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Solvability of dynamic contact problems
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I. Bock and J. Jarusek*

Abstract: The existence of solutions is proved for unilateral dynamic contact problems of elas-
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1 Introduction and notation

The dynamic contact problems are not frequently solved in the framework of variational
inequalities. For the elastic problems there is only a very limited amount of results
available (cf. [6] and there cited literature). The aim of the present paper is to extend
these results to the nonlinear von Karman plates in contact with a rigid obstacle. The
presented results also extend the research made for the quasistatic contact problems for
these plates [3] and [4]. The solvability of dynamic contact problems for von Karmén
plates with short and long memory has been proved in [1] and [2], respectively.

The existence of solutions is proved for an approximate penalized problem at first. The
limit process to the original problem is enabled by an L; estimate of the penalty term and
by the use of the compact imbedding theorem and by a proper use of the interpolation
technique). The idea of the proof is similar to that introduced by K. Maruo in [8].

Let 2 C R? be a bounded convex polygonal or C*! domain with a boundary I
and I = (0,7) a bounded time interval. The unit outer normal vector is denoted by
n = (ny,n2), T = (—ng,ny) is the unit tangent vector. The displacement is denoted by
u = (u;). Strain tensor is defined as &;;(w) = 3(9;u;+0;u;+0;uszdjus) —w30;5us, i,j = 1,2,
g3 =0, ¢+ =1,2,3. Emploing the Einstein summation convention the constitutional law

has the form

| _EVQ (1 = v)eij(u) + véijem(u)). (1)

The constants £/ > 0 and v € <(), %) are the Young modulus of elasticity and the Poisson
ratio, respectively. We shall use the abbreviation

oij(u) =

h2
b= ———,
120(1 — v?)
where h is the the plate thickness and p is the density of the material. We denote
[u, U] = 311u8221) + agguall’l) — 2812u8121). (2)
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Here and in the sequel the notation as follows:

0 0?
Ty 2= =0, i=12
88 a57 asa/r aS””’ al a$17 [/ ) <
. Ov . 0%
Uza,?):@, Q:IXQ,S:]XF

is employed.

By W} (M) with k > 0 and p € [1,00] the Sobolev (for a noninteger k the Sobolev-
Slobodetskii) spaces are denoted provided they are defined on a domain or an appropriate
manifold M. By W;“(M) we denote the spaces with zero traces on OM. If p = 2 we use
the notation H*(M), H]’;(M) For the anisotropic spaces W) (M) k = (ki ky) € RY, ky is
related with the time while ky with the space variables (with the obvious consequences for
p = 2) provided M is a time-space domain. The duals to H*(M) are denoted by H*(M).
By C we denote the space of continuous functions with the appropriate sup-norm. By
A, A we denote the space Lo (I; HX(R)), Loo(I; H2(R)), respectively.

Remark 1.1 In order to apply Lemma 1 from [7] containing the estimate (11) we need
the reqularity v € H3(2) for a weak solution of the Dirichlet problem

Nv=g on 2, v=0,v=0 onTl, g H ().
The regqularity result for C*' domain Q is due to Theorem 2.2, Chapter 4 from [9]. In the
case of convex polygonal domain we apply Theorem 2.1 from [10]. Via the local rectification

of the boundary (cf [6]) it seems to be possible to extend the validity of the result to  in
C2.

2 Contact of a free plate

2.1 Problem formulation and penalization

Neglecting the rotary inertia of the plate we obtain the classical formulation for the
bending function v and the Airy stress function v composed of the system

i+ bEN?*u — [u,v] = f + g,
u>0,g>0, ug =0, on @, (3)
NA?*v + Elu,u] =0
the boundary value conditions
u>0, XY(u)>0, u¥(u)=0, #(u) =0, v=0and d,v =0o0n S, (4)

M (u)
M(u) = Au+ (1 — 1) (2n1n9019u — niOxnu — n3du);
Y(u) =bEV (u),

V(u) = 0, Au+ (1 —v)0;[(n] — n3)012u + ning(Osou — Op1u)]
and the initial conditions

M(u),

u(0,-) = up >0, 4(0,-) =uy on 2. (5)
For u,y € Ly(I; H*(02)) we define the following bilinear form
A (u,y) — b(@kkuakky + v(011uOs2y + Oxoudiy) + 2(1 — l/)algu@lgy) (6)
almost everywhere on () and introduce a cone € as
¢ ={yeH; y=>0} (7)
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Then the variational formulation of the problem (3-5) has the following form:
Look for {u,v} € € x Ly(I; H%(£)) such that
/ (EA(u,y1 —u) + i(yr — u) — [u,v](yy —w)) dedt > / [y —w)dzdt,  (8)
Q Q

/Q (L0lys + Elu,ulys) de = 0 (y1,42) € € x H2(02). ()

We define the bilinear operator @ : H2(£2)> — H2(£2) by means of the variational
equation

/QA@(u,v)Agpdx:/Q[u,v]gpdx, o € H*(02). (10)

The equation (10) has a unique solution, because [u,v] € L(§2) — H?(2)*. The well-
defined operator @ is evidently compact and symmetric. The domain {2 fulfils the assump-
tions enabling to apply Lemma 1 from [7] due to which @ : H?*(£2)* — W2(£2), 2 < p < o0
and

|1P(u, ) [lwzee) < cllullaz@llvliw @) Yu € H*(2), v € W,(£2). (11)

With its help we reformulate the system (8,9) into the following variational inequality:

Problem &. We look for w € € such that it € F*, the initial conditions (5) are satisfied
i a certain generalized sense, and the inequality

¢ (12)
> /Q fly — u) dzdt.

holds for any y € €.

Here (-,-)¢ denotes the duality pairing between # and its dual as a natural extension
extension of the scalar product in Lo(Q).
In the sequel we shall prove the existence of solutions to problem &2.

For any n > 0 we define the penalized problem which includes the system of equations

i+ bEN>u — [u,v] = f+n"tu,
[u,v] = f+n on Q (13)
A?*v+ Elu,u] =0
with ©~ = max{0, —u}, the boundary value conditions
X(u)=0, #(u)=0, v=0and d,v =0o0n S (14)

and the initial conditions (5). It has the variational formulation:

Look for {u,v} € Loo(I; H*(£2)) X Lo(I; H2(£2)) such that i € Lo(I; (H2(£2))*) and the
following system

/ (iiz1 + EA(u, 21) — [u,v) 21 — ' 2) dedt = / fz dz dt, (15)
Q Q

/ (AvAzy + Elu,ul)zodz =0 (16)

is satisfied for any (21, z2) € Lo(I; H2(£2)) x H2(£2) and there hold the conditions (5).



With the help of the operator @ we get the following reformulation of (15), (16):
Problem &,.
We look for u € Loo(I, H*(£2)) such that i € Lo(I; (H?($2))*), the equation

/Q ( — iz + EA(u, z) + Elu, ®(u,u)]z — n_lu_z) dr dt

|
(12

fz
holds for any z € Lo(I; (£2)) and the initial conditions (5) remain valid.
We shall verify the existence of a solution to the penalized problem.

Theorem 2.1 Let f € Ly(Q), ug € H*(02), and uy € Ly(2) Then there exists a solution
u of the problem &,
If v=—Ey®(u,u), then a couple {u,v} is a solution of the problem (15), (16), (5).

Proof. Let us denote by {w; € H?*(2); i € N} an orthonormal in Ly({2) basis of H?({2).
We construct the Galerkin approximation u,, of a solution in a form

(17)
dx dt,

U (t) = Zai(t)wi, a;(t) R, i=1,...,m, meN,
i=1

j@(um@ﬁm+—EA@%Aﬂ,w0

+ Elum (), 0] P(tn, wpn)(t) ) — 0 " (£)"w;) da (18)
= / fw;dx, i=1,...,m,
7
U (0) = Ugm, Um(0) = Uiy, Ui — Uy in Lo(), and g, — ug in H*(Q) (19)

The system (18) can then be expressed in the form

a; = Fi(t,dq, ...,y 01y oy i), 0= 1, ...,m
Its right-hand side satisfies the conditions for the local existence of a solution fulfilling
the initial conditions corresponding the functions ug,,, u1,,. Hence there exists a Galerkin

approximation u,,(t) defined on some interval I,,, = [0, t,,], 0 < ¢, < T After multiplying
the equation (18) by ¢;(t), summing up with respect to 4, taking in mind

/Q[u,v]yd:c:/g[u,y]vdx (20)

if at least one element of {u, v,y} belongs to H2(£2), ¢f. [5] and integrating we obtain for
Qm =1, xQ

/ %8,5 (ui% + EA(Up,, Up) + g(A@(um, Up))? + n_l(u;)Q) dx dt
" (21)

:/ﬁ%@ﬁ
Q

”um”%o@(I;Lg(Q)) + HUmH%N(I;m(Q)) + (| (m, Um)H%oo(z;m(Q)) + 77_1”11';1H%OO(I;L2(Q)) (
< c=c(f,up,u).
The validity of this a prior: estimate on the time interval I, is obvious. As the right
hand side of such an estimate does not depend on m the prolongation of a solution to the
whole interval I is possible and (22) holds as written. Moreover the estimate (11) implies

D (i ) || Lo r2(02)) < €p = € (f 00, u1) Vp > 2. (23)
P

which leads to the estimates

22)
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The estimate (23) further implies
2p

U, P(Upm, U )| € Lo(I; L.(82)), r = ——,

[t P( )] € Lo(I; Ly (£2)) Do (24)

||[um’@(um’um)]”Lg(I;Lr(Q)) < ¢ = & (f, w0, w).
From the equation (18) we obtain straightforwardly the estimate

it Lo ) < €0 mEN, (25)

where V,,, C H?*({2) is the linear hull of {w;}™,. We proceed with the convergence of
the Galerkin approximation. Applying the estimates (22-25) and the compact imbedding

theorem we obtain for any p € [1,00) a subsequence of {u,,} (denoted again by {u,,}),
and a function u the convergences

Uy —F 1 in 22,
U — 1 in Loo(I; Ly(£2)),
iy — i in (Lo(I; H*(2))), (26)
Uy — U in C(I; H5(£2)) N Loo(I; H*¢(£2)) for any € > 0,

D (U, U ) — P(u,u) in Lo(I; H*(Q)),

D (U, Up) =" P(u, u) in Log(I; WF(12))

Indeed, the first two convergences are obvious and imply
Up, — u in HY2(Q)) — HY*'(I; H="(Q)) for £’ > 0 (27)

and 0 < £”(¢") \, 0 if &\, 0.

The fourth convergence is a consequence of the convergence in the last space in (27)

and the compact imbedding HY/2+<'(I; H'=*"(Q)) — C(I; H'~%(Q)) valid for any & > ¢”.

Clearly 0 < e can be arbitrarily small again. The rest is a result of the interpolation of
this result with the first convergence.

The fifth convergence is then the consequence of the compactness of the operator

@ : H*(2) x H*(2) — H?(£2). The last convergence follows using (11).
Let p e Nand z, = > 1, ¢i(t)w;, ¢ € 2(0,T), i =1, ..., u. We have
/Q (i ()2 (1) + EA(um(t), 24(t))
+ E[um(t)> Zu(t)]gp(um(t)? Um(t) ) - n_lum(t)_zu(t)) dr

_/ f®z(t)de Y m>p, teT.
Q

The convergence process (26) and the property (20) imply that a function w fulfils
/ (2, + EA(u, z,) + Elu, ®(u,u)]z, —n~ 'u"2,) dedt = / fzdxdt.
Q Q

Functions {z,} form a dense subset of the set Ly(I; H*(£2)), hence a function u fulfils the
identity (17). The initial conditions (5) follow due to (19) and the proof of the existence
of a solution is complete.

It is obvious that the estimates
|17 (10 002)) + ||u77|I%OO(I;H2(Q))+||¢(U?77UU)H%OO(I;WI?(Q)) + 07 g 17 (a2
<c = c(f,up,uy).
with u, a solution of the penalized problem remain valid. In fact, here ¢ depends on

(¥l (toriza@)) Hence, since Ly(Q) is dense in (Loo (15 Lo(R2))) ", for f € (Loo(I; L2(2))),
there is a sequence {f;} C Lo(Q) such that fy — f in (Loo(I; LQ(Q)))* It is easy to see

(28)



that the solutions uy of the penalized problems with f; satisfy the same convergences as
in (26). Hence for any f € (Lao(I; L2(£2)))" the penalized problem posesses a solution.

2.2 The limit process to the original problem

We rewrite the penalized problem (13) into the operator form
iy + Bluy) =0~ uy = f (29)
with
B HY(0) — HX QY (B(v),w) — E/ (A(v, w) + [B(v, v), vlw) dz, w € HX(Q)
2
and the initial conditions (5).

Let us multiply the equation (13) by z = 1. We get

OS/n_lu;dZBdt:/ugT,-)d:v—/uldm—/fd:vdtSC’, (30)
Q Q Q Q

where C' is independent of n (cf. (28)). Since B(u,) takes its estimate in (28) and
Li() — Loo(Q)* — H%(Q)*, we get the dual estimate of the accelaration term

|| e+ < C (31)

with C' n-independent. Hence there is a sequence 7, ~\, 0 such that for u; = u,, the
following convergences hold

up =" u in 72,

W =0 in Lo(1; La(92)),

iy =i in

Up — U in C(I; H5(2)) N Loo (I; H*5(82)), € > 0, (32)

D(up, ug) — P(u,u) in Ly(I, H*(Q)),
D(up, ug) = P(u,u) in Loo(I; W;(Q)),
e uy =g in Loo(Q)" — A7,
where g is the corresponding contact force. The fourth convergence in (32) and the
estimate (30) yield that v > 0 on @ and, in particular
up — uin Ly (Q). (33)
The last convergence implies g > 0 in the dual sense. Obviously the expression
| 2 1:La02)) + Ntll Loc sz 2)) + 19 (s ull o wz)) =+ [l (34)
is finite. Moreover, t — wu(t) is strongly (I — L(£2))-continuous, hence it is weakly (I —
H?(Q))-continuous. This yields it is strongly (I — H?*7¢(Q))-continuous, in particular

u € C(Q). The performed convergences have proved that the limit u satisfies the equation
i+ B(u) =f+g (35)

in the dual sense in (L. (I; H*(£2)))*. To prove {g,u) = 0 we take in mind that from the

just proved facts (g, u) = klim 1/mr, {u;, ,uy ) = 0, because u;, — 0 in Lo (Q) and n;, tu;,

— 400

is bounded in L;(Q). With this fact it is obvious that putting v — u as a test function in

(35) with an arbitrary v € € we get the variational inequlity (12). The initial condition

for u is satisfied in the sense of a weak limit in H?(€2) while that for @ is satisfied in the

sense of the integration by parts.

Hence we have proved the following



Theorem 2.2 Let the domain ) be convex polygonal or C** domain in R%. Let uy belong
to H*(Q), ui belong to Ly(Q) and let f be an element of (Leo(1;L2(2)))". Then there
ezists a solution of Problem (2).

Remark 2.3 The idea of the proof of this theorem was substantially based on the imbed-
ding H*(Q) into Loo(Y). It cannot be extended to contact problems of membranes or
bodies.

3 Contact of a clamped plate

In this section we again treat the system (3) with the Dirichlet boundary value condition
u=U, 0J,u=0onSs. (36)

and the initial condition (5). We assume that U is defined on @ and satisfies
U € Ly(I; H*(2)), i € Ly(Q), U > Uy on Q, U(0,-) = ug, and 9,U =0 on S. (37)
for a fixed constant Uy > 0. To state the variational formulation of this problem we shall

use the cone )
H ={ye A +U; y>0} (38)

where # = Lo (I; H*(£2)). The problem to be solved is

Problem & We look for u € ¢ such that it € ()%, the initial conditions (5) are
satisfied in a certain generalized sense, and

Gy =)o+ [ B(Alwy — ) + [ B, w))ly ) do de
¢ (39)
Z/Qf(y—u)dxdt.

holds for any y € £ .

As earlier we apply the penalization of the contact condition. The classical formulation
of the penalized problem is (13), (36), and (5). This leads to its variational formulation

Problem &, We look for u € Ly(I; H2(2)) + U such that it € Ly(I; (H2(R))), the

equation
/ (iiz + EA(u, 2) + [u, E®(u, u)]z — n~'u"2) de dt = / fzdxdt, (40)
Q Q

holds for any z € Ly(I; H*(2)) and the conditions (5) remain valid.

To derive the a priori estimate for this problem we put z = y; (@ — U) for t € (0,7] in
(40), where
1, selo0,t,

'R 0,1}; D5
Xt — {01k x {O, elsewhere.

With the assumption (37) it is not difficult to prove the a priori estimates (28).

The existence of solutions to @n is again proved via Galerkin approximations. Since all
convergences in (26) remain valid, such existence is proved as earlier. Also the uniqueness
result is analogously derived.

We proceed with the convergence of the penalization method. We write u, for the
solution of @n- To get the estimate of the penalty term we put u = u,, 2 = U — u, in



(40). We arrive at the estimate

UO/Q771u77 dx dt < /inun(U —uy)dzdt =
+ / (= (U — tty) + EA(uy, U — uy) + +(([ty, BED(uy, uy)] — f)(U — uy)) dz dt
Q

+ /Q (v (U = uy)) (T, -) da.
Applying the a priori estimates (28) we obtain in a same way as in Section 2 the estimate

I~ s llza) < e(f uo, ua, U) (41)
We proceed similarly as in the case of a free plate. We obtain from (40), (41) the dual
estimate
][ (i < € (42)
with ¢ n—independent. Combining the last estimate with (28) we obtain the convergences
(32) with (%”)* instead of J#*. Applying the same approach as in the case of free plate
we are proving that the limit function wu is a solution of P

Theorem 3.1 Let the domain Q be convex polygonal or C3* domain in R?. Let uy belong
to H*(Q), uy belong to Ly(), f be an element of (Loo(I; L2(2)))" and let U satisfy the

assumption (37). Then there exists a solution to the problem 2.

Remark 3.1. The presented method can also prove the solvability of the unilateral dy-
namic contact problem for simply supported von Karman plates. Different combinations
of the presented boundary value conditions are admissible, too.

Remark 3.2. The nonuniqueness of solutions of the dynamic contact problem, due to
the lack of information about the quality of the response of the system to the contact, is
a well-known fact (cf. [6], Chapter 4 and the references cited there). The only hope is to
get the uniqueness in the class of elastic reactions (energy conserving solutions), because
the penalty method is well assumed to lead to such kind of solution.
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