
Proof complexity of the cut-free calculus of structures

Emil Jeřábek

Institute of Mathematics of the Academy of Sciences

Žitná 25, 115 67 Praha 1, Czech Republic, email: jerabek@math.cas.cz

April 30, 2008

Abstract

We investigate the proof complexity of analytic subsystems of the deep inference proof
system SKSg (the calculus of structures). Exploiting the fact that the cut rule (i↑)
of SKSg corresponds to the ¬-left rule in the sequent calculus, we establish that the
“analytic” system KSg +c↑ has essentially the same complexity as the monotone Gentzen
calculus MLK . In particular, KSg + c↑ quasipolynomially simulates SKSg , and admits
polynomial-size proofs of some variants of the pigeonhole principle.

Keywords: proof complexity, calculus of structures, monotone sequent calculus, cut rule

1 Introduction

The calculus of structures (CoS) is a recent proof-theoretic formalism initially developed by
Guglielmi [9, 10] as an alternative to the sequent calculus. It is based on the idea of deep
inference: CoS rules can apply to any place deep inside a formula, in contrast to the usual
sequent or Hilbert-style calculi, which only operate on the top part. The most popular CoS
proof systems for the classical propositional logic—SKSg and its variants—were introduced
by Brünnler [3]. The proof complexity of CoS proof systems was studied by Bruscoli and
Guglielmi [5], who have shown that SKSg is polynomially equivalent to the usual sequent
or Frege systems, but they leave open the question of the complexity of so-called analytic
subsystems KSg and KSg + c↑ of SKSg .

In sequent calculi, “analytic” is more or less a synonym for “cut-free”: a proof system is
analytic if formulas from the premises of any rule appear as building blocks (subformulas) in
the conclusion of the rule, which means it has the subformula property. Cut-free proof systems
and their subformula property have many applications in proof theory (e.g., ordinal analysis,
conservativity results among fragments of arithmetic, decision procedures for nonclassical
logics, interpolation and explicit definability, etc.), and indeed, the cut-elimination theorem
was the main reason for Gerhard Gentzen to introduce the sequent calculus in the first place.

Due to the nature of the proof system, the subformula property does not make much
sense in CoS. Nevertheless, substantially weaker notions of analyticity are used in the CoS
literature (cf. [5]) under which some CoS systems are designated as analytic. In particular,

1

Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-18 (rev. 1, 2008-8-4) IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic

there is a rule (i↑, see Table 1) called the “cut rule”, which is disallowed in analytic CoS.
While analytic CoS bears some superficial resemblance to analytic sequent calculi (the cut
rule is eliminable, and in fact, analytic CoS systems can simulate cut-free LK), there are also
significant differences. As already mentioned, analytic CoS does not enjoy the subformula
property. The most salient feature of the subformula property, which is sufficient for many
of its applications, is that one can bound the complexity (e.g., the depth, or the number
of quantifier alternations) of formulas appearing in the proof in terms of the complexity of
formulas in its endsequent. (The same property is also responsible for the exponential gap
between the proof complexity of cut-free and cut-full sequent calculi.) However, analytic CoS
does not share this weaker property either: as we will see, there are depth-2 tautologies whose
cut-free CoS proofs may contain arbitrary formulas. Another unorthodox feature is that the
CoS cut rule is almost trivially reducible to its atomic special case.

The unusual behaviour of the analytic CoS systems and the CoS “cut” rule is explained by
the equivalence of CoS to (two-sided) sequent calculus (Brünnler [4], McKinley [13]), where
an LK -proof of a sequent Γ ` ∆ corresponds to an SKSg-derivation of the formula

∨
∆ from

the premise
∧

Γ. We observe that in this translation, the CoS cut rule corresponds to the
¬-left sequent rule1 (over a basic system, which may be chosen as ¬-free multiplicative linear
logic on the sequent side, and a subsystem of KSg without any of the “structural rules” on the
CoS side), whereas the sequent cut rule comes out essentially for free. The key point is that
the correspondence is faithful in both directions, it provides for a translation of subsystems
of SKSg to subsystems of LK as well as vice versa2.

In terms of proof complexity, the translation gives a polynomial equivalence of fragments of
SKSg to the corresponding fragments of the tree-like sequent calculus. We will use it to show
that the “analytic” CoS system KSg + c↑ has the same complexity as the tree-like monotone
sequent calculus MLK . We present a simple elimination procedure for the coweakening (w↑)
rule; this allows us to work with the more convenient system KSg+c↑+w↑, which is equivalent
to the ¬-left-free fragment of tree-like LK in the correspondence above. We establish that
KSg + c↑ + w↑ is polynomially equivalent to tree-like MLK with respect to derivations of
monotone formulas from monotone formulas. We also show that this form of derivations is
universal, in the sense that there is a natural translation of an arbitrary formula to a pair of
a monotone assumption and a monotone conclusion which preserves (up to a polynomial) the
size of KSg + c↑+w↑-derivations. For all purposes and intents, KSg + c↑ and KSg + c↑+w↑
are thus polynomially equivalent to tree-like MLK ; the only obstacle which prevents us from
technically claiming the equivalence in this form is the mismatch in the languages of these
systems (MLK cannot prove formulas, only monotone sequents).

1To avoid potential confusion: we work with formulas in negation normal form, i.e., ¬ is a primitive operation

only on propositional variables, and its action is extended elsewhere by De Morgan’s laws. In particular, this

makes the ¬-left rule weak enough so that it is eliminable from proofs of a sequent with an empty antecedent.
2This is not true of the more usual embedding of the one-sided sequent calculus to CoS (as in [3, 5]), which

is used to justify the label “cut” for the i↑ rule. It allows to transform cut-free sequent proofs to KSg-proofs,

but it lacks a matching translation of KSg back to cut-free sequent calculus. Indeed, KSg cannot be adequately

expressed as a fragment of the one-sided sequent calculus: the distinction between the cut and ¬-left rules is

lost in the one-sided calculus, where they are combined into a single rule (generally called the cut rule).

2

The monotone sequent calculus was studied by Atserias, Galesi, and Pudlák [1], who have
shown that tree-like MLK quasipolynomially simulates full LK (wrt monotone sequents).
Moreover, the available evidence seems to suggest that the calculi are in fact polynomially
equivalent, although the problem remains open. As a corollary, we obtain that KSg + c↑
quasipolynomially simulates (in the usual way, i.e., wrt proofs of formulas) SKSg (or equiva-
lently, LK). Additionally, if the simulation of LK by tree-like MLK can be made polynomial,
then SKSg and KSg + c↑ are polynomially equivalent as well.

We also include another result on the complexity of KSg , which is not directly related
to the correspondence with sequent calculus. We show that there exists a polynomial-time
translation of SKSg to KSg based on a simple modification of the formula being proved. It
can be also considered as a kind of a normal form for SKSg-proofs: all i↑ (cut) inferences can
be postponed until the end of the proof, and we can a priori bound their number, we need only
one instance of i↑ for each propositional variable appearing in the conclusion of the proof. We
conclude that KSg cannot have feasible interpolation (under the same assumptions as LK),
and we construct polynomial KSg + c↑-proofs of some variants of the pigeonhole principle.

The paper is organized as follows. In Section 2 we present the relevant definitions and basic
facts about the proof systems we are going to work with. In Section 3 we exhibit the “normal
form” for i↑ inferences, and its applications. In Section 4 we review the correspondence of
CoS to the two-sided sequent calculus, and in Section 5 we discuss the connections to the
monotone sequent calculus.

Acknowledgements

I wish to thank Marta B́ılková for an interesting discussion on the topic, Richard McKinley
and Alessio Guglielmi for comments on an earlier version of the paper (in particular, for
drawing my attention to [4, 13]), and an anonymous referee for useful suggestions. The
research was supported by grants IAA900090703 and IAA1019401 of GA AV ČR, and grant
1M0545 of MŠMT ČR.

2 Preliminaries

The fundamental notion of a general proof system was introduced by Cook and Reckhow [8].

Definition 2.1 Let L be a set of strings in a finite alphabet. A proof system for L is a
polynomial-time function P such that L is the range of P . Any x such that P (x) = y is called
a proof of y. Let P and Q be proof systems for L. We say that P polynomially simulates
(or p-simulates) Q, written as Q ≤p P , if there exists a polynomial-time function f such that
Q = P ◦ f . If P ≤p Q and Q ≤p P , the proof systems P and Q are p-equivalent.

We are interested in proof systems for the classical propositional logic, i.e., L is the set
TAUT of classical propositional tautologies. Typical proof systems, like sequent calculi, fit

3

the Cook–Reckhow definition if we put

P (π) =

{
ϕ if π is a proof with conclusion ϕ,

> if π is not a valid proof.

The definition of polynomial simulation amounts to the following when expanded: given a
Q-proof π of a formula ϕ, we can construct in polynomial time a P -proof f(π) of ϕ. The
size |π| of a proof π is strictly speaking the length of the string which represents π, but we
will be content with a more liberal definition which only counts the number of occurrences of
symbols (so that every propositional variables has size 1, independent of its index). For more
background in proof complexity, the reader may consult e.g. Kraj́ıček [12].

We proceed to define the CoS and sequent proof systems we will work with.

Definition 2.2 The formulas of the calculus of structures are built using the monotone
connectives ∧, ∨, >, and ⊥ from literals (atoms), which are propositional variables pi and
their negations ¬pi. We extend ¬ to an involutive operation on all formulas using De Morgan’s
laws. A context ξ{ } is a formula in which exactly one hole { } appears in place of a literal.
If ξ{ } is a context, and ϕ a formula, we denote by ξ{ϕ} the formula resulting by filling the
hole with ϕ. A CoS derivation of a formula ψ from a formula ϕ is a sequence of formulas
ϕ = ϕ0, ϕ1, . . . , ϕm = ψ, where ϕi+1 is derived by a rule of the calculus from ϕi (all rules are
unary). We will write

ϕ ,
ψ

possibly decorated with the name of the proof system or other information, if a derivation of
ψ from ϕ exists. A proof of a formula ϕ is a derivation of ϕ from >.

We consider the rules given in Table 1, where ξ{ } denotes an arbitrary context, and
ϕ,ψ, χ, ω are arbitrary formulas. We define Sg to be the calculus using the switch rule (s),
and the eight ∧ and ∨ rules. KSg is Sg together with i↓ (identity), w↓ (weakening), c↓
(contraction), and the xi rules. SKSg extends KSg by the rules i↑ (cut), w↑ (coweakening),
and c↑ (cocontraction).

If % is one of the rules i↓, i↑, c↓, c↑, w↓, w↑, we denote by a% the restriction of % which
only allows a literal as the formula ϕ. The calculus KS consists of Sg , m, ai↓, aw↓, ac↓, and
the xi rules. SKS is defined as KS + {ai↑, aw↑, ac↑}.

Subsystems of KSg + c↑ or KS + ac↑ are called analytic3.

Remark 2.3 It is obvious from the form of the CoS rules that given a derivation

ϕ

ψ

3There are issues with a general definition of analyticity in CoS, see e.g. [6]. We avoid the problem by giving

a list; there seems to be a consensus in CoS sources that the systems we mentioned are analytic, whereas the

i↑ and w↑ rules are not, which is all that matters for our purposes.

4

ξ{ϕ ∧ >}∧u1
ξ{ϕ}

ξ{ϕ ∨ ⊥}∨u1
ξ{ϕ}

ξ{ϕ ∧ (ψ ∧ χ)}
∧a

ξ{(ϕ ∧ ψ) ∧ χ}

ξ{ϕ}∧u2
ξ{ϕ ∧ >}

ξ{ϕ}∨u2
ξ{ϕ ∨ ⊥}

ξ{ϕ ∨ (ψ ∨ χ)}
∨a

ξ{(ϕ ∨ ψ) ∨ χ}

ξ{ϕ ∧ ψ}
∧c

ξ{ψ ∧ ϕ}
ξ{ϕ ∨ ψ}

∨c
ξ{ψ ∨ ϕ}

ξ{ϕ ∧ (ψ ∨ χ)}
s
ξ{(ϕ ∧ ψ) ∨ χ}

ξ{>}
i↓

ξ{ϕ ∨ ¬ϕ}
ξ{⊥}

w↓
ξ{ϕ}

ξ{ϕ ∨ ϕ}
c↓

ξ{ϕ}

ξ{ϕ ∧ ¬ϕ}
i↑

ξ{⊥}
ξ{ϕ}

w↑
ξ{>}

ξ{ϕ}
c↑

ξ{ϕ ∧ ϕ}

ξ{>}
x1

ξ{> ∨ >}
ξ{⊥ ∧ ⊥}

x2
ξ{⊥}

ξ{(ϕ ∧ ψ) ∨ (χ ∧ ω)}
m

ξ{(ϕ ∨ χ) ∧ (ψ ∨ ω)}

ξ{> ∨ >}
x3

ξ{>}
ξ{⊥}

x4
ξ{⊥ ∧ ⊥}

Table 1: Rules of the calculus of structures

with k lines and size s, we can construct a derivation of

ξ{ϕ}
ξ{ψ}

with k lines and size s+ k|ξ|, for any context ξ. We will often tacitly use this observation.
In the original formulation, KSg and friends include an “equality rule” =, consisting of the

transitive closure of the rules which we denote by ∧ · · · , ∨ · · · , and xi. While [5] show that = is
a polynomial-time recognizable rule (and thus acceptable as a rule in a Cook–Reckhow proof
system), we find it too complicated to work with. We thus split it into several rules which
are treated on the same footing as the other rules of the system, and give them individual
names to ease reference. (This is only a cosmetic change in terms of the proof complexity of
the systems, as any instance of the = rule can be polynomially simulated by a sequence of
the new rules.) We will nevertheless occasionally use the collective name = for convenience.

The ∧ and ∨ rules enforce basic properties of the two connectives (associativity, commu-
tativity, and neutrality of its unit), and we thus include them in the basic system Sg . On the
other hand, the xi rules are apparently only an auxiliary device used to reduce weakening and
contraction to their atomic variants in KS and SKS , and in particular, the xi rules do not
have a nice interpretation in the sequent calculus (as we will see shortly). Notice that x1,2,3,4

are redundant in KSg (they are derivable from ∨u2 +w↓, w↓+∧u1, c↓, and w↓, respectively).
The next theorem shows that the up and down i, w, c rules can be reduced to the atomic

cases (using the xi rules, and—in the case of contraction—the m rule), which means that the
choice between (S)KS and (S)KSg is only a matter of convenience. We will generally find it

5

more natural to work with the KSg and SKSg variants, but we will sometimes appeal to the
restricted versions of the rules as well.

Theorem 2.4 (Bruscoli, Guglielmi [5]) The calculus KSg is polynomially equivalent to
KS, and SKSg is polynomially equivalent to SKS.

In more detail, any instance of i↓ (i↑, w↓, w↑) has a polynomial-time constructible deriva-
tion using s, =, and ai↓ (ai↑, aw↓, aw↑, respectively). Any instance of c↓ (c↑) has a
polynomial-time constructible derivation using m, =, and ac↓ (ac↑).

Definition 2.5 A sequent is an expression of the form Γ ` ∆, where Γ and ∆ are finite
sequences of formulas. For consistency with CoS we work with formulas in negation normal
form, with ¬ defined as an operator as in Definition 2.2. A (dag-like) proof in a sequent
calculus is a sequence of sequents, each of which is derived from some of the previous sequents
by a rule of the calculus. A proof is tree-like if every sequent is used at most once as a
hypothesis. A proof of the sequent ` ϕ is considered a proof of the formula ϕ.

We consider the rules introduced in Table 2. We define MLL to be the calculus consisting
of the identity (i), cut, and exchange (e-l, e-r) rules together with the left and right rules for
∧, ∨, ⊥, >. The monotone Gentzen calculus MLK consists of MLL and the weakening (w-l,
w-r) and contraction (c-l, c-r) rules. The Gentzen calculus LK extends MLK by the left and
right rules for ¬.

Remark 2.6 We adhere to proof complexity conventions with regard to the shape of sequent
proofs. For proof theorists: a “tree-like proof” is just a proof, and a “dag-like proof” is a
proof where repeated occurrences of a subproof may be replaced with a simple reference to
the first occurrence (and thus do not contribute to the overall size of the proof). Tree-like
LK is well-known to be polynomially equivalent to LK (Kraj́ıček [11, 12]), but this is not
necessarily true for its subsystems.

MLL is a notational variant of the ¬-free fragment of the multiplicative linear logic, hence
the name. The monotone calculus MLK is more properly defined as the subsystem of LK
which only allows monotone (i.e., ¬-free) formulas to appear in the proof. This makes no
significant difference, as long as we use MLK only to prove monotone sequents (we can
replace negative literals which sneak in an MLK -proof by new variables).

The Gentzen calculus LK is polynomially equivalent to other standard proof systems,
such as Frege (or Hilbert-style)systems, and natural deduction [8].

The xi rules are special instances of weakening and contraction, which will be used only
to translate the corresponding CoS rules.

Theorem 2.7 (Bruscoli, Guglielmi [5]) The calculus SKSg is polynomially equivalent to
LK .

Theorem 2.8 (Atserias et al. [1]) Tree-like MLK quasipolynomially simulates LK .
In more detail, if a monotone sequent in n variables has an LK-proof of size s, then we

can construct in quasipolynomial time its tree-like MLK-proof of size sO(1)nO(log n) with sO(1)

lines.

6

i
ϕ ` ϕ >-r ` >

Γ ` ∆
⊥-r Γ ` ⊥,∆

Γ ` ϕ,∆ Π, ϕ ` Λ
cut

Γ,Π ` ∆,Λ
Γ ` ∆

>-l Γ,> ` ∆ ⊥-l ⊥ `

Γ ` ∆, ϕ, ψ,Λ
e-r

Γ ` ∆, ψ, ϕ,Λ
Γ ` ϕ,∆ Π ` ψ,Λ

∧-r
Γ,Π ` ϕ ∧ ψ,∆,Λ

Γ ` ϕ,ψ,∆
∨-r

Γ ` ϕ ∨ ψ,∆

Γ, ϕ, ψ,Π ` ∆
e-l Γ, ψ, ϕ,Π ` ∆

Γ, ϕ, ψ ` ∆
∧-l Γ, ϕ ∧ ψ ` ∆

Γ, ϕ ` ∆ Π, ψ ` Λ
∨-l Γ,Π, ϕ ∨ ψ ` ∆,Λ

Γ ` ∆
w-r

Γ ` ϕ,∆
Γ ` ϕ,ϕ,∆

c-r
Γ ` ϕ,∆

Γ, ϕ ` ∆¬-r
Γ ` ¬ϕ,∆

Γ ` ∆
w-l Γ, ϕ ` ∆

Γ, ϕ, ϕ ` ∆
c-l Γ, ϕ ` ∆

Γ ` ϕ,∆
¬-l Γ,¬ϕ ` ∆

Γ ` >,∆
x1

Γ ` >,>,∆
Γ,⊥ ` ∆

x2
Γ,⊥,⊥ ` ∆

Γ ` >,>,∆
x3

Γ ` >,∆
Γ,⊥,⊥ ` ∆

x4
Γ,⊥ ` ∆

Table 2: Rules of the sequent calculus

3 An almost simulation of i↑

Lemma 3.1 Given a context ξ{ }, and a formula ϕ, there are polynomial-time constructible
Sg-proofs of

ξ{ϕ} .
ϕ ∨ ξ{⊥}

Proof: By induction on the complexity of ξ. The base case ξ{ } = { } is an instance of ∨u2.
The induction step for conjunction can be derived as

ψ ∧ ξ{ϕ}
I.H.

ψ ∧ (ϕ ∨ ξ{⊥})
s,∨c ,

ϕ ∨ (ψ ∧ ξ{⊥})

and the induction step for disjunction follows easily from ∨a and ∨c. �

Theorem 3.2 Given an SKSg-proof of a formula ϕ in variables pi, i < n, we can construct
in polynomial time a KSg-proof of the formula

ϕ ∨
∨
i<n

(pi ∧ ¬pi).

7

Proof: We substitute truth constants for variables other than pi, i < n, which may appear
in the proof. We eliminate instances of w↑ and c↑ in favor of i↑, using subproofs of the form

ψ∧u2,∨u2
ψ ∧ (⊥ ∨>)

w↓
ψ ∧ (¬ψ ∨ >)

s
(ψ ∧ ¬ψ) ∨ >

i↑ ⊥ ∨ >∨u1 >

ψ
∧u2, i↓

ψ ∧ ((¬ψ ∨ ¬ψ) ∨ (ψ ∧ ψ))
c↓

ψ ∧ (¬ψ ∨ (ψ ∧ ψ))
s

(ψ ∧ ¬ψ) ∨ (ψ ∧ ψ)
i↑,∨u1 .

ψ ∧ ψ

By Theorem 2.4, we may assume that all instances of i↑ in the proof are atomic. We put all
formulas in the proof into the context { }∨

∨
i<n(pi ∧¬pi). We prefix the derivation with the

subproof

>∨u2 > ∨⊥w↓ .
> ∨

∨
i<n(pi ∧ ¬pi)

Finally, we replace instances

ξ{pj ∧ ¬pj} ∨
∨

i<n(pi ∧ ¬pi)
ξ{⊥} ∨

∨
i<n(pi ∧ ¬pi)

of i↑ by derivations of the form

ξ{pj ∧ ¬pj} ∨
∨

i<n(pi ∧ ¬pi)
(∗)

ξ{⊥} ∨ (pj ∧ ¬pj) ∨
∨

i<n(pi ∧ ¬pi)
∨a,∨c, c↓ ,

ξ{⊥} ∨
∨

i<n(pi ∧ ¬pi)

where (∗) follows by Lemma 3.1. �

Remark 3.3 As easy as it is, Theorem 3.2 has a profound impact on the proof complexity
of the analytic systems KSg and KSg + c↑. The mapping

ν : ϕ(~p) 7→ ϕ(~p) ∨
∨
i

(pi ∧ ¬pi)

is a simple poly-time function such that νϕ is equivalent to ϕ, and ν provides an interpretation
of SKSg in KSg . Indeed, it is much simpler than the usual translations of propositional
formulas to the language of resolution or algebraic proof systems. For most practical purposes,
KSg thus has the same complexity as SKSg (i.e., as LK). Moreover, for many formulas ϕ we
can actually eliminate the extra disjunct altogether (see Example 3.6). The ν interpretation
preserves some important properties of proof systems too, see Corollary 3.5.

Theorem 3.2 also shows that “analytic” CoS proofs may contain formulas of arbitrary
complexity, independent of the complexity of the formula being proved. Indeed, we can sneak
any formula ψ in an SKSg-proof using a subproof of the form

ξ{⊥}
w↓

ξ{ψ ∧ ¬ψ}
i↑ ,

ξ{⊥}

8

and ψ will stay in the KSg-proof constructed in Theorem 3.2, provided we are proving a
formula of the form νϕ, and all variables of ψ appear among ~p. For a more natural example,
see Example 3.6.

Definition 3.4 Let ϕ0(~p, ~q) ∨ ϕ1(~p, ~r) be a classical tautology using the indicated variables,
where ~p, ~q and ~r are disjoint. Its interpolant is a Boolean circuit C(~p) such that

e
(
ϕe(C)

)
= 1

for any assignment e. A classical propositional proof system P has feasible interpolation, if
every tautology ϕ = ϕ0 ∨ ϕ1 as above has an interpolant of size polynomial in the size of the
shortest P -proof of ϕ.

Feasible interpolation is a measure of the strength of proof systems. Weak proof systems,
such as resolution or cut-free sequent calculus, admit feasible interpolation, whereas strong
proof systems typically lack it (under reasonable assumptions). In particular, Bonet et al. [2]
proved that LK does not have feasible interpolation if integer factoring is hard for P/poly .

Corollary 3.5 If LK does not have feasible interpolation, then neither does KSg.

Proof: Given an LK proof of ϕ(~p, ~q) ∨ ψ(~p, ~r), we can construct a KSg-proof of

(∗)
(
ϕ(~p, ~q) ∨

∨
i

(pi ∧ ¬pi) ∨
∨
i

(qi ∧ ¬qi)
)
∨

(
ψ(~p, ~r) ∨

∨
i

(ri ∧ ¬ri)
)

by Theorems 2.7 and 3.2. The formula (∗) preserves the separation of variables in ϕ∨ψ, and
as the extra disjuncts are false, any circuit interpolating (∗) also interpolates ϕ ∨ ψ. �

Example 3.6 There are polynomial-time constructible KSg + c↑-proofs of the functional
pigeonhole principle

PHPn+1
n =

∨
i<n+1

∧
j<n

¬pi,j ∨
∨

i<n+1
j<j′<n

(pi,j ∧ pi,j′) ∨
∨
j<n

i<i′<n+1

(pi,j ∧ pi′,j).

Proof: Buss [7] has constructed polynomial proofs of PHP in LK , hence also in SKSg by
Theorem 2.7. Using Theorem 3.2, we produce KSg-proofs of

PHPn+1
n ∨

∨
i<n+1
j<n

(pi,j ∧ ¬pi,j).

It thus suffices to construct KSg + c↑-derivations of

pi,j ∧ ¬pi,j

PHPn+1
n

for every i, j. We assume i = j = 0 to simplify the notation, and derive

9

sequent rule w-r w-l c-r c-l ¬-r ¬-l xi

CoS rule w↓ w↑ c↓ c↑ i↓ i↑ xi

Table 3: Correspondence of sequent and CoS rules

p0,0 ∧ ¬p0,0
=, i↓

p0,0 ∧ ¬p0,0 ∧
(∧

j 6=0 ¬p0,j ∨
∨

j 6=0 p0,j

)
=, s ∧

j ¬p0,j ∨
(
p0,0 ∧

∨
j 6=0 p0,j

)
c↑ ∧

j ¬p0,j ∨
(∧

j 6=0 p0,0 ∧
∨

j 6=0 p0,j

)
=, s ∧

j ¬p0,j ∨
∨

j 6=0(p0,0 ∧ p0,j)
=, w↓ .

PHPn+1
n

�

Remark 3.7 A similar argument shows that there are polynomial-time constructible KSg +
c↑-proofs of the onto pigeonhole principle∨

i<n+1

∧
j<n

¬pi,j ∨
∨
j<n

∧
i<n+1

¬pi,j ∨
∨
j<n

i<i′<n+1

(pi,j ∧ pi′,j).

However, it does not seem to work for the multi-function pigeonhole principle∨
i<n+1

∧
j<n

¬pi,j ∨
∨
j<n

i<i′<n+1

(pi,j ∧ pi′,j).

Notice that this situation matches the known upper bounds for the monotone sequent calculus
MLK : Atserias et al. [1] have constructed polynomial tree-like MLK -proofs of the functional
and onto pigeonhole principles (expressed as sequents of monotone formulas), but for the
most general version of PHP only the quasipolynomial proof given by Theorem 2.8 is known.

4 The correspondence of CoS to the sequent calculus

In this section we present the simulation of CoS in tree-like sequent calculus and back, as
described in [4, 13]. We include a detailed proof so that it is clear that the translation is
polynomial-time, and to highlight the key information on which fragments of SKSg and LK
correspond to each other.

Definition 4.1 If Γ is a sequence of formulas, we let
∧

Γ be the conjunction of its elements
bracketed to the right, where the empty conjunction is >. Notice that

∧
Γ is, provably in Sg ,

independent of the choice of bracketing or order, and
∧

Γ1∧
∧

Γ2 is equivalent to
∧

(Γ1∪Γ2).
Big disjunctions

∨
∆ are handled similarly.

10

Theorem 4.2 Let R be a set of non-MLL sequent rules from Table 2, and let R′ be the
matching set of CoS rules according to Table 3. Given a tree-like MLL +R-proof of size s of

a sequent Γ ` ∆, we can construct in polynomial time an Sg +R′-derivation of
∧

Γ∨
∆

with

O(s) lines, and size O(s2).

Proof: By induction on the length of the derivation. The identity rule translates to the trivial
derivation

ϕ
ϕ

. An instance of the cut rule

Γ ` ϕ,∆ Π, ϕ ` Λ
Γ,Π ` ∆,Λ

is simulated by the derivation ∧
Γ ∧

∧
Π

I.H.
(ϕ ∨

∨
∆) ∧

∧
Π

s,∧c
(
∧

Π ∧ ϕ) ∨
∨

∆
I.H. .∨

Λ ∨
∨

∆

(Here and below we do not indicate instances of the ∧ · · · and ∨ · · · rules needed to manipulate
big conjunctions and disjunctions, as remarked in Definition 4.1.) The rules ∧-l, ∨-r, ⊥-l, >-r,
e-l, and e-r are obvious, and the rules >-l and ⊥-r are handled by an easy application of ∧u1

and ∨u2, respectively. The steps for ∧-r and ∨-l are as follows:∧
Γ ∧

∧
Π

I.H.
(ϕ ∨

∨
∆) ∧

∧
Π

I.H.
(ϕ ∨

∨
∆) ∧ (ψ ∨

∨
Λ)

s
((ϕ ∨

∨
∆) ∧ ψ) ∨

∨
Λ

s,∧c
(ϕ ∧ ψ) ∨

∨
∆ ∨

∨
Λ

∧
Γ ∧

∧
Π ∧ (ϕ ∨ ψ)

s,∨c ∧
Γ ∧ (ϕ ∨ (

∧
Π ∧ ψ))

s
(
∧

Γ ∧ ϕ) ∨ (
∧

Π ∧ ψ)
I.H. ∨

∆ ∨ (
∧

Π ∧ ψ)
I.H. .∨

∆ ∨
∨

Λ

This completes the proof for MLL. The ¬-rules can be simulated by i↑ and i↓ using∧
Γ ∧ ¬ϕ

I.H.
(ϕ ∨

∨
∆) ∧ ¬ϕ

s,∧c,∨c ∨
∆ ∨ (¬ϕ ∧ ϕ)

i↑,∨u1 ∨
∆

∧
Γ

i↓,∧u2 ∧
Γ ∧ (ϕ ∨ ¬ϕ)

s
(
∧

Γ ∧ ϕ) ∨ ¬ϕ
I.H. .∨

∆ ∨ ¬ϕ

The other rules from Table 3 are completely straightforward. �

Remark 4.3 The translation of the cut rule employed an instance of switch, but notice that
it was only needed to shuffle the side-formulas around. It is not necessary in the impor-
tant special case with ∆ = ∅; the cut rule then basically follows from mere transitivity of
derivation, hence it cannot be prevented by throwing away any CoS rule or a set of rules.

We formulated the proof of Theorem 4.2 as an inductive argument, but it can also be
easily visualized globally. The transformation basically consists of a left-to-right depth-first
traversal of the sequent proof tree; when visiting a particular node, we can make some CoS

11

inferences (depending on the rule) before we visit its ancestors (e.g., the s inferences in the
simulation of ∨-l above), after we visit them (cf. ∧-r above), or between visiting the first
and the second ancestor of a binary rule (cf. the simulation of cut). The context describing
the path from the current node to the root is carried along, the relevant CoS inferences are
actually performed inside this context. (The depth of the CoS inference thus corresponds to
the depth of the sequent proof tree.)

We illustrate it in Figure 1, which shows an LK -proof together with its SKSg translation.

i
p ` p

i
q ` q

1 ¬-r
` ¬q, q

∧-r 2
p ` p ∧ ¬q, q 3

i
p ` p

¬-l 5
p,¬p `

i
q ` q

¬-l 6¬q, q `
4 ∨-l

p,¬q,¬p ∨ q `
e-l

¬p ∨ q, p,¬q `
∧-l¬p ∨ q, p ∧ ¬q `
cut

p,¬p ∨ q ` q

p ∧ (¬p ∨ q)
i↓ 1

(p ∧ (¬q ∨ q)) ∧ (¬p ∨ q)
s 2

((p ∧ ¬q) ∨ q) ∧ (¬p ∨ q)
s 3

(p ∧ ¬q ∧ (¬p ∨ q)) ∨ q
2× s 4

((p ∧ ¬p) ∨ (¬q ∧ q)) ∨ q
i↑ 5

(¬q ∧ q) ∨ q
i↑ 6q

Figure 1: An example of a sequent proof, and its CoS representation

We omit instances of the = rule from the diagram; for the remaining inference steps we
indicate by numbers the place in the traversal sequence of the sequent proof-tree where they
come from. Notice that most points of the traversal sequence do not actually generate any
CoS inference.

Lemma 4.4 Given a context ξ{ }, and formulas ϕ,ψ, we can construct in polynomial time
a tree-like cut-free MLL-derivation of ξ{ϕ} ` ξ{ψ} from ϕ ` ψ with O(|ξ|) lines, and size
O(|ξ| · (|ξ|+ |ϕ|+ |ψ|)).

Proof: By induction on the complexity of ξ. The base case is trivial, and the induction steps
for ∧ and ∨ follow by

ϕ ` ψ
I.H.

ξ{ϕ} ` ξ{ψ} i
χ ` χ

∧-r
ξ{ϕ}, χ ` ξ{ψ} ∧ χ

∧-l
ξ{ϕ} ∧ χ ` ξ{ψ} ∧ χ

ϕ ` ψ
I.H.

ξ{ϕ} ` ξ{ψ} i
χ ` χ

∨-l
ξ{ϕ} ∨ χ ` ξ{ψ}, χ

∨-r .
ξ{ϕ} ∨ χ ` ξ{ψ} ∨ χ

�

12

Lemma 4.5 Given a multiset Γ of k formulas of total size s, we can construct in polynomial
time a cut-free tree-like MLL-derivation of the sequents

Γ `
∧

Γ
∨

Γ ` Γ

with O(k) lines, and size O(ks).

Proof: Exercise. �

Theorem 4.6 Let R be a set of non-MLL sequent rules from Table 2, and let R′ be the
matching set of CoS rules according to Table 3. Given an Sg +R′-derivation of∧

Γ∨
∆

of size s, we can construct in polynomial time a tree-like MLL+R-proof of the sequent Γ ` ∆
with O(s) lines, and size O(s2).

Proof: By Lemma 4.5, we may assume that Γ = {ϕ} and ∆ = {ψ} are singletons. Given a
CoS derivation ϕ = ϕ0, . . . , ϕk = ψ, we can construct proofs of the sequents ϕi ` ϕi+1, and
derive ϕ ` ψ by k cuts. It thus suffices to handle a single CoS inference step. By Lemma 4.4,
we may assume that the inference is shallow. The rest is just a matter of perseverance; we
indicate derivation of some of the rules below, and leave the rest to the reader.

i
ϕ ` ϕ

>-l
ϕ,> ` ϕ

∧-l
ϕ ∧ > ` ϕ

i
ϕ ` ϕ >-r ` >

∧-r
ϕ ` ϕ ∧ >

i
ψ ` ψ i

ϕ ` ϕ
∧-r

ψ,ϕ ` ψ ∧ ϕ
e-l

ϕ,ψ ` ψ ∧ ϕ
∧-l

ϕ ∧ ψ ` ψ ∧ ϕ

i
ϕ ` ϕ i

ψ ` ψ
∧-r

ϕ,ψ ` ϕ ∧ ψ i
χ ` χ

∧-r
ϕ,ψ, χ ` (ϕ ∧ ψ) ∧ χ

∧-l
ϕ ∧ (ψ ∧ χ) ` (ϕ ∧ ψ) ∧ χ

i
ϕ ` ϕ i

ψ ` ψ
∧-r

ϕ,ψ ` ϕ ∧ ψ i
χ ` χ

∨-l
ϕ,ψ ∨ χ ` ϕ ∧ ψ, χ

∧-l,∨-r
ϕ ∧ (ψ ∨ χ) ` (ϕ ∧ ψ) ∨ χ

i
ϕ ` ϕ¬-r
` ϕ,¬ϕ

>-l,∨-r
> ` ϕ ∨ ¬ϕ

i
ϕ ` ϕ

¬-l
ϕ,¬ϕ `

∧-l,⊥-r
ϕ ∧ ¬ϕ ` ⊥

⊥-l ⊥ `
w-r

⊥ ` ϕ

�

5 The relationship to the monotone sequent calculus

The goal of this section is to show the equivalence of the analytic CoS system KSg + c↑
to the monotone sequent calculus MLK , building on the correspondence given by Theorems
4.2 and 4.6. A minor problem arises because of the MLK w-l rule, which translates to the

13

w↑ rule, absent in KSg + c↑. (The w↑ CoS rule is not considered analytic.) We resolve it by
showing that w↑ can be easily eliminated from KSg + c↑+ w↑-proofs of formulas. Although
the elimination cannot work literally for general derivations with assumptions other than >
(indeed, an instance of w↑ is itself an example of a derivation which cannot be simulated in
KSg +c↑, polynomially or otherwise), something to similar effect can be achieved as well. The
upshot is that KSg + c↑ and KSg + c↑+ w↑ can be treated as essentially identical systems.

The simulation naturally works for atomic variants of the structural rules, we obtain the
general version as a corollary using Theorem 2.4.

Theorem 5.1 The calculus KS + ac↑ polynomially simulates KS + ac↑+ aw↑, and KS poly-
nomially simulates KS + aw↑.

More generally, given a KS±ac↑+aw↑ derivation of
ϕ

ψ
, we can construct in polynomial

time a KS ± ac↑ derivation of
ϕ′

ψ
, where ϕ′ differs from ϕ by substitution of > for some

occurrences of literals.

Proof: Let π be a derivation of
ϕ

ψ
in KS +aw↑±ac↑. Let ξ{a}

ξ{>}
be the topmost instance

of aw↑ occurring in π. We mark some occurrences of the literal a in π as follows:

• The indicated occurrence of a in the line ξ{a} above is marked.

• If ζ{ω}
ζ{χ}

is an inference in π, then any occurrence of a in ζ which is marked in the

conclusion of the rule is also marked in the premise.

• If ζ{ω}
ζ{χ}

is an instance of s, m, or = in π, then for any marked occurrence of a in χ,

the corresponding occurrence of a in ω (defined in an obvious way) is also marked.

• If ζ{a ∨ a}
ζ{a}

is an instance of ac↓ in π, and the indicated occurrence of a in the

conclusion is marked, then both occurrences of a in the premise are also marked.

• If ζ{a}
ζ{a ∧ a}

is an instance of ac↑ in π, and both indicated occurrences of a in the

conclusion are marked, then the occurrence in the premise is also marked.

We replace all marked occurrences of a by >, and move on to the next instance of aw↑,
repeating the process until we reach the end of the proof.

The transformation does not change the size of the proof, and it turns all instances of

aw↑ into trivial inferences ξ{>}
ξ{>}

, which may be simplified by removing one of the lines.

The definition of marking ensures that inference steps in π remain valid instances of the same
rule, except for the following cases:

• If only one occurrence of a is marked in the conclusion of an inference ζ{a}
ζ{a ∧ a}

, it

is transformed into ζ{a}
ζ{> ∧ a}

, which is an instance of ∧u1.

14

• An instance ζ{>}
ζ{a ∨ ¬a}

of i↓ may turn into ζ{>}
ζ{> ∨ ¬a}

or ζ{>}
ζ{> ∨ >}

. The

latter is an instance of x1, and the former can be fixed by a subderivation

ζ{>}∨u2
ζ{> ∨ ⊥}

aw↓ .
ζ{> ∨ ¬a}

• An instance ζ{⊥}
ζ{a}

of aw↓ may turn into ζ{⊥}
ζ{>}

. This is an instance of w↓; if we

insist on using only aw↓, it can be eliminated as in Theorem 2.4.

�

Corollary 5.2 KSg + c↑ polynomially simulates KSg + c↑+w↑, and KSg polynomially sim-
ulates KSg + w↑.

Given a KSg±c↑+w↑-derivation of
ϕ

ψ
, we can construct in polynomial time a KSg±c↑

derivation of
ϕ′

ψ
, where ϕ′ is as in Theorem 5.1.

Proof: Use Theorems 2.4 and 5.1. �

We proceed with the basic equivalence of KSg+c↑+w↑ and MLK wrt monotone sequents.

Theorem 5.3 Let Γ and ∆ be multisets of monotone formulas.

(i) Given a tree-like MLK-proof of Γ ` ∆, we can construct in polynomial time a KSg +

c↑+ w↑-derivation of
∧

Γ∨
∆

.

(ii) Given a KSg + c↑ + w↑-derivation of
∧

Γ∨
∆

, we can construct in polynomial time a

tree-like MLK-proof of Γ ` ∆.

Proof: (i) is a special case of Theorem 4.2.
(ii): By Theorem 2.4, we may assume that all instances if i↓ in the proof are atomic. We

replace all negative literals occurring in the proof with >. This preserves the validity of all

inference steps in the proof, except for instances of ai↓, which turn into ξ{>}
ξ{p ∨ >}

. We

can simulate the latter by w↓, hence we obtain a derivation in Sg + {w↓, w↑, c↓, c↑}. We can
transform it in an MLK -proof by Theorem 4.6. �

What remains to show is that arbitrary formulas can be satisfactorily approximated by
monotone sequents, so that we can make Theorem 5.3 into a simulation of general KSg + c↑-
proofs.

Definition 5.4 If ϕ(p0, . . . , pn−1) is a formula using only the indicated variables, let ϕm(~p, ~q)
be the monotone formula such that ϕ = ϕm(~p,¬~p), where q0, . . . , qn−1 is a sequence of fresh
variables.

15

Theorem 5.5 Let ϕ and ψ be formulas in the variables pi, i < n.

(i) LK-proofs of ψ and {pi ∨ qi; i < n} ` ψm(~p, ~q) are constructible from each other in
polynomial time.

(ii) KSg + c↑+ w↑-derivations of
ϕ

ψ
and

∧
i<n(pi ∨ qi) ∧ ϕm(~p, ~q)

ψm(~p, ~q)

are constructible from each other in polynomial time.

Proof: (i): Given a proof of

{pi ∨ qi; i < n} ` ψm(~p, ~q),

we substitute ¬pi for qi in the whole proof, and cut away the unwanted formulas from the
antecedent using separate subproofs of ` pi ∨ ¬pi.

On the other hand, we can construct a polynomial-size derivation of

ϕm(~p,¬~p) ` ϕm(~p, ~q)

from assumptions
¬pi ` qi

as in Lemma 4.4. We weaken all sequents in the derivation by {pi ∨ qi; i < n}, and get rid of
the extra assumptions using subproofs of

pi ∨ qi,¬pi ` qi.

We obtain a polynomial-size proof of

{pi ∨ qi; i < n}, ϕ ` ϕm(~p, ~q),

we can thus derive
{pi ∨ qi; i < n} ` ϕm(~p, ~q)

from ` ϕ by a cut.
(ii): Given a derivation of ∧

i<n(pi ∨ qi) ∧ ϕm(~p, ~q) ,
ψm(~p, ~q)

we substitute ¬pi for qi in the whole proof, and prefix it with a polynomial-size subproof

ϕ
i↓,= .∧

i<n(pi ∨ ¬pi) ∧ ϕ

16

Assume we are given a derivation of
ϕ

ψ
. We may assume that no variables except ~p appear

in the proof, and that all instances of i↓ are atomic. We put all formulas in the proof into
the context

∧
i<n(pi ∨ qi) ∧ { }, and replace ¬pi with qi. This transformation preserves the

inference steps, except for instances of ai↓, which we simulate by polynomial-size derivations∧
i<n(pi ∨ qi) ∧ ξ{>}∧

i<n(pi ∨ qi) ∧ ξ{pi ∨ qi}

constructed dually to Lemma 3.1. We get rid of the extra
∧

i<n(pi ∨ qi) ∧ · · · at the end of
the proof by w↑. �

Corollary 5.6 KSg + c↑-proofs of ψ(~p), and tree-like MLK-proofs of

{pi ∨ qi; i < n} ` ψm(~p, ~q),

are constructible from each other in polynomial time.

Proof: Use Corollary 5.2, and Theorems 5.3 and 5.5. �

Corollary 5.7 KSg + c↑ quasipolynomially simulates SKSg. If a formula ϕ in n variables
has an SKSg-proof of size s, it has a KSg + c↑-proof of size sO(1)nO(log n).

Proof: By Theorems 2.7, 5.5 (i), 2.8, and Corollary 5.6. �

Corollary 5.8 The following are equivalent.

(i) KSg + c↑ polynomially simulates SKSg.

(ii) Tree-like MLK polynomially simulates LK with respect to monotone sequents whose
antecedent is of the form {pi ∨ qi; i < n}.

Proof: (ii) → (i) follows immediately from Theorem 5.5 and Corollary 5.6.
(i) → (ii): Given an LK -proof of {pi ∨ qi; i < n} ` ∆(~p, ~q, ~r), we can construct an LK -

proof of the formula ϕ = (
∨

∆)(~p,¬~p, ~r). We can make it tree-like, and by Theorem 4.2 we
can construct an SKSg-proof of ϕ. By assumption, we can construct a KSg + c↑-proof of ϕ
as well, which we can transform in a tree-like MLK -proof of

{pi ∨ qi; i < n}, {rj ∨ sj ; j < m} `
∨

∆

by Corollary 5.6. As ∆ does not involve ~s, we may eliminate the extra assumptions by
substitution of > for sj , and we finish the proof using Lemma 4.5. �

Remark 5.9 We do not know what is the complexity of KSg without the c↑ rule. On the
one hand, Theorem 3.2 suggests that it is close to SKSg . On the other hand, attempts to
eliminate c↑ in an obvious way in the spirit of Theorem 5.1 seem to incur an exponential
blow-up of the proof. We thus cannot exclude the possibility that the c↑ rule provides a
significant speed-up over KSg .

17

References

[1] Albert Atserias, Nicola Galesi, and Pavel Pudlák, Monotone simulations of non-
monotone proofs, Journal of Computer and System Sciences 65 (2002), no. 4, pp. 626–638.

[2] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz, No feasible interpolation for TC0-
Frege proofs, in: Proceedings of the 38th Annual IEEE Symposium on Foundations of
Computer Science, 1997, pp. 254–263.

[3] Kai Brünnler, Deep inference and symmetry in classical proofs, Logos Verlag, Berlin,
2004.

[4] , Deep inference and its normal form of derivations, in: Logical Approaches
to Computational Barriers, 2nd Conference on Computability in Europe, CiE 2006, Pro-
ceedings (A. Beckmann, U. Berger, B. Löwe, and J. V. Tucker, eds.), Lecture Notes on
Computer Science vol. 3988, Springer, 2006, pp. 65–74.

[5] Paola Bruscoli and Alessio Guglielmi, On the proof complexity of deep inference, ACM
Transactions on Computational Logic (2008), accepted.

[6] , On analytic inference rules in the calculus of structures, note, http://

cs.bath.ac.uk/ag/p/Onan.pdf, 2007.

[7] Samuel R. Buss, Polynomial size proofs of the propositional pigeonhole principle, Journal
of Symbolic Logic 52 (1987), pp. 916–927.

[8] Stephen A. Cook and Robert A. Reckhow, The relative efficiency of propositional proof
systems, Journal of Symbolic Logic 44 (1979), no. 1, pp. 36–50.

[9] Alessio Guglielmi, A system of interaction and structure, ACM Transactions on Compu-
tational Logic 8 (2007), no. 1, pp. 1–64.

[10] Alessio Guglielmi and Lutz Straßburger, Non-commutativity and MELL in the calculus
of structures, in: Computer Science Logic: 15th International Workshop, CSL 2001,
Proceedings (L. Fribourg, ed.), Lecture Notes in Computer Science vol. 2142, Springer,
2001, pp. 54–68.

[11] Jan Kraj́ıček, Lower bounds to the size of constant-depth propositional proofs, Journal of
Symbolic Logic 59 (1994), no. 1, pp. 73–86.

[12] , Bounded arithmetic, propositional logic, and complexity theory, Encyclope-
dia of Mathematics and Its Applications vol. 60, Cambridge University Press, 1995.

[13] Richard McKinley, Classical categories and deep inference, in: Structures and Deduction
– the Quest for the Essence of Proofs (satellite workshop of ICALP 2005) (P. Bruscoli,
F. Lamarche, and C. Stewart, eds.), Technische Universität Dresden, 2005, pp. 19–33.

18

