reach the global front for

some seeds in 20 000 evaluations (Figure 2). Comparing visually the results in

Figure 2, we can conclude that µARMOGA(4) performs best, which is supported

by the best values of all three metrics in Table 2. As individuals for many of the

seeds are still away from the global front for all algorithms, metrics in Table 2

do not provide a detailed insight either.

The situation is further improved with 40 000 evaluations, for which all algo-

rithms except NSGA-II are able to reach the global front for most of the seeds

(Figure 3). However, Figure 3 shows that µARMOGA (for all sizes of popula-

tion) produces the best distribution, which is confirmed by values of spacing in

Table 3. Since for some seeds the individuals still are not in vicinity of the true

Pareto front, the averaged metrics in Table 3 are still rather bad. According to

Table 3, the best convergence is in average attained by µARMOGA(4) for this

case.

For 100 000 and 200 000 evaluations, µARMOGA(4) achieves the global

Pareto-optimal front for all seeds. All the other algorithms fail to find the

global front for some seeds, which considerably spoils the metrics in Tables 4

and 5. Since IBEA produces only degenerated fronts in these cases, metrics are

not evaluated and are omitted in Tables 4 and 5.

Although the distribution of fronts obtained by µARMOGA for all sizes

of population is comparable to SPEA according to Figures 4 and 5, the met-

rics in Tables 4 and 5 reveal that spacing is, in average, one order better by

µARMOGA than by SPEA. The best average convergence metrics are obtained

by µARMOGA(4) (Tables 4 and 5).
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5.2 DTLZ2

Problem DTLZ2 has three objectives, and the exact front corresponds to the

part of a unit sphere when restricted to the octant given by non-negative values

of all three objectives. This is the easiest problem for all compared algorithms

and tests mainly the speed at which an algorithm is converging to the exact

Pareto front.

Already for 4 000 evaluations, the fronts obtained by all the compared meth-

ods are reasonably converged and distributed along the exact Pareto front. Fig-

ure 6 shows that µARMOGA (regardless of the size of population) and SPEA

produce the best distribution of individuals along the exact front, whereas the

distribution obtained by IBEA is rather poor. This observation is confirmed

by the spacing metric in Table 6. The best convergence is achieved by IBEA

according to GD and TOL5 metrics in Table 6 followed by µARMOGA.

Similar observations can be made from the results for 20 000 evaluations

(Table 7 and Figure 7) and 40 000 evaluations (Table 8 and Figure 8) – the

best spacing is obtained for all sizes of population by µARMOGA and the best

convergence is attained by IBEA, although the distribution of individuals along

the Pareto front is worse.

5.3 DTLZ4

Although the definition of problem DTLZ4 is similar to DTLZ2 (cf. Section 4.1),

the evolution is greatly influenced by the exponential transformation of design

variables, which maps most of the space towards the axes in design space. This

in turn pushes the evolution to the limits of the objective space. Thus, problem

DTLZ4 tests best of the three DTLZ problems the ability of a genetic algorithm

to obtain uniform distribution of individuals along the Pareto optimal surface.

For 4 000 evaluations, the best distribution is produced by SPEA2 (Figure 9).
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This is confirmed by results of spacing in Table 9. However, µARMOGA(4)

produces the best converged results.

For 20 000 evaluations, the distribution obtained by µARMOGA is already

visually comparable with SPEA2 in Figure 10. Also spacing obtained by µARMOGA

is comparable to that of SPEA2 according to Table 10 for 4 and 10 members

of population. Algorithms µARMOGA(20), IBEA, and NSGA-II produce in

average only slightly worse converged results. The best GD and TOL5 values

are attained by µARMOGA(20).

In the case of 40 000 evaluations, the best distribution of individuals is at-

tained by µARMOGA followed by SPEA2 according to Figure 11 and also con-

firmed by values of spacing in Table 11. The best convergence is again obtained

by µARMOGA(20), followed by µARMOGA(10), µARMOGA(4) and IBEA,

respectively (Table 11).

5.4 WFG1

This is a difficult problem and all tested algorithms had problems with con-

vergence to the Pareto front. For this reason, number of evaluations of the

objective function was increased to 2 000 000, after which some algorithms were

able to attain the exact front.

After 4 000 evaluations, all algorithms produce results rather far from the

Pareto optimal set (Table 12). Nevertheles, SPEA2 produces the most uniform

distribution according to the spacing metric.

After 20 000 evaluations, µARMOGA(4) slightly leads in convergence fol-

lowed by IBEA (Table 13), producing distribution with uniformity between

SPEA2 (best spacing) and the rest of the algorithms. The same observations

remain valid for 40 000 evaluations (Table 14.

After 100 000 as well as 200 000 evaluations, µARMOGA(4) dominates in
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convergence to the exact front (GD and TOL5 metrics in Tables 15 and 16), pro-

ducing distribution comparable with SPEA2 (best spacing). However, Figure 12

suggest, that µARMOGA(4) covers the whole Pareto front, unlike SPEA2.

Letting the evolution run to 1 000 000 and 2 000 000 evaluations, µARMOGA(4)

dominates both in convergence (one order of magnitude compared to the second

IBEA in Tables 15 and 16) and distribution along the exact Pareto front. In

spacing metric, µARMOGA(4) is followed by SPEA2. Figures 13 and 14 show

that distribution of individuals by µARMOGA(4) uniformly covers the whole

Pareto front, while the other algorithms approaches the region around f1 = 0

only slowly.

5.5 Comparison of crowding distance with the new archiv-

ing mechanism

A set of experiments was run to compare µARMOGA with crowding distance

and µARMOGA with the new archiving mechanism. The population of four in-

dividuals was selected for the comparison. Results for problems DTLZ1, DTLZ2,

DTLZ4, and WFG1 are summarized in Tables 22–29 and Figures 17–28.

According to these experiments, the new archiving approach outperforms

crowding distance in diversity as is clear from Figs. 17–28 and spacing metric

in Tabs. 22–29. While it also has very positive effect on the convergence of

µARMOGA to the exact Pareto front for problems DTLZ1, DTLZ2, and DTLZ4

(Tabs. 22–27), both algorithms exhibit similar convergence for problem WFG1

(Tabs. 28 and 29).

5.6 Summary

As can be seen from above, µARMOGA outperforms the other methods in

distribution of individuals along the Pareto front, and in many cases achieves
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the best convergence as well. However, it should be noted that the default

settings of the algorithms from PISA package is used, which may not be optimal

for the test problems considered.

While IBEA offers exceptional convergence in some cases, the distribution

of individuals along the exact Pareto front is usually rather poor, with many

individuals attached to limits of the objective space. Our study confirms that

the mechanism of crowding distance does not lead to uniform distribution of

individuals along the Pareto front for more than two objectives. The same result

might be observed from the comparison of µARMOGA using the two archiving

mechanisms – crowding distance and the new proposed technique (Tables 22–

29, and Figures 17–28). On the other hand, SPEA2 produces very uniform

distribution of individuals comparable with µARMOGA in some instances.

Concerning the number of evaluations, DTLZ2 is the only problem, for which

only 4 000 evaluations are sufficient to achieve reasonable convergence and distri-

bution of individuals on the Pareto front by all algorithms. On the other hand,

for DTLZ1, even 40 000 evaluations do not suffice to reach the true Pareto front

for all seeds by any approach, and results for 100 000 and 200 000 evaluations

are added for a reasonable comparison. Even this large number of evaluations

was not sufficient to reach the proximity of exact front in the case of problem

WFG1, and results for 1 000 000 and 2 000 000 evaluations are added. For test

functions DTLZ4 and WFG1, the new archiving mechanism is able to drive the

evolution to regions, where the coverage of the Pareto front by individuals is

sparse, and recover nice distribution of individuals along the Pareto set even for

poorly chosen initial population.

To investigate the optimal distribution of the number of function evalua-

tions between population size and number of generations for micro-evolution,

µARMOGA is run with 4, 10 and 20 individuals for DTLZ1, DTLZ2, and
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DTLZ4. According to our experiments, the performance of the algorithm is sim-

ilar for all configurations with respect to spacing and convergence history and

no strong dependence is revealed. However, for problem DTLZ4, the method

tends to produce more degenerated fronts with larger population (see Table 21).

Additionally, population of 4 individuals leads to the best convergence metrics

for problem DTLZ1, and population of 20 individuals to the best converged

front for problem DTLZ4. Thus, using small populations and larger number of

generations seems as the preferable approach.

6 Conclusion

The goal of our study is twofold: (a) to develop a new approach for selecting

individuals to the Pareto archive; (b) to explore the potential of using small

population in evolutionary algorithms.

The main contribution of the paper is the presentation of a new archiv-

ing mechanism. Although its basic idea is rather simple and straightforward,

the technique produces very promising results on all tested problems. We are

aware of the fact that the theoretical time complexity of the mechanism might

be rather large (quadratic in the worst case). However, our tests justify its

usage, since the experimentally found complexity is much more favourable (ap-

proximately linear). Moreover, it is intended to be used in combination with

small population, for which such more elaborate selection mechanism is usually

affordable.

The proposed selection mechanism was combined with µARMOGA and is

compared to other three state-of-the-art algorithms (NSGA-II, SPEA2, and

IBEA) on four test problems. We can conclude that µARMOGA presents Pareto

sets with the same or better distribution as SPEA2, but usually with much bet-

ter convergence to the exact front that is comparable with IBEA, thus the best
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combining requirements on both convergence and distribution of individuals.

A considerable improvement is attained, using the new mechanism, in com-

parison with the version of µARMOGA that uses crowding distance. Clearly,

µARMOGA equipped with the new diversity mechanism is very promising and

may be competitive with respect to other recent approaches.

Our experiments further support using small populations (up to 10 individu-

als), since runs with four individuals usually produces the best results. It is well

known that such small population can lead to rapid convergence. However, in

combination with the proposed archiving mechanism, it also seems to be more

robust with respect to an initial population.

Regarding the history of convergence to the Pareto front, in some cases as few

as 4 000 evaluations of objective function could be sufficient for some problems

(DTLZ2), while for other problems (multi-modal problem DTLZ1 or difficult

WFG1), even 40 000 evaluations may not be sufficient to approximate the true

Pareto front, and as many as 1 000 000 evaluations are needed for reasonable

outcome.

Acknowledgement

This research has been supported by the Development of Applied External Aero-

dynamics Program (Ministry of Education, Youth and Sports of the Czech Re-

public Grant MSM0001066901), by research project AV0Z10190503 (Academy

of Sciences of the Czech Republic), and by grant IAA100760702 (Grant Agency

of the Academy of Sciences of the Czech Republic).

References

[1] Arakawa, M., and Hagiwara, I. Development of adaptive real range

25



(ARRange) genetic algorithms. JSME International Journal Series C, Me-

chanical systems, machine elements and manufacturing 41, 4 (1998), 969–

977.

[2] Bleuler, S., Laumanns, M., Thiele, L., and Zitzler, E. PISA –

A platform and programming language independent interface for search

algorithms. In Evolutionary Multi-Criterion Optimization (EMO 2003)

(Berlin, 2003), C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and

L. Thiele, Eds., Lecture Notes in Computer Science, Springer, pp. 494–

508.

[3] Coello, C. A. C., and Pulido, G. T. A micro-genetic algorithm for

multiobjective optimization. In Evolutionary Multi-Criterion Optimization

(EMO 2001) (Berlin, 2001), E. Zitzler, K. Deb, L. Thiele, C. Coello Coello,

and D. Corne, Eds., Lecture Notes in Computer Science, Springer, pp. 126–

140.

[4] Coello, C. A. C., Pulido, G. T., and Lechuga, M. S. Handling

multiple objectives with particle swarm optimization. IEEE Transactions

on Evolutionary Computation 8, 3 (2004), 256–279.

[5] Deb, K. Multi-Objective Optimization using Evolutionary Algorithms.

Wiley-Interscience Series in Systems and Optimization. John Wiley & Sons,

Chichester, 2001.

[6] Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. A fast elitist

non-dominated sorting genetic algorithm for multi-objective optimization:

NSGA-II. In Parallel Problem Solving from Nature – PPSN VI (Berlin,

2000), M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo,

and H.-P. Schwefel, Eds., Springer, pp. 849–858.

26



[7] Deb, K., Mohan, M., and Mishra, S. A fast multi-objective evolution-

ary algorithm for finding well-spread pareto-optimal solutions. Tech. Rep.

2003002, KanGAL, Indian Institute of Technology Kanpur, India, 2003.

[8] Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. Scalable multi-

objective optimization test problems. In Congress on Evolutionary Compu-

tation (CEC ’02) (Piscataway, New Jersey, 2002), IEEE Press, pp. 825–830.

[9] Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Ma-

chine Learning. Addison-Wesley Professional, January 1989.

[10] Huband, S., Barone, L., While, R. L., and Hingston, P. A scalable

multi-objective test problem toolkit. In EMO (2005), C. A. C. Coello,

A. H. Aguirre, and E. Zitzler, Eds., vol. 3410 of Lecture Notes in Computer

Science, Springer, pp. 280–295.

[11] Knowles, J. D., and Corne, D. W. The Pareto archived evolution

strategy : A new baseline algorithm for Pareto multiobjective optimisa-

tion. In Proceedings of the 1999 Congress on Evolutionary Computation

(CEC’99) (1999), vol. 1, pp. 98–105.

[12] Knowles, J. D., and Corne, D. W. Approximating the nondominated

front using the Pareto archived evolution strategy. Evolutionary Computa-

tion 8, 2 (2000), 149–172.

[13] Krishnakumar, K. Micro-genetic algorithms for stationary and non-

stationary function optimization. In SPIE’s Intelligent Control and Adap-

tive Systems Conference (1989), G. Rodriguez, Ed., Society of Photo-

Optical Instrumentation Engineers (SPIE), pp. 289–296.

[14] Oyama, A. Wing Design Using Evolutionary Algorithm. PhD thesis,

Tohoku University, Japan, 2000.

27
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metric NSGA-II SPEA2 IBEA
GD 3.61e+01 2.99e+01 1.80e+00

TOL5 7.53e+01 5.92e+01 2.10e+00
spacing 2.47e+00 2.82e+00 2.14e+00
metric µARMOGA(4) µARMOGA(10) µARMOGA(20)

GD 4.17e+00 1.13e+01 1.08e+01
TOL5 5.70e+00 1.50e+01 1.50e+01

spacing 7.39e-01 7.40e-01 8.45e-01

Table 1: Problem DTLZ1, 4 000 function evaluations

Figure 1: Pareto front after 4 000 function evaluations, problem DTLZ1, NSGA-
II (top left), SPEA2 (centre left), IBEA (bottom left), and µARMOGA with
population size 4 (top right), 10 (centre right), 20 (bottom right).
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metric NSGA-II SPEA2 IBEA
GD 4.96e+00 3.32e+00 5.91e-01

TOL5 8.52e+00 5.80e+00 6.64e-01
spacing 1.50e+00 2.32e+00 2.65e+00
metric µARMOGA(4) µARMOGA(10) µARMOGA(20)

GD 2.35e-01 6.10e+00 4.21e+00
TOL5 3.05e-01 7.44e+00 5.33e+00

spacing 2.63e-01 9.85e-01 8.24e-01

Table 2: Problem DTLZ1, 20 000 function evaluations

Figure 2: Pareto front after 20 000 function evaluations, problem DTLZ1,
NSGA-II (top left), SPEA2 (centre left), IBEA (bottom left), and µARMOGA
with population size 4 (top right), 10 (centre right), 20 (bottom right).
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metric NSGA-II SPEA2 IBEA
GD 3.82e+00 2.31e+00 4.93e-01

TOL5 6.36e+00 3.71e+00 4.46e-01
spacing 1.56e+00 1.71e+00 4.19e+00
metric µARMOGA(4) µARMOGA(10) µARMOGA(20)

GD 3.61e-02 4.77e+00 3.02e+00
TOL5 5.04e-02 6.00e+00 3.79e+00

spacing 1.39e-01 4.15e-01 1.70e-01

Table 3: Problem DTLZ1, 40 000 function evaluations

Figure 3: Pareto front after 40 000 function evaluations, problem DTLZ1,
NSGA-II (top left), SPEA2 (centre left), IBEA (bottom left), and µARMOGA
with population size 4 (top right), 10 (centre right), 20 (bottom right).
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metric NSGA-II SPEA2 IBEA
GD 2.33e+00 1.03e+00 -

TOL5 4.01e+00 2.01e+00 -
spacing 1.51e+00 1.42e+00 -
metric µARMOGA(4) µARMOGA(10) µARMOGA(20)

GD 1.88e-03 4.60e+00 1.91e+00
TOL5 4.48e-04 5.82e+00 2.41e+00

spacing 8.50e-02 9.10e-02 1.51e-01

Table 4: Problem DTLZ1, 100 000 function evaluations

Figure 4: Pareto front after 100 000 function evaluations, problem DTLZ1,
NSGA-II (top left), SPEA2 (centre left), IBEA (bottom left), and µARMOGA
with population size 4 (top right), 10 (centre right), 20 (bottom right).
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metric NSGA-II SPEA2 IBEA
GD 2.26e+00 3.76e-01 -

TOL5 2.35e+00 5.64e-01 -
spacing 1.43e+00 1.17e+00 -
metric µARMOGA(4) µARMOGA(10) µARMOGA(20)

GD 1.54e-03 4.59e+00 2.08e+00
TOL5 1.74e-04 5.82e+00 2.30e+00

spacing 7.82e-02 8.33e-02 5.19e-01

Table 5: Problem DTLZ1, 200 000 function evaluations

Figure 5: Pareto front after 200 000 function evaluations, problem DTLZ1,
NSGA-II (top left), SPEA2 (centre left), IBEA (bottom left), and µARMOGA
with population size 4 (top right), 10 (centre right), 20 (bottom right).
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metric NSGA-II SPEA2 IBEA
GD 1.07e-01 9.08e-02 4.96e-03

TOL5 2.51e-01 2.05e-01 7.49e-03
spacing 6.40e-01 1.83e-01 7.44e-01
metric µARMOGA(4) µARMOGA(10) µARMOGA(20)

GD 1.41e-02 1.77e-02 1.89e-02
TOL5 2.82e-02 3.77e-02 3.62e-02

spacing 1.30e-01 1.64e-01 1.80e-01

Table 6: Problem DTLZ2, 4 000 function evaluations

Figure 6: Pareto front after 4 000 function evaluations, problem DTLZ2, NSGA-
II (top left), SPEA2 (centre left), IBEA (bottom left), and µARMOGA with
population size 4 (top right), 10 (centre right), 20 (bottom right).
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metric NSGA-II SPEA2 IBEA
GD 6.29e-02 3.50e-02 4.15e-04

TOL5 1.49e-01 7.53e-02 4.97e-04
spacing 6.45e-01 1.40e-01 6.80e-01
metric µARMOGA(4) µARMOGA(10) µARMOGA(20)

GD 2.59e-03 1.99e-03 2.94e-03
TOL5 4.01e-03 3.72e-03 3.29e-03

spacing 6.94e-02 8.09e-02 8.75e-02

Table 7: Problem DTLZ2, 20 000 function evaluations

Figure 7: Pareto front after 20 000 function evaluations, problem DTLZ2,
NSGA-II (top left), SPEA2 (centre left), IBEA (bottom left), and µARMOGA
with population size 4 (top right), 10 (centre right), 20 (bottom right).
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metric NSGA-II SPEA2 IBEA
GD 4.64e-02 1.63e-02 4.94e-04

TOL5 1.06e-01 3.50e-02 2.71e-04
spacing 6.14e-01 1.33e-01 6.82e-01
metric µARMOGA(4) µARMOGA(10) µARMOGA(20)

GD 1.04e-03 1.32e-03 1.02e-03
TOL5 9.23e-04 1.02e-03 1.06e-03

spacing 6.03e-02 6.71e-02 7.03e-02

Table 8: Problem DTLZ2, 40 000 function evaluations

Figure 8: Pareto front after 40 000 function evaluations, problem DTLZ2,
NSGA-II (top left), SPEA2 (centre left), IBEA (bottom left), and µARMOGA
with population size 4 (top right), 10 (centre right), 20 (bottom right).
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metric NSGA-II SPEA2 IBEA
GD 8.91e-02 1.31e-01 4.78e-03

TOL5 2.01e-01 2.81e-01 7.32e-03
spacing 6.13e-01 1.80e-01 7.30e-01
metric µARMOGA(4) µARMOGA(10) µARMOGA(20)

GD 1.87e-03 1.27e-02 5.45e-03
TOL5 3.42e-03 2.51e-02 1.23e-02

spacing 8.48e-01 1.88e+00 2.09e+00

Table 9: Problem DTLZ4, 4 000 function evaluations

Figure 9: Pareto front after 4 000 function evaluations, problem DTLZ4, NSGA-
II (top left), SPEA2 (centre left), IBEA (bottom left), and µARMOGA with
population size 4 (top right), 10 (centre right), 20 (bottom right).
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metric NSGA-II SPEA2 IBEA
GD 2.61e-02 3.92e-02 5.60e-04

TOL5 6.25e-02 9.73e-02 2.87e-04
spacing 6.18e-01 1.21e-01 6.83e-01
metric µARMOGA(4) µARMOGA(10) µARMOGA(20)

GD 4.34e-04 2.34e-04 3.55e-05
TOL5 1.43e-04 1.21e-04 3.40e-05

spacing 1.46e-01 1.12e-01 3.45e-01

Table 10: Problem DTLZ4, 20 000 function evaluations

Figure 10: Pareto front after 20 000 function evaluations, problem DTLZ4,
NSGA-II (top left), SPEA2 (centre left), IBEA (bottom left), and µARMOGA
with population size 4 (top right), 10 (centre right), 20 (bottom right).
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metric NSGA-II SPEA2 IBEA
GD 1.61e-02 1.91e-02 1.75e-04

TOL5 2.94e-02 3.60e-02 1.39e-04
spacing 6.42e-01 1.33e-01 6.94e-01
metric µARMOGA(4) µARMOGA(10) µARMOGA(20)

GD 2.19e-04 3.81e-04 1.44e-05
TOL5 3.48e-05 2.78e-05 1.15e-05

spacing 9.36e-02 8.01e-02 9.55e-02

Table 11: Problem DTLZ4, 40 000 function evaluations

Figure 11: Pareto front after 40 000 function evaluations, problem DTLZ4,
NSGA-II (top left), SPEA2 (centre left), IBEA (bottom left), and µARMOGA
with population size 4 (top right), 10 (centre right), 20 (bottom right).
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metric NSGA-II SPEA2 IBEA µARMOGA(4)
GD 8.86e-01 8.82e-01 7.47e-01 7.95e-01

TOL5 1.05e+00 1.04e+00 8.40e-01 9.27e-01
spacing 4.90e-01 1.60e-01 5.40e-01 5.19e-01

Table 12: Problem WFG1, 4 000 function evaluations

metric NSGA-II SPEA2 IBEA µARMOGA(4)
GD 9.01e-01 8.95e-01 7.67e-01 4.97e-01

TOL5 1.06e+00 1.05e+00 8.62e-01 5.92e-01
spacing 4.88e-01 1.67e-01 5.66e-01 2.82e-01

Table 13: Problem WFG1, 20 000 function evaluations

metric NSGA-II SPEA2 IBEA µARMOGA(4)
GD 8.86e-01 8.82e-01 7.47e-01 3.77e-01

TOL5 1.05e+00 1.04e+00 8.40e-01 4.56e-01
spacing 4.90e-01 1.60e-01 5.40e-01 2.24e-01

Table 14: Problem WFG1, 40 000 function evaluations

metric NSGA-II SPEA2 IBEA µARMOGA(4)
GD 8.80e-01 8.75e-01 7.26e-01 2.51e-01

TOL5 1.05e+00 1.04e+00 8.15e-01 3.15e-01
spacing 4.94e-01 1.62e-01 5.29e-01 1.96e-01

Table 15: Problem WFG1, 100 000 function evaluations
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metric NSGA-II SPEA2 IBEA µARMOGA(4)
GD 8.75e-01 8.79e-01 7.10e-01 1.75e-01

TOL5 1.04e+00 1.04e+00 7.99e-01 2.29e-01
spacing 4.98e-01 1.66e-01 5.47e-01 1.86e-01

Table 16: Problem WFG1, 200 000 function evaluations

Figure 12: Pareto front after 200 000 function evaluations, problem WFG1,
NSGA-II (top left), SPEA2 (top right), IBEA (bottom left), and µARMOGA
with population size 4 (bottom right).
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metric NSGA-II SPEA2 IBEA µARMOGA(4)
GD 8.58e-01 8.71e-01 6.81e-01 6.53e-02

TOL5 1.03e+00 1.03e+00 7.66e-01 1.14e-01
spacing 4.72e-01 1.74e-01 5.24e-01 1.53e-01

Table 17: Problem WFG1, 1 000 000 function evaluations

Figure 13: Pareto front after 1 000 000 function evaluations, problem WFG1,
NSGA-II (top left), SPEA2 (top right), IBEA (bottom left), and µARMOGA
with population size 4 (bottom right).
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metric NSGA-II SPEA2 IBEA µARMOGA(4)
GD 8.58e-01 8.74e-01 6.69e-01 4.79e-02

TOL5 1.03e+00 1.03e+00 7.52e-01 9.69e-02
spacing 5.06e-01 1.89e-01 5.35e-01 1.54e-01

Table 18: Problem WFG1, 2 000 000 function evaluations

Figure 14: Pareto front after 2 000 000 function evaluations, problem WFG1,
NSGA-II (top left), SPEA2 (top right), IBEA (bottom left), and µARMOGA
with population size 4 (bottom right).
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Initialization by LHS
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For ngen generations
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Figure 15: Simple scheme of the µARMOGA algorithm.

Figure 16: Exact Pareto front for problem WFG1.
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metric µARMOGA(4) µARMOGA(10) µARMOGA(20)
DTLZ1 0.98 1.32 1.32
DTLZ2 0.99 1.42 1.47
DTLZ4 1.05 1.35 1.35
WFG1 1.08 n/a n/a

Table 19: Average number of updates necessary after the addition of an indi-
vidual into archive, archive size limit 100.

archive size 20 50 100 200 500 1 000
DTLZ4 1.06 1.05 1.06 1.06 1.02 0.94

Table 20: Average number of updates necessary after the addition of an indi-
vidual into archive for problem DTLZ4, variable archive size.

metric NSGA-II SPEA2 IBEA
DTLZ1 -/-/-/-/- -/-/-/-/- -/2/11/20/20
DTLZ2 -/-/- -/-/- -/-/-
DTLZ4 11/8/5 11/11/11 6/6/6
WFG1 -/-/-/-/-/-/- -/-/-/-/-/-/- -/-/-/-/-/-/-
metric µARMOGA(4) µARMOGA(10) µARMOGA(20)
DTLZ1 -/-/-/-/- -/-/-/-/- -/-/-/-/-
DTLZ2 -/-/- -/-/- -/-/-
DTLZ4 -/-/- 4/4/4 4/3/3
WFG1 -/-/-/-/-/-/- n/a n/a

Table 21: Number of degenerated Pareto fronts for 20 seeds. Number
at 4 000/20 000/40 000(/100 000/200 000(/1 000 000/2 000 000)) function evalu-
ations.

evaluations 4 000 20 000 40 000 100 000 200 000
GD 2.13e+01 2.28e+00 1.15e+00 2.41e+00 3.72e-01

TOL5 4.02e+01 1.42e+00 2.07e-01 3.99e-02 1.22e-02
spacing 3.34e+00 2.34e+00 2.73e+00 3.29e+00 2.60e+00

degenerated 0 0 0 0 0

Table 22: µARMOGA with crowding distance, four individuals, problem
DTLZ1, average for twenty seeds.

evaluations 4 000 20 000 40 000 100 000 200 000
GD 4.17e+00 2.35e-01 3.61e-02 1.88e-03 1.54e-03

TOL5 5.70e+00 3.05e-01 5.04e-02 4.48e-04 1.74e-04
spacing 7.39e-01 2.63e-01 1.39e-01 8.50e-02 7.82e-02

degenerated 0 0 0 0 0

Table 23: µARMOGA with the new proposed archiving algorithm, four indi-
viduals, problem DTLZ1, average for twenty seeds.
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evaluations 4 000 20 000 40 000 100 000 200 000
GD 5.36e-02 2.54e-03 1.77e-03 2.16e-03 1.99e-03

TOL5 7.92e-02 2.92e-03 2.83e-03 3.58e-03 2.83e-01
spacing 5.74e-01 5.60e-01 5.47e-01 5.49e-01 5.41e-01

degenerated 0 0 0 0 0

Table 24: µARMOGA with crowding distance, four individuals, problem
DTLZ2, average for twenty seeds.

evaluations 4 000 20 000 40 000 100 000 200 000
GD 1.41e-02 2.59e-03 1.04e-03 3.45e-04 1.81e-04

TOL5 2.82e-02 4.01e-03 9.23e-04 1.09e-04 2.39e-05
spacing 1.30e-01 6.94e-02 6.03e-02 4.94e-02 4.46e-02

degenerated 0 0 0 0 0

Table 25: µARMOGA with the new proposed archiving algorithm, four indi-
viduals, problem DTLZ2, average for twenty seeds.

evaluations 4 000 20 000 40 000 100 000 200 000
GD 5.46e+01 2.35e+01 1.18e+01 1.68e+01 1.48e+01

TOL5 1.46e+02 1.96e+01 1.92e-01 1.70e-01 1.67e-01
spacing 3.40e+00 6.50e+00 5.09e+00 4.73e+00 4.86e+00

degenerated 2 3 3 3 3

Table 26: µARMOGA with crowding distance, four individuals, problem
DTLZ4, average for twenty seeds.

evaluations 4 000 20 000 40 000 100 000 200 000
GD 1.87e-03 4.34e-04 2.19e-04 9.32e-05 3.39e-05

TOL5 3.42e-03 1.43e-04 3.48e-05 1.34e-05 8.82e-06
spacing 8.48e-01 1.46e-01 9.36e-02 7.00e-02 6.35e-02

degenerated 0 0 0 0 0

Table 27: µARMOGA with the new proposed archiving algorithm, four indi-
viduals, problem DTLZ4, average for twenty seeds.

evaluations 4 000 20 000 40 000 100 000 200 000 1 000 000 2 000 000
GD 9.01e-01 3.67e-01 2.81e-01 1.93e-01 1.27e-01 4.09e-02 3.93e-02

TOL5 1.21e+00 4.26e-01 3.32e-01 2.37e-01 1.66e-01 8.01e-02 8.51e-02
spacing 1.46e+00 7.03e-01 6.85e-01 6.17e-01 6.24e-01 5.83e-01 5.28e-01

degenerated 0 0 0 0 0 0 0

Table 28: µARMOGA with crowding distance, four individuals, problem WFG1,
average for twenty seeds.
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evaluations 4 000 20 000 40 000 100 000 200 000 1 000 000 2 000 000
GD 7.95e-01 4.97e-01 3.77e-01 2.51e-01 1.75e-01 6.53e-02 4.79e-02

TOL5 9.27e-01 5.92e-01 4.56e-01 3.15e-01 2.29e-01 1.14e-01 9.69e-02
spacing 5.19e-01 2.82e-01 2.24e-01 1.96e-01 1.86e-01 1.53e-01 1.54e-01

degenerated 0 0 0 0 0 0 0

Table 29: µARMOGA with the new proposed archiving algorithm, four indi-
viduals, problem WFG1, average for twenty seeds.
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Figure 17: Pareto front after 4 000 function evaluations, problem DTLZ1,
µARMOGA with population size 4 with crowding distance (left), and with the
new proposed algorithm (right).

Figure 18: Pareto front after 20 000 function evaluations, problem DTLZ1,
µARMOGA with population size 4 with crowding distance (left), and with the
new proposed algorithm (right).

Figure 19: Pareto front after 200 000 function evaluations, problem DTLZ1,
µARMOGA with population size 4 with crowding distance (left), and with the
new proposed algorithm (right).
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Figure 20: Pareto front after 4 000 function evaluations, problem DTLZ2,
µARMOGA with population size 4 with crowding distance (left), and with the
new proposed algorithm (right).

Figure 21: Pareto front after 20 000 function evaluations, problem DTLZ2,
µARMOGA with population size 4 with crowding distance (left), and with the
new proposed algorithm (right).

Figure 22: Pareto front after 200 000 function evaluations, problem DTLZ2,
µARMOGA with population size 4 with crowding distance (left), and with the
new proposed algorithm (right).
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Figure 23: Pareto front after 4 000 function evaluations, problem DTLZ4,
µARMOGA with population size 4 with crowding distance (left), and with the
new proposed algorithm (right).

Figure 24: Pareto front after 20 000 function evaluations, problem DTLZ4,
µARMOGA with population size 4 with crowding distance (left), and with the
new proposed algorithm (right).

Figure 25: Pareto front after 200 000 function evaluations, problem DTLZ4,
µARMOGA with population size 4 with crowding distance (left), and with the
new proposed algorithm (right).
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Figure 26: Pareto front after 200 000 function evaluations, problem WFG1,
µARMOGA with population size 4 with crowding distance (left), and with the
new proposed algorithm (right).

Figure 27: Pareto front after 1 000 000 function evaluations, problem WFG1,
µARMOGA with population size 4 with crowding distance (left), and with the
new proposed algorithm (right).

Figure 28: Pareto front after 2 000 000 function evaluations, problem WFG1,
µARMOGA with population size 4 with crowding distance (left), and with the
new proposed algorithm (right).
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