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Abstract. For a smoothly bounded strictly pseudoconvex domain, we describe the
boundary singularity of weighted Bergman kernels with respect to weights behaving
like a power (possibly fractional) of a defining function, and, more generally, of the
reproducing kernels of Sobolev spaces of holomorphic functions of any real order.
This generalizes the classical result of Fefferman for the unweighted Bergman kernel.
Finally, we also exhibit a holomorphic continuation of the kernels with respect to the
Sobolev parameter to the entire complex plane. Our main tool are the generalized
Toeplitz operators of Boutet de Monvel and Guillemin.

1. Introduction

Let Ω be a bounded strictly pseudoconvex domain in Cn with smooth boundary,
and r a defining function for Ω. Thus r is smooth on the closure Ω of Ω, r < 0 on Ω,
and r = 0, ‖∇r‖ > 0 on ∂Ω. For simplicity of notation, we also use the “positively
signed” defining function ρ = −r. It was then shown by Fefferman [12] that the
Bergman kernel K(x, y) of Ω, when restricted to the diagonal x = y, has the form

(1) K(x, x) =
a(x)

ρ(x)n+1
+ b(x) log ρ(x) with a, b ∈ C∞(Ω).

Further,

(2) a|∂Ω =
n!
πn

J [ρ],

where J [ρ] is the Monge-Ampere determinant

(3) J [ρ] = (−1)n det
[

ρ ∂ρ
∂ρ ∂∂ρ

]

which is positive on ∂Ω in view of the strict pseudoconvexity of Ω.
The formula (1) also extends to K(x, y) for x 6= y, in the following way. We will

say that a function f ∈ C∞(Ω× Ω) is almost-sesquianalytic if ∂f(x, y)/∂x as well
as ∂f(x, y)/∂y vanish to infinite order on the diagonal x = y. For a real-valued

1991 Mathematics Subject Classification. Primary 32W25; Secondary 32A36, 32A25, 47B35.
Key words and phrases. Bergman kernel, Toeplitz operator, Sobolev space, pseudodifferential

operator.
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2 M. ENGLIŠ

function f(x) on Ω, its almost-sesquianalytic extension is any almost-sesquianalytic
function f(x, y) on Ω× Ω such that f(x, x) = f(x) ∀x ∈ Ω and

(4) f(x, y) = f(y, x).

It is well known that such an extension always exists, and is unique up to functions
vanishing on the diagonal to infinite order. Let ρ(x, y) be an almost-sesquianalytic
extension of ρ. From the Taylor expansion, one has

ρ(x, y) + ρ(y, x)− ρ(x)− ρ(y) =
n∑

j,k=1

∂2r(x)
∂xj∂xk

(yj − xj)(yk − xk) + O(|x− y|3).

By the strict pseudoconvexity of Ω, it therefore follows that for ε > 0 small enough

(5) 2 Re ρ(x, y) ≥ ρ(x) + ρ(y) + c|x− y|2

if x, y ∈ Ω and |x− y| < ε. Adjusting ρ(x, y) by a function which vanishes near the
diagonal and satisfies the symmetry condition (4), we can achieve that (5) holds
everywhere on Ω×Ω. Then Re ρ(x, y) ≥ 0 for all x, y ∈ Ω, with equality occurring
only if x = y ∈ ∂Ω.

Throughout the rest of this paper, we will thus fix an almost-sesquianalytic
extension ρ(x, y) of ρ = −r which satisfies (4) and (5) on Ω× Ω.

In particular, log ρ(x, y) and ρ(x, y)α, for any α ∈ C, are thus well defined and
smooth on Ω× Ω.

The analogue of (1) for x 6= y then asserts that there exist almost-sesquianalytic
functions a(x, y) and b(x, y) on Ω× Ω such that

(6) K(x, y) =
a(x, y)

ρ(x, y)n+1
+ b(x, y) log ρ(x, y)

for all x, y ∈ Ω.
The aim of this paper is to establish a similar formula also for weighted Bergman

kernels Kw(x, y) — i.e. the reproducing kernels of the subspaces L2
hol(Ω, w) of all

holomorphic functions in L2(Ω, w) — for smooth positive weights w on Ω which
behave like a power of ρ, in the sense that

(7) w = ρα eg, with α > −1 and g ∈ C∞(Ω).

Furthermore, we also establish various generalizations of (6) for the reproducing
kernels of Sobolev spaces of holomorphic functions (Sobolev-Bergman kernels).

If α = m is a positive integer and log 1
w is strictly plurisubharmonic, it is possible

to derive the weighted analogue of (6) by an argument due to Forelli and Rudin
[13] and Ligocka [25]. Namely, if Ω̃ denotes the Hartogs domain

Ω̃ = {(x, t) ∈ Ω×Cm : ‖t‖2m < w(x)}
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in Cn+m, then Kw(x, y) is the restriction of the (unweighted) Bergman kernel
K̃((x, t), (y, s)) of Ω̃ to the hyperplane s = t = 0:

(8) Kw(x, y) =
πm

m!
K̃((x, 0), (y, 0)).

Moreover, the hypothesis that α be a positive integer ensures that Ω̃ is smoothly
bounded, while the strict plurisubharmonicity of log 1

w implies that it is strictly
pseudoconvex. Finally, the function r((x, t)) = ‖t‖2 −w(x)1/m is clearly a defining
function for Ω̃. Applying Fefferman’s expansion (6) to Ω̃, it thus follows from (8)
that

(9) Kw(x, y) =
a(x, y)

ρ(x, y)n+m+1
+ b(x, y) log ρ(x, y) ∀x, y ∈ Ω.

Also,

a(x, x) =
(n + m)!

m!πn
J [ρ](x) ∀x ∈ ∂Ω.

Using the localization lemma of Fefferman ([12], Lemma 1 on page 6), it can be
shown that (9) in fact remains in force even if log 1

w is assumed to be just plurisub-
harmonic (not necessarily strictly); however, the argument breaks down if log 1

w is
not plurisubharmonic, or if α is not an integer, or if α = 0 and g 6≡ 0.

Our first main result is the following.

Theorem A. For w of the form (7),

(10) Kw(x, y) =





a(x, y)
ρ(x, y)n+α+1

+ b(x, y) log ρ(x, y) if α ∈ Z,

a(x, y)
ρ(x, y)n+α+1

+ b(x, y) if α /∈ Z,

for all x, y ∈ Ω and some almost-sesquianalytic a, b ∈ C∞(Ω× Ω). Moreover,

(11) a(x, x) =
Γ(n + α + 1)
Γ(α + 1) πn

J [ρ](x)
eg(x)

for x ∈ ∂Ω.

It should be noted that the leading term (11) was given by Hörmander [20] for
α = 0, and by Ligocka [25] for g ≡ 0 and any α > −1. The fact that Kw(x, y) is
C∞ on Ω × Ω minus the boundary diagonal was shown for α 6= 0 by Peloso [29].
(For α = 0 it can be proved by a straightforward modification of Kerzman’s original
argument [22] for the unweighted Bergman kernel.)

Our second main result concerns, in a sense, an extension of (6) and (10) to
α ≤ −1: namely, to the reproducing kernels of Sobolev spaces of holomorphic
functions.

Recall that the ordinary Sobolev space W s(Ω), on a smoothly bounded domain
Ω ⊂ Rn, with s a nonnegative integer, consists of all functions on Ω whose distri-
butional derivatives of orders up to s belong to L2, with the norm

(12) ‖f‖s :=
( ∑

|ν|≤s

‖Dνf‖2L2(Ω)

)1/2
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where the summation is over all multiindices ν of length not exceeding s, and Dν

stands for the corresponding differentiation. Equivalently, W s(Ω) is the completion
of C∞(Ω) with respect to the norm (12). The closure, in W s(Ω), of the subset D(Ω)
of all functions in C∞(Ω) whose support is a compact subset of Ω is denoted by
W s

0 (Ω). For negative integers s, W s(Ω) is defined as the space of all distributions
supported on Ω which are bounded as linear functionals on W s

0 (Ω) — that is, loosely
speaking, as the dual of W s

0 (Ω) with respect to the L2-pairing

〈f, g〉L2(Ω) :=
∫

Ω

f g

(the integral being taken with respect to the Lebesgue measure). Finally, for non-
integer s the spaces W s(Ω) are defined by interpolation.

Alternatively, one can first define the Sobolev spaces on the whole Rn, for any
real order s, as the spaces of tempered distributions f whose Fourier transform
satisfies

(13) ‖f‖′s :=
( ∫

Rn

(1 + ‖ξ‖2)s|f̂(ξ)|2
)1/2

< ∞.

One the defines W s(Ω) as the subspace of all f ∈ W s(Rn) which, in some appro-
priate sense, are “supported” on Ω. On the level of norms, this amounts to taking
instead of (12) the (equivalent) norms

(14) ‖f‖′s :=
( ∑

|ν|≤s

s!
ν1! . . . νn!

‖∂νf‖2L2(Ω)

)1/2

.

See e.g. [27] for more details on Sobolev spaces.
In general, functions in the Sobolev spaces of fractional order are rather difficult

to characterize explicitly; fortunately, the situation is much better if Ω is a bounded
strictly pseudoconvex domain in Cn with smooth boundary and we restrict atten-
tion to holomorphic functions — that is, to subspaces W s

hol of holomorphic functions
in W s.

First of all, it is known ([26], Remark 1 on p.31) that for s < 1
2 , the space W s

hol(Ω)
coincides with L2

hol(Ω, |r|−2s), with equivalent norms. Thus our Theorem A can be
interpreted as a result about reproducing kernels of “Sobolev-Bergman spaces”
(cf. [17]); however, unfortunately, since spaces with equivalent norms may have
kernels with wildly different boundary singularities (see §8.1 below for an example),
this does not tell us anything about the singularity of the kernel of W s

hol(Ω) with
the norm (12) or (14).

Secondly, it is a result of Beatrous [1] that for any s ∈ R and m a nonnegative
integer, a holomorphic function f belongs to W s

hol if and only if ∂νf ∈ W s−m
hol for

all multiindices ν with |ν| ≤ m; further, ‖f‖s is equivalent to the norm

( ∑

|ν|≤m

‖∂νf‖2W s−m

)1/2

.



TOEPLITZ OPERATORS AND BERGMAN KERNELS 5

In particular, combining this with the facts from the previous paragraph, we see
that if m > s − 1

2 then f ∈ W s
hol if and only if ∂νf ∈ L2

hol(Ω, |r|2m−2s) whenever
|ν| ≤ m, and ‖f‖s is equivalent to the norm

(15)
( ∑

|ν|≤m

‖∂νf‖2L2(Ω,|r|2m−2s)

)1/2

.

(We will actually obtain a new proof of this equivalence in Sections 6 and 7 below as
a byproduct.) Again, this equivalence does not tell us anything about the boundary
behaviour of the kernels, except for the leading term.

Finally, it is also a result of [1] that one need not consider all derivatives ∂ν

in (15), but just “complex normal” derivatives: namely, let D be the holomorphic
vector field on Ω “orthogonal” to ∂r, i.e. defined by Df = 〈df, ∂r〉. Then a holo-
morphic function f belongs to W s

hol if and only if Djf ∈ W s−m for all 0 ≤ j ≤ m,
and ‖f‖s is equivalent to ( m∑

j=0

‖Djf‖2W s−m

)1/2

.

Again, for m > s− 1
2 one can further replace here W s−m(Ω) by L2

hol(Ω, |r|2m−2s):

(16)
( m∑

j=0

‖Djf‖2L2(Ω,|r|2m−2s)

)1/2

.

(We will also obtain an independent proof of this equivalence as a byproduct in
Section 7.)

Our second main result is the following. We actually expect it to be true for any
m > s− 1

2 , but our proofs seem to work only for m > 2s− 1.

Theorem B. Let K(s)(x, y) be the reproducing kernel of the holomorphic Sobolev
space W s

hol(Ω) with respect to the norm corresponding to (13) (see Section 7 for the
precise definition), or with respect to the norm (15) or (16) (for some nonnegative
integer m > 2s− 1). Then
(17)

K(s)(x, y) =





a(x, y)
ρ(x, y)n+1−2s

+ b(x, y) if n + 1− 2s /∈ Z,

a(x, y)
ρ(x, y)n+1−2s

+ b(x, y) log ρ(x, y) if n + 1− 2s ∈ Z>0,

a(x, y)
ρ(x, y)n+1−2s

log ρ(x, y) + b(x, y) if n + 1− 2s ∈ Z≤0,

on Ω × Ω for some almost-sesquianalytic functions a, b ∈ C∞(Ω × Ω). Further,
the values of a(x, x) on the boundary are given by Corollary 21, Theorem 8 and
Theorem 9, respectively.

Notice that, in particular, for s = 1
2 we recover the Szegö kernel, as the repro-

ducing kernel of the Hardy space H2(∂Ω) ' W
1/2
hol (Ω).

Our third, and final, main result concerns holomorphic dependence of K(s) on
the parameter s.
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Theorem C. Let K(s)(x, y) be the reproducing kernel of W s
hol(Ω) with respect

to the norm corresponding to (13) (see again Section 7 for the precise definition).
Then the K(s)(x, y) extends to a holomorphic function of x, y, s on Ω× Ω×C.

To describe the idea of the proofs, recall that for any function φ ∈ L∞(Ω),
the Toeplitz operator Tφ with symbol φ is the (bounded linear) operator on L2

hol(Ω)
defined by

(18) Tφf := Π(φf),

where Π : L2(Ω) → L2
hol(Ω) is the orthogonal projection (the Bergman projection).

It is immediate that if φ > 0 on Ω, then Tφ is positive definite, hence, in particular,
injective; thus there exists a (densely-defined, unbounded self-adjoint) inverse T−1

φ .
For x ∈ Ω, let us write Kx := K( · , x) for the Bergman kernel at the point x, and
similarly let Kw,x := Kw( · , x). The main ingredient in our proof is the simple
observation that for any positive continuous weight function w ∈ L∞(Ω), Tw ex-
tends to a bounded operator from L2

hol(Ω, w) into L2
hol(Ω), and the kernels Kx then

belong to the range of Tw and

(19) Kw,x = T−1
w Kx.

One can also define Toeplitz operators even for some unbounded symbols φ, as (un-
bounded) densely defined operators on L2

hol(Ω): for instance, if φ ∈ L2 then (18)
makes sense for all f ∈ H∞(Ω); and

(20) Tφf(x) = 〈φf, Kx〉 =
∫

Ω

φ f Kx

makes sense for all f ∈ H∞ even if φ is only in L1, since Kx ∈ L∞(Ω). In all these
cases, at least for w of the form (7), the formula (19) still remains in force.

Ideas very reminiscent of (19) have appeared in the paper of Bell [3].
There are also Toeplitz operators on the Hardy space H2(∂Ω), that is, the sub-

space in L2(∂Ω) of functions which are boundary values of holomorphic functions
in Ω (alternatively, the closure in L2(∂Ω) of C∞hol(Ω)). Namely, for any q ∈ L∞(∂Ω)
the Toeplitz operator on H2(∂Ω) with symbol q is defined by

(21) Tqf := Π(qf)

where Π : L2(∂Ω) → H2(∂Ω) is the orthogonal projection (the Szegö projection).
More generally, following Boutet de Monvel [6], one can define a “generalized”
Toeplitz operator TQ by the formula

(22) TQf := Π(Qf)

for any pseudodifferential operator Q on ∂Ω. The previous operators (21) are the
special case when Q is the operator of multiplication by the function q.

It is now a remarkable fact that for any φ ∈ C∞(Ω) and any Q, both Tφ and TQ

map C∞hol(Ω) into itself, and in fact for a given φ there exists a Q such that, up to
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a “negligible” error term, Tφ = TQ on C∞hol(Ω). Further, if φ vanishes on ∂Ω to
order m, then Q can be chosen to be of order −m (see [14], Theorem 9.1). We show
that all this remains in force also for φ = w with w of the form (7); the pseudo-
differential operator Q is then of (possibly fractional) order −α. Combining this
with the formula (19), the result of Theorem A follows by Boutet de Monvel’s and
Guillemin’s calculus of the “generalized” Toeplitz operators (cf. their book [7], espe-
cially the Appendix) and the microlocal description of the singularity (6) as given by
Boutet de Monvel and Sjöstrand [8]. For Theorem B, there is a formula analogous
to (19) but with the role of Tw taken over by a suitable (pseudo)differential opera-
tor; it turns out that this operator again coincides (on C∞hol(Ω)) with a generalized
Toeplitz operator TQ for some Q, and the result follows in a similar way as before.
Finally, for Theorem C one combines the above facts with the existence, proved by
Seeley [33], of the complex powers of an arbitrary positive elliptic pseudodifferential
operator.

The formula (19), as well as its analogue needed for Theorem B, are established in
Section 2. Section 3 overviews the necessary material from [6] and [7] on generalized
Toeplitz operators. Theorem A is proved in Section 4. The part of Theorem B
concerning the norms (15) and (16) is proved in Section 5; some further variations
on this theme (including, as a byproduct, a new proof of the equivalence of (15)
with the ordinary Sobolev norm, as well as extensions of this equivalence to spaces
of harmonic functions) occur in Section 6. The part of Theorem B concerning
the norm (13) and Theorem C are established in Section 7, together with a new
proof and generalization to harmonic functions of the equivalence of the norms (16).
The final Section 8 is occupied by miscellaneous concluding comments and remarks.

A different proof of Theorem A was obtained by G. Komatsu (personal commu-
nication), using Fefferman’s original method from [12]; in fact, he was even able
to handle weights w with certain logarithmic-type singularities at the boundary.
The present author hopes very much to see his work published soon.

The author also thanks Professor Louis Boutet de Monvel for illuminating him
on several issues concerning generalized Toeplitz operators.

2. Toeplitz operators and weighted Bergman kernels

Let w be any positive, continuous and integrable weight function on Ω, and let
Λ denote the operator w1/2Π on L2(Ω). The domain of Λ is (L2(Ω) ª L2

hol(Ω)) ⊕
(L2

hol(Ω, w) ∩ L2
hol(Ω)); since w is assumed to be integrable, the second summand

contains the space C∞hol(Ω) of all functions in C∞(Ω) holomorphic on Ω, hence,
in particular, Λ is densely defined. Being essentially the restriction to the closed sub-
space L2

hol(Ω) of the closed operator f 7→ w1/2f of multiplication by w1/2 on L2(Ω),
Λ is also closed. Thus Λ∗Λ is self-adjoint. Since Π is bounded, (Πw1/2)∗ =
w1/2Π = Λ, so Λ∗ = (Πw1/2)∗∗ = Πw1/2, where the last bar denotes closure
(see e.g. [31], Chapter VIII, §1); thus

Λ∗Λ = Πw1/2w1/2Π ⊃ ΠwΠ.

We declare this to be, by definition, the Toeplitz operator Tw. It is clear that for
w ∈ L∞(Ω), this coincides with the operator defined by (18). Also, for w ∈ L2(Ω),
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the domain of Tw contains H∞(Ω), the space of bounded holomorphic functions
on Ω.

For any f ∈ domTw, we have

Twf(x) = Λ∗Λf(x) = 〈Λ∗Λf, Kx〉 = 〈Λf, ΛKx〉

= 〈w1/2f, w1/2Kx〉 =
∫

Ω

w f Kx,

since Kx ∈ C∞hol(Ω) ⊂ domΛ by Kerzman’s theorem. Thus we see that, indeed,
(20) holds for any f ∈ domTw and any x ∈ Ω.

Since w is continuous and positive, it is well known that the reproducing kernel
Kw(x, y) of L2

hol(Ω, w) exists and

(23) |f(x)| ≤ ‖f‖w ‖Kw,x‖w ∀f ∈ L2
hol(Ω, w),

where ‖ · ‖w stands for the norm in L2(Ω, w).

Proposition 1. Assume that Kx ∈ Ran Tw. Then (19) holds, i.e.

Kw,x = T−1
w Kx.

Proof. Let Kx = Twh. Then for any f ∈ L2
hol(Ω) ∩ L2

hol(Ω, w) = dom Λ,

〈f, Kw,x〉w = f(x) = 〈f, Λ∗Λh〉 = 〈Λf, Λh〉

= 〈w1/2f, w1/2h〉 =
∫

Ω

w f h = 〈f, h〉w.

Since the set of all such f is dense in L2
hol(Ω, w) (e.g. because it contains C∞hol(Ω)),

it follows that h = Kw,x. ¤

This simple observation can be generalized, as follows. Let, quite generally, Λ be
a closed, densely defined and injective operator on L2

hol(Ω). Introduce a new norm
and inner product on domΛ by

(24) ‖f‖2Λ := ‖Λf‖2, 〈f, g〉Λ := 〈Λf, Λg〉.

By von Neumann’s theorem, the operator Λ∗Λ is self-adjoint, and its square root
T = (Λ∗Λ)1/2 satisfies dom T = domΛ, Ran T = Ran Λ∗ and ‖Tf‖ = ‖Λf‖ (see
e.g. [10], Section XII.7). Thus we can write (24) equivalently as

(25) ‖f‖2Λ = ‖Tf‖2, 〈f, g〉Λ = 〈Tf, Tg〉.

LetHΛ denote the completion of domΛ = dom T with respect to this norm. (If Λ−1

is bounded, then HΛ coincides with dom Λ; if Λ is bounded, then L2
hol(Ω) ↪→ HΛ

continuously.)
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Proposition 2. (i) The evaluation functional f 7→ f(x) is continuous on domΛ
with respect to the Λ-norm, i.e.

(26) |f(x)| ≤ cx ‖Λf‖ ∀f ∈ domΛ,

if and only if

(27) Kx ∈ Ran Λ∗(= Ran T ).

(ii) If (27) is satisfied for all x ∈ Ω, then the elements of HΛ can be identified
with functions on Ω and HΛ admits the reproducing kernel

(28) KΛ(x, y) ≡ KΛ,y(x) = 〈T−1Ky, T−1Kx〉.
(iii) If Kx belongs not only to Ran Λ∗ = Ran T but even to RanΛ∗Λ = Ran T 2,

then

(29) KΛ,x = (Λ∗Λ)−1Kx.

Proof. (i) If Kx = Th, then

|f(x)| = |〈f, Th〉| = |〈Tf, h〉| ≤ ‖Tf‖ ‖h‖ = ‖Λf‖ ‖h‖
for all f ∈ domΛ = dom T , so (26) is satisfied with cx = ‖h‖. Conversely, if (26)
holds, then

Λf 7→ f(x) = 〈f, Kx〉
is a well-defined bounded linear functional on RanΛ; extending it to the whole
space by continuity, it follows that there exists h ∈ L2

hol(Ω) such that

〈f, Kx〉 = 〈Λf, h〉 ∀f ∈ domΛ.

This means that h ∈ domΛ∗ and Λ∗h = Kx. So Kx ∈ RanΛ∗ = Ran T .
(iii) If {fn} is a sequence in dom Λ Cauchy in the Λ-norm, (26) implies that

{fn(x)} is a Cauchy sequence in C; thus the evaluation functionals f 7→ f(x)
extend continuously from dom Λ to all of HΛ. Further, this extension still satisfies
(26). It follows that elements of HΛ can be viewed as functions on Ω, and that
HΛ admits a reproducing kernel KΛ(x, y). If {fn}, {gn} are sequences in domΛ
converging in HΛ to KΛ,x and KΛ,y respectively, then by (25) {Tfn} is a Cauchy
sequence in L2

hol(Ω), whence Tfn → F for some F ∈ L2
hol(Ω). Since 〈f,Kx〉 =

f(x) = 〈f, KΛ,x〉Λ = lim〈f, fn〉Λ = lim〈Tf, Tfn〉 = 〈Tf, F 〉 for any f ∈ dom T ,
we have Kx = T ∗F , or F = T−1Kx. Similarly Tgn → G = T−1Ky. Thus

KΛ(x, y) = 〈KΛ,x,KΛ,y〉Λ = lim〈gn, fn〉Λ = lim〈Tgn, T fn〉
= 〈G,F 〉 = 〈T−1Ky, T−1Kx〉,

proving (28).
(iii) This is immediate from (28), and also is easy to check directly: if Kx =

Λ∗Λh, then for any f ∈ domΛ

〈f, h〉Λ = 〈Λf, Λh〉 = 〈f, Λ∗Λh〉 = f(x) = 〈f, KΛ,x〉Λ.

Since domΛ is dense in HΛ, it follows that h = KΛ,x. ¤
If Kx belongs to Ran Λ∗ but not to Ran Λ∗Λ, then KΛ,x does not belong to

domΛ but only to the part of HΛ obtained by completion; in that case the formula
(29) still holds, in the following sense.
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Proposition 3. The operators Λ and T : dom Λ → L2
hol(Ω) extend by continuity

to unitary isomorphisms, still denoted Λ and T , from HΛ onto L2
hol(Ω), and if (27)

holds then T 2KΛ,x = Kx (or KΛ,x = T−2Kx).

Proof. The first part is immediate from (24) and (25). If (27) holds, then we have
seen in the proof of part (ii) of Proposition 2 that for any sequence fn in domΛ
converging to KΛ,x in the HΛ-norm, Tfn → T−1Kx ∈ L2

hol(Ω) in L2
hol(Ω); by the

first part of the current proposition, T−1Kx = Th for some h ∈ HΛ and fn → h
in HΛ. Since fn → KΛ,x, it follows that h = KΛ,x and Kx = T 2h = T 2KΛ,x. ¤

We conclude this section by proving a result which will be needed further on.
For α an integer this is well-known, and easily proved since w, being then C∞

on Ω, is a multiplier of W s(Ω) and the Bergman projection Π is bounded from W s

into W s
hol, for any s ∈ R. For α noninteger, a proof seems to be needed.

Proposition 4. Let w be of the form (7). Then Tw maps C∞hol(Ω) into itself.

Proof. We use an idea of Bell [2]. Let φj , j = 1, . . . , n, be functions in C∞(Ω) such
that φj ≥ 0 on Ω,

∑
j φj = 1 near ∂Ω, and ∂jr 6= 0 on the support of φj . Here

∂jr(z) is an abbreviation for ∂r(z)
∂zj

and r(z) is the defining function for Ω from the
Introduction.

First of all, we claim that for any h ∈ L2
hol(Ω) ∩ C(Ω) and v ∈ L∞(Ω),

(30)
∫

Ω

h ∂j(|r|α+1v) = 0.

To see this, fix ε > 0 and integrate by parts to obtain

∫

r<−ε

h ∂j(|r|α+1v) =
∫

r=−ε

h |r|α+1 v nj −
∫

r<−ε

|r|α+1 v ∂jh.

(Here nj is the appropriate component of the outward unit normal to ∂Ω.) The sec-
ond integral vanishes since ∂jh = 0, while the first integral is bounded by

area({r = −ε}) · ‖h‖∞ · ‖v‖∞ · εα+1

which tends to zero as ε ↘ 0 since α > −1.
Let us now apply this observation to h = Kx and v = egfφj/∂jr, where f ∈

C∞(Ω). We get ∫

Ω

∂j

(
φj
|r|
∂jr

fw
)

Kx = 0.

Consequently,

Πwf(x) =
∫

Ω

w f Kx

=
∫

Ω

[
wf −

n∑

j=1

∂j

(
φj

r

∂jr
wf

)]
Kx.
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By the Leibniz rule, the expression in the square brackets equals

(1−
∑

j

φj)wf − rwf
∑

j

∂j(
φj

∂jr )− rf
∑

j

φj

∂jr ∂jw − rw
∑

j

φj

∂jr ∂jf.

Since ∂jw = ∂j(|r|αeg) = |r|αeg∂jg − α|r|α−1eg∂jr = (∂jg + α
∂jr
r )w, this equals

(1−
∑

j

φj)wf − rw
[
f

∑

j

∂j(
φj

∂jr ) + f
∑

j

φj

∂jr ∂jg +
∑

j

φj

∂jr ∂jf
]− αwf

= |r|wf1 − αwf,

where

f1 =
1−∑

j φj

|r| f +
∑

j

(
∂j

( φj

∂jr

)
+

φj

∂jr
∂jg

)
f +

∑

j

φj

∂jr
∂jf ∈ C∞(Ω).

Thus
(α + 1)Πwf(x) =

∫

Ω

|r|wf1Kx = Π|r|wf1(x);

that is,
(α + 1)Πwf = Π|r|wf1.

Since |r|w is a bounded function, it follows first of all that Πwf ∈ L2
hol(Ω), that is,

f ∈ domTw. Further, repeating the above process with |r|w in the place of w,
we obtain successively functions fm ∈ C∞(Ω), m = 1, 2, . . . , such that

Γ(α + m + 1)
Γ(α + 1)

Πwf = Π|r|mwfm.

Since |r|mwfm = |r|m+α+1egfm belongs to W s(Ω) for s < m + α + 3
2 and Π

maps W s(Ω) into W s
hol(Ω) for any real s, it follows that Πwf ∈ W s

hol(Ω) for all
s < m + α + 3

2 . As m is arbitrary, Πwf ∈ ∩s∈RW s
hol(Ω) = C∞hol(Ω), completing the

proof. ¤

3. Generalized Toeplitz operators

Denote by η the restriction to ∂Ω of the 1-form Im ∂r = (∂r−∂r)/2i. The strict
pseudoconvexity of Ω is reflected in the fact that η is a contact form, i.e. η∧(dη)n−1

determines a nonvanishing volume element on ∂Ω, or, equivalently, the half-line
bundle

Σ := {(x, ξ) ∈ T ∗(∂Ω) : ξ = tηx, t > 0}
is a symplectic submanifold of T ∗(∂Ω). Equip ∂Ω with a measure with smooth
positive density, and let L2(∂Ω) be the Lebesgue space with respect to this measure,
and L2

hol(∂Ω) = H2(∂Ω) the subspace of nontangential boundary values of functions
holomorphic in Ω. We will also denote by W s(∂Ω), s ∈ R, the Sobolev spaces on ∂Ω,
and by W s

hol(∂Ω) the corresponding subspaces of nontangential boundary values of
functions holomorphic in Ω. (Thus W 0(∂Ω) = L2(∂Ω) and W 0

hol(∂Ω) = H2(∂Ω).)
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Unless otherwise specified, by a pseudodifferential operator or Fourier integral
operator (ΨDO or FIO for short) on ∂Ω we will always mean an operator which is
“regular” or “classical”, i.e. in any local coordinate system the total symbol has an
asymptotic expansion

p(x, ξ) ∼
∞∑

j=0

pm−j(x, ξ),

where pm−j is C∞ for ξ 6= 0, and positively homogeneous of degree m − j with
respect to ξ; here j runs through nonnegative integers, but m can be any complex
number, and the symbol “∼” means that the difference between p and

∑k−1
j=0 pm−j

should belong to the Hörmander class SRe m−k
0,1 , for each k = 0, 1, 2, . . . . If P,Q are

ΨDOs we write P ∼ Q if P −Q is smoothing (i.e. of degree −∞, or, equivalently,
given by a C∞ Schwartz kernel).

For P a ΨDO of order m on the compact manifold ∂Ω, the generalized Toeplitz
operator TP : Wm

hol(∂Ω) → H2(∂Ω) is defined as

TP = ΠPΠ,

where Π : L2(∂Ω) → H2(∂Ω) is the orthogonal projection (the Szegö projector).
Actually, TP maps continuously W s(∂Ω) into W s−m

hol (∂Ω), for any s ∈ R, because
Π is bounded on W s(∂Ω) for any s ∈ R (see [8]).

Microlocally, generalized Toeplitz operators have the following structure. Let
(x, q) denote the variable in Rn×Rn−1 ' R2n−1, and let (ξ, υ) be the dual variable.
We identify T ∗Rn with the symplectic cone Σ0 ⊂ T ∗R2n−1 defined by y = υ = 0,
and set

Dj =
∂

∂υj
+ υj |Dx|, j = 1, . . . , n− 1.

Let H0 : C∞(Rn) → C∞(R2n−1) be the Hermite operator

H0φ(x, y) = (2π)−n

∫

Rn

eix·ξ− 1
2‖ξ‖y·y

(‖ξ‖
2π

)(n−1)/4

φ̂(ξ) dξ

where we write x · ξ for
∑

j xjξj , and the hat denotes Fourier transform. Then it
follows from [5] and [8] that Π admits the following microlocal description: for any
z0 ∈ ∂Ω, there exists a canonical map Φ from a conic open set U ⊂ T ∗R2n−1 \ {0}
to a conic neighbourhood V of (z0, ηz0) ∈ Σ ⊂ T ∗Ω\{0}, whose restriction defines a
symplectic isomorphism χ : Σ∩U → Σ∩V . There exists an elliptic FIO F , defined
in V modulo smoothing operators, associated with χ, which transforms the left
ideal of ΨDOs generated by the Dj into the left ideal generated by the components
of ∂b. Set A ∼ H∗

0F ∗FH0 (this is an elliptic positive ΨDO) and H ∼ FH0A
−1/2

(this is a FIO with complex phase, cf. [28]). Then H∗H ∼ I, HH∗ ∼ Π, and for
any ΨDO Q on ∂Ω,

(31) TQ = ΠQΠ ∼ HPH∗ near z0, with P ∼ H∗QH ∼ H∗TQH.

In fact the map TQ 7→ P ∼ H∗TQH is onto. It follows as a corollary that the
generalized Toeplitz operators have the following properties.

(P1) Generalized Toeplitz operators form an algebra which is, modulo smoothing
operators, locally isomorphic to the algebra of ΨDOs on Rn.
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(P2) In fact, for any TP there exists a ΨDO Q such that TP = TQ and QΠ = ΠQ.
(P3) It can happen that TP = TQ for two different ΨDOs P and Q. If ord(P ) >

ord(Q), then the restriction of the principal symbol σ(P ) of P to Σ vanishes.
If ord(P ) = ord(Q), then the restrictions of the principal symbols σ(P ) and
σ(Q) to the cone Σ coincide. Thus we can define unambiguously the order of
TQ as min{ord(P ) : TP = TQ}, and the symbol of TQ as σ(TQ) := σ(Q)|Σ
if ord(Q) = ord(TQ).

(P4) The order and the symbol are multiplicative: ord(TQTQ′) = ord(TQ) +
ord(TQ′) and σ(TQTQ′) = σ(TQ)σ(TQ′).

(P5) If ord(TP ) ≤ 0, then TP is a bounded operator on L2(∂Ω); if ord(TP ) < 0,
then it is even compact.

(P6) If ord(TP ) = ord(TQ) = k and σ(TP ) = σ(TQ), then ord(TP − TQ) ≤ k − 1.
In particular, if TP ∼ TQ, then there exists a ΨDO Q′ ∼ Q such that
TP = TQ′ .

(P7) We will say that a generalized Toeplitz operator TP of order m is elliptic if
σ(TP ) does not vanish. Then TP has a parametrix, i.e. there exists a Toeplitz
operator TQ of order −m, with σ(TQ) = σ(TP )−1, such that TP TQ ∼ I ∼
TQTP .

We refer to the book [7], especially the Appendix, and to the paper [6] (which we
have loosely followed in this section) for the proofs and additional information on
generalized Toeplitz operators.

4. Weighted Bergman kernels

Let now Tw, with the weight function w as in (7), be our Toeplitz operator on
L2

hol(Ω) considered in Section 2. By Proposition 4 Tw maps C∞hol(Ω) into itself.
In particular, since C∞hol(Ω) is contained and dense also in H2(∂Ω), we can view Tw

as a (densely defined) operator on H2(∂Ω). Our first goal is to identify this operator
with a certain generalized Toeplitz operator from the preceding section. For α an
integer (so that w ∈ C∞(Ω)), this was done by Guillemin ([14], Theorem 9.1), using
ideas from [6]; we will show that essentially the same argument works also here.1

Following [6], let, quite generally, Λ be an elliptic positive ΨDO on ∂Ω. Similarly
as in Section 2, we define the Hilbert space WΛ as the completion of C∞(∂Ω) with
respect to the norm

(32) ‖f‖2Λ := 〈Λf, f〉 =
∫

∂Ω

f Λf.

(We will usually use the notation 〈 · , · 〉 for the inner products both in L2(Ω) and
L2(∂Ω) — it is clear from the context which of the two is meant.) We further
denote by WΛ

hol the subspace of boundary values of functions holomorphic in Ω,
and by ΠΛ : WΛ → WΛ

hol the orthogonal projector. Finally, for any ΨDO Q on ∂Ω,
we can again define a “generalized Toeplitz operator” associated to Λ by

T
(Λ)
Q := ΠΛQΠ.

1For Ω the unit disc or, equivalently, the upper half-plane in C, where everything is much more
tractable, Guillemin’s proof was worked out more explicitly by Peng and Wong [30].
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As shown in Section 1.d of [6], these operators possess pretty much the same mi-
crolocal description as the ordinary generalized Toeplitz operators TQ in the pre-
ceding section. Namely, with the notations A,F, H0 and H introduced before (31),
setting

AΛ ∼ H∗
0F ∗ΛFH0 ∼ A1/2H∗ΛHA1/2,

HΛ ∼ FH0A
−1/2
Λ ∼ HA1/2A

−1/2
Λ ,

we have H∗ΛΛHΛ ∼ I, HΛH∗ΛΛ ∼ ΠΛ (so that, in particular, modulo smoothing
operators HΛ is an isomorphism from L2(Rn) onto WΛ

hol), and

(33)
T

(Λ)
Q = ΠΛQΠ ∼ HP ′H∗ ∼ TP ′ ,

where P ′ ∼ H∗ΠΛQH ∼ A1/2A−1
Λ A1/2H∗ΛQH.

Let K denote the “Poisson extension operator” solving the boundary value prob-
lem

(34) ∂
∗
∂Ku = 0 on Ω, Ku|∂Ω = u.

(Thus K acts from functions on ∂Ω into functions on Ω. Note that ∂
∗
∂ is essen-

tially the ordinary Laplace operator, only the boundary conditions are different;
in particular, the kernel of ∂

∗
∂ contains all holomorphic functions.) It is not dif-

ficult to see that K is actually continuous from L2(∂Ω) into L2(Ω), and its range
coincides with the subspace L2

harm(Ω) of all harmonic functions. The adjoint K∗ is
thus continuous from L2(Ω) to L2(∂Ω). The composition K∗K is known to be an
elliptic positive ΨDO Λ0 on ∂Ω of order −1, and we have

(35) Λ−1
0 K∗K = I∂Ω,

while

(36) KΛ−1
0 K∗ = Πharm,

the orthogonal projection in L2(Ω) onto L2
harm(Ω). Comparing (36) with (34),

we also see that the restriction of Λ−1
0 K∗ to L2

harm(Ω) is the operator γ of “taking
the boundary values” of a harmonic function.

Thus, the operator Tw = Πw|L2
hol(Ω), when viewed as an operator on H2(∂Ω),

is simply γΠwK|H2(∂Ω). Now by (35) and (36),

γΠwK = γΠΠharmwK

= γΠKΛ−1
0 K∗wK.(37)

Observe now that for Λ = Λ0, (32) becomes

‖f‖2Λ0
= 〈K∗Kf, f〉L2(∂Ω) = ‖Kf‖2L2(Ω).
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It follows that u 7→ Ku is an isometry, with inverse γ, identifying the space WΛ0

with L2
hol(Ω). In particular,

γΠK = ΠΛ0 .

Thus we can continue (37) by

γΠwK = ΠΛ0Λ
−1
0 Λw,

where
Λw := K∗wK.

It was shown by Boutet de Monvel [4] that Λw, for w as in (7), is an elliptic positive
ΨDO on ∂Ω of order −α− 1 and with symbol

σ(Λw)(x, ξ) =
Γ(α + 1)
2‖ξ‖α+1

eg(x) ‖∂r(x)‖α.

(In fact, [4] only discussed integer α > −1, but the case of noninteger α can be
treated in the same manner, see the computation on the bottom of p. 256 and the
remarks on the top of p. 257 in [6].) Consequently, by (33),

γΠwK|H2(∂Ω) = T
(Λ0)

Λ−1
0 Λw

∼ TQ,

with Q = A1/2A−1
Λ0

A1/2H∗ΛwH a ΨDO having the same order and symbol on Σ
as Λ−1

0 Λw.
We have thus arrived at the following proposition.

Proposition 5. Let w be a weight of the form (7). Viewed as on operator
on C∞hol(Ω) ⊂ H2(∂Ω), the Toeplitz operator Tw on L2

hol(Ω) then coincides, modulo
a smoothing operator, with the generalized Toeplitz operator TQ for some ΨDO Q
on ∂Ω, ord(Q) = −α, σ(Q)|Σ = Γ(α + 1) ‖ξ‖−α‖∂r‖αeg.

We are now ready to prove our first main result.

Proof of Theorem A. Let Q be the operator from the last proposition. Since
σ(TQ) > 0, TQ is elliptic, so by (P7) there exists a ΨDO P (a parametrix) such
that ord(P ) = − ord(Q) = α,

(38) σ(TP ) = σ(TQ)−1 =
‖ξ‖αe−g

Γ(α + 1)‖∂r‖α
,

and TP ∼ T−1
Q . By the property (P2) from Section 3, we can also assume without

loss of generality that P commutes with Π: ΠP = PΠ, so that TP is just the
restriction of P to H2(∂Ω).

Since Tw (or, more precisely, γTwK; we will drop γ and K for the rest of this
section) ∼ TQ, we thus have T−1

w ∼ TP , or T−1
w ∼ (the restriction of P to H2(∂Ω)).

Using now our formula (19), we thus see that

Kw,y ∼ TP Ky = PKy
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(where “∼” means that the two sides differ by a function in C∞(Ω)). Now according
to the main result of [8], there exists a classical symbol

b(x, y, t) ∼
∞∑

j=0

tn−j bj(x, y), bj ∈ C∞(Ω× Ω),

such that the ordinary (unweighted) Bergman kernel satisfies

(39) K(x, y) =
∫ ∞

0

e−tρ(x,y) b(x, y, t) dt.

Thus

(40) PKy ∼
∫ ∞

0

∞∑

j=0

tn−j P
[
e−tρ( · ,y) bj( · , y)

]
dt.

By the standard symbol calculus for ΨDOs (see, for instance, Theorem 4.2 in
Hörmander [19]), we have quite generally (i.e. for any ΨDO P of order α; here
P applies to the x variable)

tn−jP
[
e−tρ(x,y) bj(x, y)

]
= tn−j+αe−tρ(x,y)

∞∑

k=0

bj,k(x, y) t−k,

with some bj,k ∈ C∞(Ω× Ω), where in particular

(41) bj,0(x, x) = t−αbj(x, x)σ(P )(x,−t∇xρ(x, y)|y=x) = bj(x, x) σ(TP )(x, ∂r(x)).

Thus (40) equals

(42)
∫ ∞

0

e−tρ( · ,y)
∞∑

j=0

tn−j+α b̃j( · , y) dt

with some b̃j ∈ C∞(Ω× Ω), where

(43) b̃0(x, x) = b0(x, x)σ(TP )(x, ∂r(x)).

Combining this with the classical formulas (valid for Re p > 0)
(44)

p. f.
∫ ∞

0

e−tp ts dt =





Γ(s + 1)
ps+1

if s ∈ C, s 6= −1,−2, . . . ,

(−1)k+1

k!
pk (log p + Ck), s = −k − 1, k = 0, 1, 2, . . .

(where Ck is a constant: Ck = limm→∞
∑m

j=k+1
1
j − log m), we thus obtain

(45) Kw(x, y) =





a(x, y)
ρ(x, y)n+α+1

+ b(x, y) if n + α /∈ Z,

a(x, y)
ρ(x, y)n+α+1

+ b(x, y) log ρ(x, y) if n + α ∈ Z≥0,

a(x, y)
ρ(x, y)n+α+1

log ρ(x, y) + b(x, y) if n + α ∈ Z<0,
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which gives (10). (Actually, since in our case n + α + 1 > n > 0, the third case in
(45) never occurs.)

It remains to compute the boundary value of the leading term. This corresponds
to the term j = 0 in (42), i.e., by (43) and (44),

∫ ∞

0

e−tρ(x,x) tn+α b0(x, x)
σ(TQ)(x, ∂r(x))

dt =
Γ(n + α + 1)
ρ(x, x)n+α+1

b0(x, x)
σ(TQ)(x, ∂r(x))

(with the first term on the right modified accordingly if n+α is a negative integer).
Taking in particular α = 0 and g ≡ 0, so that Q = I, and comparing with (2) shows
that for x ∈ ∂Ω,

b0(x, x) =
J [ρ](x)

πn
.

Consequently, for x ∈ ∂Ω,
(46)

a(x, x) =





Γ(n + α + 1) J [ρ](x)
πn σ(TQ)(x, ∂r(x))

, n + α /∈ Z<0,

(−1)k+1

k!
J [ρ](x)

πnσ(TQ)(x, ∂r(x))
, n + α = −k − 1, k = 0, 1, 2, . . . .

Substituting from (38) for σ(TQ), we get (11). (Again, the second case in (46) is
not now needed.) This completes the proof. ¤
Remark 6. As was already mentioned in the Introduction, the “off-diagonal part”
of (10) — i.e. that Kw is C∞ on Ω×Ω minus the boundary diagonal — was proved
by Peloso [29], while the part concerning the singularity on the boundary diagonal
was described by Komatsu (unpublished, referred to as “personal communication”
in [16]). (It should be noted that in [16], the C∞ part in (10) for α /∈ Z was omitted
by mistake.) ¤
Remark 7. For n = 1, it is known that for the ordinary Bergman kernel (i.e. α = 0,
g ≡ 0) on a smoothly bounded domain Ω ⊂ C the log term in (10) is actually
absent. It should be noted, however, that in the case of weighted Bergman kernels
the log-term appears even in dimension n = 1: for instance, for Ω = D, the unit
disc, and w(z) = 2− |z|2, a short computation reveals that

Kw = ρ−2 − ρ−1 − 2 log ρ + C(Ω) (ρ(x, y) = 1− xy).

Similarly, for m a positive integer it can be shown (using properties of hypergeo-
metric functions) that Kw for

w(z) = (1− |z|2)m(2− |z|2)
on D contains a log term. ¤

5. Sobolev-Bergman kernels

We now treat the reproducing kernels of the holomorphic Sobolev spaces W s
hol(Ω)

with respect to the norm (15) (for some nonnegative integer m > 2s− 1), which we
denote by ‖ · ‖#m,s.

To minimize confusion, for the rest of the paper we will reserve the symbol ρ for
the almost-sesquianalytic extension ρ(x, y), denoting the single-variable function
ρ(x) = ρ(x, x) = −r(x) by |r|.
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Theorem 8. Let W s
hol(Ω) be the s-th holomorphic Sobolev space equipped with

the norm

‖f‖#m,s :=
[ ∑

|ν|≤m

(|ν|
ν

)
‖∂νf‖2L2(Ω,|r|2m−2s)

]1/2

,

where m is a nonnegative integer > 2s− 1 and |ν| = ν1 + · · ·+ νn,
(|ν|

ν

)
= |ν|!

ν1!...νn! .

Then the corresponding reproducing kernel K(s)(x, y) has the form (45) for α =
−2s, with some almost-sesquianalytic functions a, b on Ω×Ω such that for x ∈ ∂Ω

(47) a(x, x) =
Γ(n− 2s + 1)

Γ(2m− 2s + 1)
J [ρ](x)

πn‖∂r‖2m
,

where Γ(n− 2s + 1) is to be replaced by (−1)k+1

k! if n− 2s + 1 = −k, k = 0, 1, 2, . . . .

Proof. For any f ∈ C∞hol(Ω),

‖f‖#2
m,s =

∑

|ν|≤m

(|ν|
ν

) ∫

Ω

|∂νf |2 |r|2m−2s.

Integrating by parts, since f is holomorphic, the integral equals to

(48)
∫

∂Ω

|r|2m−2s ∂νf ∂ν−ej fnj −
∫

Ω

∂j(|r|2m−2s) ∂νf ∂ν−ej f,

where j is any index for which νj ≥ 1, ej is the multiindex (0, 0, . . . , 1, . . . , 0) with
1 in the j-th slot, and nj = ∂jr/‖∂r‖ is the appropriate component of the outward
unit normal. Since 2m − 2s > m − 1, the first integral vanishes if m ≥ 1, while
the second can again be integrated by parts. Continuing in this fashion, we obtain
after |ν| steps

(−1)|ν|
∫

Ω

(∂
ν |r|2m−2s) ∂νf f.

We thus see that

(49) ‖f‖#2
m,s = 〈Θf, f〉L2(Ω) = 〈ΠΘf, f〉L2

hol(Ω), ∀f ∈ C∞hol(Ω),

where

Θ =
∑

|ν|≤m

(|ν|
ν

)
(−1)|ν|(∂

ν |r|2m−2s) ∂ν .

Using the restriction and extension operators γ and K from the preceding section,
the operator ΠΘ can again be viewed as an operator on C∞hol(∂Ω). Namely, there
exist tangential operators Zk, k = 1, . . . , n, such that

(50) γ∂kf = Zkγf, ∀f ∈ C∞hol(Ω)

(or ∂kKu = KZku ∀u ∈ C∞hol(∂Ω)). Explicitly, one has

Zk = ∂k −
n∑

j=1

rjrk

‖∂r‖2 ∂j ,
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where for brevity we have introduced the notation

rj := ∂jr.

The operator ΠΘ, viewed as an operator on C∞hol(∂Ω), is then

γΠΘK =
∑

|ν|≤m

(|ν|
ν

)
(−1)|ν|γΠ(∂

ν |r|2m−2s)KZν

=
∑

|ν|≤m

(|ν|
ν

)
(−1)|ν|γT∂

ν |r|2m−2sKZν .

(Here Zν , of course, stands for Zν1
1 . . . Zνn

n , and similarly for (∂r)ν below.) Now

∂
ν |r|2m−2s = (−1)|ν||r|2m−|ν|−2s Γ(2m− 2s + 1)

Γ(2m− |ν| − 2s + 1)
[(∂r)ν + r gν ],

where gν ∈ C∞(Ω). By the results reviewed in the preceding section, we thus see
that γT∂

ν |r|2m−2sK|H2(∂Ω) is, modulo smoothing operators, a generalized Toeplitz
operator on H2(∂Ω) of order 2s− 2m + |ν| with principal symbol

Γ(2m− 2s + 1)‖∂r‖2m−|ν|−2s‖ξ‖2s−2m+|ν|(−1)|ν|(∂r)ν .

Since Zν is a differential operator of order |ν|, it follows that

γΠΘK|H2(∂Ω) ∼ TQ,

where Q is a ΨDO on ∂Ω of order 2s and with symbol satisfying

σ(Q)|Σ = Γ(2m− 2s + 1)
∑

|ν|=m

(
m

ν

)‖∂r‖m−2s

‖ξ‖m−2s
(∂r)ν · σ(Zν)|Σ.

However, for (x, ξ) ∈ Σ, i.e. x ∈ Ω and ξ = tηx, t > 0, we have

σ(Zk)(x, ξ) = 〈tηx, Zk〉 = trk =
‖ξ‖
‖∂r‖ rk.

Thus

σ(TQ) = Γ(2m− 2s + 1)‖∂r‖m−2s‖ξ‖2s
∑

|ν|=m

(
m

ν

)
(∂r)ν (∂r)ν

‖∂r‖m

= Γ(2m− 2s + 1)‖ξ‖2s‖∂r‖2m−2s.(51)

It follows that TQ is elliptic and has a parametrix TP of order −2s; by (P2) we may
again assume that PΠ = ΠP , so that TP is just the restriction of P to holomorphic
functions.
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From the ellipticity it follows that TQ and, hence, also ΠΘ|L2
hol(Ω) is Fredholm

as an operator from W 2s
hol(Ω) into L2

hol(Ω). On the other hand, since by (49)
ΠΘ|L2

hol(Ω) ≥ T|r|2m−2s > 0, the symmetric operator ΠΘ|L2
hol(Ω) is injective and

has self-adjoint closure, hence also dense range, as an operator on L2
hol(Ω). Conse-

quently, ΠΘ maps W 2s
hol(Ω) onto L2

hol(Ω). Applying now part (iii) of Proposition 2
with Λ = (ΠΘΠ)1/2, so that γΛ2K|H2(∂Ω) = γΠΘK|H2(∂Ω) ∼ TQ, we get as before

K(s)
y := K(s)( · , y) ∼ PKy,

and the same argument as in the proof of Theorem A (using the formulas (44)
and (45)) yields the desired conclusion. The leading term (47) is also evaluated in
the same manner, using (46) and (51). ¤

We next address the norm given by (16), which we denote by ‖ · ‖[
m,s.

Theorem 9. Let W s
hol(Ω) be the s-th holomorphic Sobolev space equipped with

the norm

‖f‖[
m,s :=

[ m∑

j=0

‖Djf‖2L2(Ω,|r|2m−2s)

]1/2

,

where m is a nonnegative integer > 2s−1 and D is the “normal derivative” operator

D =
n∑

j=1

rj ∂j .

Then the corresponding reproducing kernel K(s)(x, y) has the form (45) for α =
−2s, with some almost-sesquianalytic functions a, b on Ω×Ω such that for x ∈ ∂Ω

(52) a(x, x) =
Γ(n− 2s + 1)

Γ(2m− 2s + 1)
J [ρ](x)

πn‖∂r‖4m
,

where Γ(n− 2s + 1) is to be replaced by (−1)k+1

k! if n− 2s + 1 = −k, k = 0, 1, 2, . . . .

Proof. The argument is similar to the one for the preceding theorem, so we will be
brief. By partial integration, we have for any f ∈ C∞hol(Ω),

∫

Ω

|Djf |2 |r|2m−2s =
∫

∂Ω

|r|2m−2sDjf Dj−1f nD −
∫

Ω

D∗(|r|2m−2sDjf)Dj−1f,

where nD = Dr
‖∂r‖ = ‖∂r‖ is the appropriate component of the outward unit normal,

and D∗ is the formal adjoint

D∗g :=
n∑

k=1

∂k(rkg) =
∆r

4
g +

n∑

k=1

rk ∂kg =
(∆r

4
+D

)
g.

Since m > 2s − 1 by hypothesis, the integral over ∂Ω vanishes if m ≥ 1, while
the second integral can again be integrated by parts. Continuing in this fashion,
we obtain after j steps

(−1)j

∫

Ω

D∗j(|r|2m−2sDjf) f.
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We thus again see that

‖f‖[2
m,s = 〈ΠΘf, f〉L2

hol(Ω) ∀f ∈ C∞hol(Ω),

where Θ is given by

Θf =
m∑

j=0

(−1)jD∗j(|r|2m−2sDjf).

Observe that for any g ∈ C∞(Ω) and any real number a,

D∗(|r|ag) = |r|aD∗g + gD|r|a = |r|aD∗g − a|r|a−1‖∂r‖2 g,

since D|r|a = −a|r|a−1Dr = −a|r|a−1‖∂r‖2. By a straightforward induction argu-
ment,

D∗j(|r|2m−2sDjf) = (−1)j Γ(2m− 2s + 1)
Γ(2m− j − 2s + 1)

|r|2m−j−2s ‖∂r‖2j Djf

+ |r|2m−j−2s+1Lm,jDjf,

where Lm,j is a differential operator with C∞(Ω) coefficients and involving only
anti-holomorphic derivatives. In a similar fashion it can be shown that

Djf =
∑

|ν|=j

(
j

ν

)
(∂r)ν ∂νf +

∑

|ν|<j

aj,ν∂νf,

with some coefficients aj,ν ∈ C∞(Ω) independent of f . Combining everything
together and using (50) we thus get

γΠΘK|L2
hol(Ω) =

m∑

j=0

Γ(2m− 2s + 1)
Γ(2m− j − 2s + 1)

γΠ|r|2m−j−2s‖∂r‖2j
∑

|ν|=j

(
j

ν

)
(∂r)νKZν

+
m∑

j=0

Γ(2m− 2s + 1)
Γ(2m− j − 2s + 1)

γΠ|r|2m−j−2s‖∂r‖2j
∑

|ν|<j

aj,νKZν

+
m∑

j=0

(−1)jγΠ|r|2m−j−2s+1
∑

|ν|≤j

bj,νKZν ,

with bj,ν ∈ C∞(Ω). As in the preceding proof, the second and the third term,
as well as the summands j = 0, . . . , m− 1 of the first term, are (modulo smoothing
errors) generalized Toeplitz operators of orders ≤ 2s−1, while the j = m summand
of the first term is a generalized Toeplitz operator of order 2s with symbol

Γ(2m− 2s + 1)
‖∂r‖m−2s

‖ξ‖m−2s
‖∂r‖2m

∑

|ν|=m

(
m

ν

)
(∂r)ν

( ‖ξ‖
‖∂r‖∂r

)ν

= Γ(2m− 2s + 1) ‖ξ‖2s‖∂r‖4m−2s.(53)

Thus γΠΘK|H2(∂Ω) ∼ TQ, where Q is a ΨDO on ∂Ω of order 2s with symbol (53).
The same argument involving the parametrix and the computation of the leading
term (using the formulas (45) and (46), respectively) complete the proof. ¤
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6. Some more kernels

We digress to make some observations which will not be needed in the sequel,
but which yield an independent proof of the equivalence of the Sobolev norm on
holomorphic functions with the norm (15) mentioned in the Introduction (though
not of the equivalence with the norm (16) — we will, however, give an independent
proof of that one too in the next section), as well as an extension of this equivalence
to harmonic functions which seems to be new.

Recall that if Θ is a positive definite (or just “positive” for short — meaning
that 〈Θf, f〉 > 0 for any f 6= 0 in dom Θ) self-adjoint operator on L2(∂Ω) which is
an elliptic ΨDO of order m 6= 0, then the square root Θ1/2 of Θ (in the sense of the
spectral theorem) is also a ΨDO, of order m/2. Since the positivity condition and
self-adjointness imply that Θ has an inverse with the same properties, it also follows
that the negative square root Θ−1/2 is a ΨDO of order −m/2. These facts are
actually just special cases of the more general result, going back to Seeley, asserting
that the complex power Θs is a ΨDO of order mRe s, for any s ∈ C; we will have
more to say about this in the next section. Note that the ellipticity again implies
that Θ is Fredholm as an operator from each W s(∂Ω), s ∈ R, into W s−m(∂Ω); being
injective and, hence, with dense range as an operator on L2(∂Ω), Θ is therefore a
bijection of Wm(∂Ω) onto L2(∂Ω). In particular, domΘ = Wm(∂Ω).

Proposition 10. Let Θ be a positive self-adjoint operator on L2(∂Ω) which is an
elliptic ΨDO of order m ∈ R. Let HΘ be the completion of C∞(∂Ω) ⊂ domΘ with
respect to the norm

‖u‖2Θ := 〈Θu, u〉.
Then HΘ = Wm/2(∂Ω), with equivalent norms.

Proof. For m = 0, both Θ and, by ellipticity, Θ−1 are ΨDOs of order 0, hence
bounded, and it follows immediately that ‖·‖Θ is equivalent to the norm in L2(∂Ω).
We may thus assume that m 6= 0. Hence, by the remarks above, Θ1/2 is an
elliptic ΨDO of order m/2. For any u ∈ C∞(∂Ω) ⊂ domΘ ⊂ domΘ1/2, we have
‖u‖Θ = ‖Θ1/2u‖L2(∂Ω). By ellipticity, the last norm is equivalent to ‖u‖W m/2(∂Ω).
The claim follows. ¤

Corollary 11. For Θ as in the preceding proposition, let LΘ be the completion of
C∞harm(Ω), the subspace of harmonic functions in C∞(Ω), with respect to the norm

‖f‖2Θ := 〈Θγf, γf〉L2(∂Ω).

Then LΘ = W
(m+1)/2
harm (Ω), with equivalent norms.

Proof. The mapping u 7→ Ku (with the inverse f 7→ γf) is known to be an iso-
morphism of W s(∂Ω) onto W s+ 1

2 (Ω), for any s ∈ R; see Lions and Magenes [27],
Chapter 2, §7.3. ¤

As an application, we immediately get the promised independent proof of the
equivalence of the norms (15) with the Sobolev norms on holomorphic functions,
as well as an analogous result for the harmonic functions.
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In addition to the “normal derivative” D =
∑

j rj∂j , let us introduce also the
operator

D :=
n∑

j=1

rj ∂j .

Theorem 12. Let s be a real number, m > s − 1
2 a nonnegative integer, and x0

any point in Ω. Then a harmonic function f belongs to W s(Ω) if and only if any
of the following quantities is finite, and the square root of each of these quantities
gives an equivalent norm in W s

harm(Ω):

(a)
∑
|ν|+|µ|≤m

|ν+µ|!
ν!µ! ‖∂ν∂

µ
f‖2L2(Ω,|r|2m−2s);

(b)
∑
|ν|+|µ|=m

m!
ν!µ!‖∂ν∂

µ
f‖2L2(Ω,|r|2m−2s) + ‖f‖2L2(Ω,|r|2m−2s);

(c)
∑
|ν|+|µ|=m

m!
ν!µ!‖∂ν∂

µ
f‖2L2(Ω,|r|2m−2s) +

∑
|ν|+|µ|<m |∂ν∂

µ
f(x0)|2;

(d)
∑m

j=0 ‖(D +D)jf‖2L2(Ω,|r|2m−2s);

(e) ‖(D +D)mf‖2L2(Ω,|r|2m−2s) + ‖f‖2L2(Ω,|r|2m−2s).

Proof. (a) Let us define operators Rj and Rj , j = 1, . . . , n, on L2(∂Ω) by

Rju = γ∂jKu, Rju = γ∂jKu

(where γ,K and, below, Λ0 = K∗K have the same meaning as in Section 4). Setting
as usual f = Ku, we have

(54)
‖∂ν∂

µ
f‖2L2(Ω,|r|2m−2s) = ‖KRνR

µ
u‖2L2(Ω,|r|2m−2s) = ‖|r|m−sKRνR

µ
u‖2L2(Ω)

= 〈R∗µR∗νK∗|r|2m−2sKRνR
µ
u, u〉L2(∂Ω).

Let us introduce the notation, for any expression X,

R[X] :=
n∑

j=1

(R∗jXRj + R
∗
jXRj).

By (54), the norm in (a) can then be written as 〈Θu, u〉, where

(55) Θ =
m∑

j=0

Rj [K∗|r|2m−2sK].

As we have seen in Section 4, K∗|r|2m−2sK is a ΨDO on ∂Ω of order 2s− 2m− 1
with symbol Γ(2m− 2s + 1)‖ξ‖2s−2m−1‖∂r‖2m−2s. On the other hand, Rj and Rj

are ΨDOs of order 1, and by Green’s theorem, for any f ∈ C∞harm(Ω)

∫

Ω

n∑

j=1

|∂jf |2 =
∫

∂Ω

n∑

j=1

nj ∂jf f
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(where nj = rj/‖∂r‖), or

n∑

j=1

R∗jK
∗KRj =

n∑

j=1

njRj .

Taking symbols gives

n∑

j=1

|σ(Rj)|2σ(Λ0) =
n∑

j=1

njσ(Rj).

Similarly for Rj . (Note that σ(Rj) is not the complex conjugate of σ(Rj).) Conse-
quently, for any X

σ(R[X]) =
n∑

j=1

(|σ(Rj)|2 + |σ(Rj)|2)σ(X)

=
n∑

j=1

njσ(Rj) + njσ(Rj)
2σ(Λ0)

σ(X)

=
σ(ϑ)

4σ(Λ0)
σ(X),

where ϑ = 2
∑n

j=1(njRj + njRj) = γ ∂
∂nK is the classical Dirichlet-to-Neumann

operator, which is an elliptic ΨDO of order 1. Thus Θ is a ΨDO of order 2s − 1
with symbol

‖ξ‖mσ(ϑ/2)mΓ(2m− 2s + 1)‖ξ‖2s−2m−1‖∂r‖2m−2s

= Γ(2m− 2s + 1)‖ξ‖2s−1
(σ(ϑ)
‖2ξ‖

)m

‖∂r‖2m−2s > 0,

so Θ is elliptic. At the same time, as an operator on L2(∂Ω), Θ is nonnegative
self-adjoint (being a sum of products of the form V ∗V , where V : L2(∂Ω) → L2(Ω)
given by u 7→ |r|m−s∂ν∂

µ
K is densely-defined and closed) and positive (since the

summand ν = µ = 0 gives just the norm of f in L2(Ω, |r|2m−2s)). By Corollary 11,
the claim follows.

(b) This is the same as in (a), except that we are keeping from Θ only the terms
of the highest (|ν|+ |µ| = m) and lowest (|ν| = |µ| = 0) order; since the latter was
responsible for Θ being (not only nonnegative but) positive, while the former was
responsible for Θ having the right order 2s− 1 and elliptic symbol, the conclusion
remains in force.

(c) This time Θ is of the form Θ = Θ′ + Θ′′, where Θ′ is again the top degree
part of (55), while

Θ′′ =
∑

|ν|+|µ|<m

〈 · , P νµ
x0
〉P νµ

x0
,

where P νµ
x0

(ζ) := ∂ν∂
µ
P (ζ, · )|x0 is the derivative at x0 of the Poisson kernel P (ζ, x).

Since P is known to be C∞ on ∂Ω × Ω, Θ′′ is a smoothing operator. Thus Θ is
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again an elliptic ΨDO of order 2s − 1, and since Θ′ and Θ′′ are both self-adjoint
and nonnegative, while Ker Θ′ = {polynomials of degree < m} whereas Ker Θ′′ =
{functions vanishing at x0 to order at least m}, Θ = Θ′ + Θ′′ is positive. Thus the
claim again follows by Corollary 11.

(d) Here matters are more complicated since (D + D)f is no longer harmonic
when f is. However, by the Leibniz rule, we have

(D +D)j =
∑

|ν|+|µ|≤j

ajνµ∂ν∂
µ

where for |ν|+ |µ| = j, ajνµ = j!
ν!µ! (∂r)ν(∂r)µ. Thus again, for f ∈ C∞harm(Ω),

‖(D +D)jf‖2L2(Ω,|r|2m−2s) =
∥∥∥|r|m−s

∑

|ν|+|µ|≤j

ajνµ∂ν∂
µ
f
∥∥∥

2

L2(Ω)

=
∥∥∥|r|m−s

∑

|ν|+|µ|≤j

ajνµKRνR
µ
u
∥∥∥

2

L2(∂Ω)
= 〈Θju, u〉L2(∂Ω),

where
Θj =

∑

|ν|+|µ|≤j

∑

|ε|+|η|≤j

R
∗η

R∗εK∗ajεη|r|2m−2sajνµKRνR
µ
.

Each summand is a ΨDO on ∂Ω of order ≤ |µ| + |ν| + |ε| + |η| + 2s − 2m − 1 ≤
2j+2s−2m−1 ≤ 2s−1, with equality occurring only for |ε|+|η| = |µ|+|ν| = j = m;
the corresponding symbol in that case is

σ(Θm) =
∑

|ν|+|µ|=m

∑

|ε|+|η|=m

σ(R)ησ(R)εσ(K∗amεη|r|2m−2samνµK)σ(R)νσ(R)µ

= Γ(2m− 2s + 1)‖ξ‖2s−2m−1‖∂r‖2m−2s
∣∣∣

∑

|ν|+|µ|=m

amνµσ(R)νσ(R)µ
∣∣∣
2

= Γ(2m− 2s + 1)‖ξ‖2s−2m−1‖∂r‖2m−2s

·
∣∣∣

∑

|ν|+|µ|=m

m!
ν!µ!

σ(n‖∂r‖R)νσ(n‖∂r‖R)µ
∣∣∣
2

= Γ(2m− 2s + 1)‖ξ‖2s−2m−1‖∂r‖2m−2s
∣∣∣‖∂r‖

n∑

j=1

σ(njRj + njRj)
∣∣∣
2m

= Γ(2m− 2s + 1) ‖∂r‖4m−2s
(σ(ϑ)
‖2ξ‖

)2m

‖ξ‖2s−1 > 0.

We thus see that the expression in (d) is of the form 〈Θu, u〉L2(∂Ω) with Θ an elliptic
ΨDO of order 2s−1; further, Θ is again self-adjoint and nonnegative (for the same
reason as in the proof of part (a)), and since the term j = 0 is just the norm of f
in L2(Ω, |r|2m−2s), it is even positive. An application of Corollary 11 hence again
yields the desired conclusion.

(e) This again follows from the proof of (d) for the same reason as (b) followed
from the proof of (a): it is enough to keep the top degree term and the zero degree
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term from Θ, since the former takes care of the right order and ellipticity, while the
latter of injectivity and, hence, positivity. ¤
Remark 13. Note that the operator D + D in (d) and (e) is essentially the usual
(real) “normal derivative”: namely, (D +D)f = 1

2 〈∇f,∇r〉R2n . ¤

Corollary 14. For s a real number, m > s− 1
2 a nonnegative integer, and x0 any

point of Ω, a holomorphic function f on Ω belongs to W s
hol(Ω) if and only if any of

the quantities below is finite, and the square roots of these quantities are equivalent
norms on W s

hol(Ω):

(a)
∑
|ν|≤m

|ν|!
ν! ‖∂νf‖2L2(Ω,|r|2m−2s);

(b)
∑
|ν|=m

m!
ν! ‖∂νf‖2L2(Ω,|r|2m−2s) + ‖f‖2L2(Ω,|r|2m−2s);

(c)
∑
|ν|=m

m!
ν! ‖∂νf‖2L2(Ω,|r|2m−2s) +

∑
|ν|<m |∂νf(x0)|2;

and the quantities (d) and (e) from Theorem 12.

Proof. Just specialize the preceding theorem to holomorphic functions. ¤
Unfortunately, we have not been able to prove in this way the equivalence of (16)

with the norm in W s
hol(Ω)), though we expect this should be possible. (We will give

a proof in the next section nonetheless, using generalized Toeplitz operators.)
With Theorem 12 in hands, the reproducing kernels can again be handled in the

usual way.

Theorem 15. The reproducing kernel of W s
hol(Ω) with respect to any of the norms

in Corollary 14 is of the form (45), with the leading term given by (46), for α = −2s
and Q = Λ−1

0 Θ where Θ is the operator from the proofs of (a)–(e) in Theorem 12.

Proof. We have seen that the norms in question are of the form 〈Θu, u〉L2(∂Ω), where
u = γf . In terms of f = Ku, this equals 〈Θγf, γf〉L2(∂Ω) = 〈γ∗Θγf, f〉L2(Ω) =
〈KΛ−1

0 Θγf, f〉L2(Ω) = 〈ΠKΛ−1
0 Θγf, f〉L2

hol(Ω). As before, viewed as an operator
on H2(∂Ω), the last operator becomes

γΠKΛ−1
0 ΘγK|H2(∂Ω) = ΠΛ0Λ

−1
0 Θ|H2(∂Ω),

which we have seen in Section 4 to be ∼ TQ for Q a ΨDO having the same order
and symbol on Σ as Λ−1

0 Θ. The assertion now follows in the same way as in the
proof of Theorem A, using the formulas (45) and (46). ¤

7. Holomorphic continuation

We finally deal with the kernels for the Sobolev-Bergman spaces with norms
modelled on (13). This construction further makes sense even for complex s, thus
yielding an analytic continuation of the kernels with respect to the parameter s.

Let A be a positive self-adjoint elliptic ΨDO of degree m > 0 on ∂Ω. Then A−1

is compact, hence its spectrum consists of isolated eigenvalues 0 < λ1 < λ2 < . . .
of finite multiplicity. We can therefore define for any s ∈ C the operator As by the
spectral theorem, i.e.

As =
∑

j

λs
j Pj



TOEPLITZ OPERATORS AND BERGMAN KERNELS 27

where Pj is the projection onto the eigenspace corresponding to λj . Alternatively,
one can define As for Re s < 0 by the contour integral

As =
∮ λ1/2+i∞

λ1/2−i∞
λs (A− λ)−1 dλ

(with the branch of λs defined in the right half-plane so that 1s = 1). For Re s ≥ 0,
one then sets

As = AkAs−k, k > Re s;

this is unambiguous since AsA = As+1 for Re s < −1.
For a positive self-adjoint elliptic ΨDO of degree m < 0, one then defines As as

(A−1)−s, the right-hand side being taken in the sense of the previous paragraph.
In both cases (m < 0 and m > 0), the operator As so defined is normal for any
s ∈ C, and self-adjoint and positive if s is real.

It is then a result going back to Seeley [33], with some later developments, stated
in a form convenient for our purpose, in Bucicovschi [9] or Schrohe [32], that the
operator As defined as above is again a ΨDO, of order ms, and with symbol σ(A)s.

It turns out that all this remains true also for generalized Toeplitz operators.

Proposition 16. Let T be a positive self-adjoint operator on H2(∂Ω) such that
T ∼ TQ, where TQ is of degree m 6= 0 and elliptic with σ(TQ) > 0. Let T s, s ∈ C,
be defined using the spectral theorem. Then T s ∼ TQs , where Qs is an elliptic
ΨDO on ∂Ω of order ms, and σ(TQs) = σ(TQ)s.

Proof. Replacing Q by (Q + Q∗)/2, we can assume that Q is self-adjoint. Since
TQ ∼ TQ′ if the total symbols of Q and Q′ agree in a neighbourhood of Σ, we may
also assume that σ(Q) > 0 not only on Σ but everywhere, i.e. that Q is elliptic.
Finally, arguing as on p. 20 in [7] we can assume that Q also commutes with Π.
(More precisely: it is obvious from the microlocal model that one can always choose
microlocally Qj with positive symbols and a ΨDO partition of unity χj which
commute with Π modulo smoothing operators. Then Q =

∑
χjQj has a positive

symbol, and [Q, Π] ∼ 0; replacing Q by ΠQΠ+(I−Π)Q(I−Π) = Q+(2Π−1)[Q, Π],
which is a ΨDO ∼ Q, we can thus assume that QΠ = ΠQ and σ(Q) > 0. The
author is grateful to Louis Boutet de Monvel for this explanation.) By the spectral
theorem, the powers (Q2)s/2 (of the positive selfadjoint operator Q2) then also
commute with Π, and Π(Q2)s/2Π = (ΠQ2Π)s/2 = (ΠQΠ)s, for any s ∈ C. Setting
Qs := (Q2)s/2, the result follows. ¤
Theorem 17. Let T be a positive self-adjoint operator on H2(∂Ω) such that
T ∼ TP , where σ(TP ) > 0 and ord(TP ) = 2s − 1, s ∈ R. Let HT be the com-
pletion of C∞hol(Ω) with respect to the norm

(56) ‖f‖2T := 〈Tγf, γf〉H2(∂Ω).

Then

(a) HT coincides with the holomorphic Sobolev space W s
hol(Ω), with equivalent

norms;
(b) the reproducing kernel ofHT with respect to the norm (56) has the form (45),

with the leading term given by (46), for α = −2s and Q = Λ−1
0 P .
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Proof. In terms of u = γf ∈ C∞hol(∂Ω), (56) becomes

(57) ‖Ku‖2T = 〈Tu, u〉H2(∂Ω) = ‖T 1/2u‖2H2(∂Ω).

By the preceding proposition, T 1/2 ∼ TP1/2 where P1/2 is of order s − 1
2 and

σ(TP1/2) > 0. By (P7), the generalized Toeplitz operator TP1/2 is elliptic, and,

hence, Fredholm as an operator from W
s−1/2
hol (∂Ω) into H2(∂Ω), i.e. its range is

closed and its kernel and cokernel are finite-dimensional. The same is therefore
true for its compact perturbation T 1/2; since we know T and, hence, T 1/2 to be
positive (hence, injective) and self-adjoint (hence, by injectivity, with dense range)
as an operator on H2(∂Ω), it follows that T 1/2 is an isomorphism of W

s−1/2
hol (Ω)

onto H2(∂Ω). By (57), the space HT (when its elements are viewed as functions

on ∂Ω rather than Ω, via the boundary values) thus coincides with W
s− 1

2
hol (∂Ω), with

equivalent norms. Since the Poisson extension operator K is an isomorphism of
W

s− 1
2

hol (∂Ω) onto W s
hol(Ω), for any s ∈ R (this is immediate from the corresponding

fact for W
s−1/2
harm (∂Ω) and W s

harm(Ω), recalled already in the proof of Corollary 11),
the first part of the theorem follows.

For the second part, write

‖f‖2T = 〈γ∗Tγf, f〉L2(Ω) = 〈KΛ−1
0 Tγf, f〉L2(Ω)

= 〈ΠKΛ−1
0 Tγf, f〉L2

hol(Ω),

and note that the operator ΠKΛ−1
0 Tγ, viewed as an operator on H2(∂Ω), becomes

γΠKΛ−1
0 TγK = γΠKΛ−1

0 T = ΠΛ0Λ
−1
0 T

∼ ΠΛ0Λ
−1
0 TQ ∼ T

(Λ0)

Λ−1
0 Q

∼ TΛ−1
0 Q

(where, in the penultimate equivalence, we again used (P2) and assumed without
loss of generality that ΠQ = QΠ). Part (b) of the theorem therefore follows in the
usual way from the formulas (45) and (46). ¤
Remark 18. Alternatively, the second part of the theorem could be proved directly
— without passing from H2(∂Ω) to L2

hol(Ω) — by working in H2(∂Ω) and using
the Szegö kernel instead of the Bergman kernel: that is, using the analogue

K(T )
y = T−1Sy

of the formula (19) for the Szegö kernel Sy(x) ≡ S(x, y) (whose proof is the same
as the proof of (19)) and the corresponding analogue

S(x, y) =
∫ ∞

0

e−tρ(x,y)
∞∑

j=0

tn−1−j b
(S)
j (x, y) dt, b

(S)
j ∈ C∞(Ω× Ω),

of the formula (39), which was also proved in [8]. ¤
As a first application of Theorem 17, we have the following corollary. (Parts

(a)–(c) are the same as in Corollary 14, but the proof is different.)
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Corollary 19. Let s be a real number, m > s − 1
2 a nonnegative integer, and x0

any point of Ω. Then a holomorphic function f belongs to W s
hol(Ω) if and only any

of the following quantities is finite, and the square root of each of these quantities
gives an equivalent norm in W s

hol(Ω):

(a)
∑
|ν|≤m

|ν|!
ν! ‖∂νf‖2L2(Ω,|r|2m−2s);

(b)
∑
|ν|=m

m!
ν! ‖∂νf‖2L2(Ω,|r|2m−2s) + ‖f‖2L2(Ω,|r|2m−2s);

(c)
∑
|ν|=m

m!
ν! ‖∂νf‖2L2(Ω,|r|2m−2s) +

∑
|ν|<m |∂νf(x0)|2;

(d)
∑m

j=0 ‖Djf‖2L2(Ω,|r|2m−2s) if m > 2s− 1;

(e) ‖Dmf‖2L2(Ω,|r|2m−2s) + ‖f‖2L2(Ω,|r|2m−2s) if m > 2s− 1.

Note that (d) is precisely the result of Beatrous mentioned in the Introduction;
our proof is totally different from the one in [1].

Proof. (a) Setting as usual f = Ku, we have seen in the proof of Theorem 8 that
the expression in (a) equals

∑

|ν|≤m

(|ν|
ν

)
‖ |r|m−sKZνu‖2L2(Ω) = 〈Tu, u〉H2(∂Ω)

where

T = Π
∑

|ν|≤m

(|ν|
ν

)
Z∗νK∗|r|2m−2sKZνΠ

= Π
∑

|ν|≤m

(|ν|
ν

)
Z∗νΛ|r|2m−2sZνΠ = TQ

with

Q =
∑

|ν|≤m

(|ν|
ν

)
Z∗νΛ|r|2m−2sZν

a ΨDO of order 2m + 2s− 2m− 1 = 2s− 1 and with symbol which satisfies

σ(Q)|Σ =
∑

|ν|=m

(
m

ν

)∣∣∣
( ‖ξ‖
‖∂r‖∂r

)∣∣∣
2ν Γ(2m− 2s + 1)

‖ξ‖2m−2s+1
‖∂r‖2m−2s

= Γ(2m− 2s + 1) ‖ξ‖2s−1‖∂r‖2m−2s > 0.

Since the operator T is nonnegative self-adjoint (being a sum of expressions of the
form Q∗Q, with Q = |r|m−sKZν : H2(∂Ω) → L2(Ω) densely-defined and closed)
and positive (since the term |ν| = 0 vanishes only when u ≡ 0), the assertion
therefore follows by part (a) of Theorem 17.

(b) and (c) are proved in the same way.
(d) Setting again u = γf , the proof of Theorem 9 shows that the expression

in (d) equals

(58)
m∑

j=0

(−1)j〈K∗D∗j |r|2m−2sDjKu, u〉∂Ω.
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Here D is understood as the operator with maximal domain (i.e. f ∈ domD if
f ∈ L2

hol(Ω) and Df , taken in the distributional sense, belongs to L2(Ω)), and −D∗
is its Hilbert-space adjoint; in view of the hypothesis m > 2s − 1, |r|2m−2sDjKu
vanishes to order m, hence belongs to domD∗j . Thus

T :=
m∑

j=0

(−1)jK∗D∗j |r|2m−2sDjK

is a positive (since the term j = 0 in (58) vanishes only if u ≡ 0) self-adjoint
operator on L2(∂Ω). Further, we have also seen in the proof of Theorem 9 that

D∗j |r|2m−2sDjf =
∑

|ν|≤j

φjν |r|2m−j−2s∂νf

with φjν ∈ C∞(Ω), and φjν |∂Ω = (−1)j
(

j
ν

)
(∂r)ν Γ(2m−2s+1)

Γ(2m−j−2s+1)‖∂r‖2j if |ν| = j.
It follows that

K∗D∗j |r|2m−2sDjK =
∑

|ν|≤j

Λφjν |r|2m−j−2sZν

is a ΨDO of degree 2s + 2j − 2m − 1. Thus ΠT |H2(∂Ω) is a generalized Toeplitz
operator of order 2s− 1, with symbol

Γ(2m− 2s + 1)
Γ(m− 2s + 1)

‖∂r‖2m
∑

|ν|=m

(
m

ν

)
Γ(m− 2s + 1)
‖ξ‖m−2s+1

‖∂r‖m−2s(∂r)ν
( ‖ξ‖
‖∂r‖∂r

)ν

= Γ(2m− 2s + 1) ‖∂r‖4m−2s‖ξ‖2s−1 > 0,

and the claim follows by part (a) of Theorem 17.
Finally, (e) is proved in the same way as (d). ¤

Remark 20. Incidentally, in (a) and (d) in the last corollary, part (b) of Theorem 17
also gives another proof of Theorems 8 and 9. However, it seemed more transparent
to give the direct proofs in Section 5. ¤

To some extent, the operator Λ−2
0 on ∂Ω plays a similar role as the shifted

Laplacian I+∆ on Rn, and the expression 〈Λ1−2s
0 u, u〉 is an analogue of the Sobolev

norm ‖ · ‖′ from (13). For this reason, the following assertion forms the last part of
Theorem B which remains to be proved.

Corollary 21. For s ∈ R let Hs be the completion of C∞hol(Ω) with respect to the
norm

‖f‖′s := 〈(TΛ0)
1−2sγf, γf〉1/2

H2(∂Ω).

Then Hs = W s
hol(Ω), with equivalent norms, and the reproducing kernels of Hs are

of the form (45) for α = −2s, with the leading term given by (46) for Q = Λ−2s
0 , i.e.

a(x, x) =
Γ(n− 2s + 1) J [ρ](x)

πn‖2∂r(x)‖2s
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for x ∈ ∂Ω, where Γ(n− 2s + 1) is to be replaced by (−1)k+1/k! if n− 2s + 1 = −k
is a nonpositive integer.

Proof. Apply Theorem 17 to T = (TΛ0)
1−2s, noting that Λ0 = K∗K is a positive

self-adjoint ΨDO of order −1 with symbol ‖2ξ‖−1. ¤
Finally, we can use Proposition 16 to prove Theorem C.

Proof of Theorem C. As in the proof of Proposition 16, let Q be a ΨDO of order −1
such that Q∗ = Q, σ(Q) > 0, TQ = TΛ0 and QΠ = ΠQ. Thus σ(Q)|Σ = ‖2ξ‖−1,
the operator T from the preceding corollary is just Q1−2s restricted to H2(∂Ω),
and the reproducing kernels K(s)(x, y) ≡ K

(s)
y (x) occurring there are just

K(s)
y = Q2s−1Sy

where Sy(x) ≡ S(x, y) is the Szegö kernel (cf. Remark 18). Note that Sy ∈
C∞hol(∂Ω) ⊂ W 1−2 Re s

hol (∂Ω) = dom Q2s−1 by the usual ellipticity argument (cf. the
proof of Proposition 16).

Let λj and Pj , j = 1, 2, . . . , be the eigenvalues and their spectral projections,
respectively, for the (compact positive self-adjoint) operator Q|H2(∂Ω). Then by the
spectral theorem

K(s)
y =

∑

j

λ2s−1
j PjSy,

and thus

K(s)(x, y) = 〈K(s)
y , Sx〉H2(∂Ω)

=
∑

j

λ2s−1
j 〈PjSy, Sx〉

=
∑

j

λ2s−1
j 〈PjSy, PjSx〉(59)

(since Pj is a projection). Now

|K(s)(x, y)| ≤
∑

j

λ2 Re s−1
j ‖PjSy‖ ‖PjSx‖

≤
( ∑

j

λ2 Re s−1
j ‖PjSy‖2

)1/2( ∑

j

λ2 Re s−1
j ‖PjSx‖2

)1/2

=
√

K(Re s)(x, x)K(Re s)(y, y)

= ‖K(Re s)
x ‖Re s ‖K(Re s)

y ‖Re s

= ‖QRe s−1/2Sx‖H2(∂Ω) ‖QRe s−1/2Sy‖H2(∂Ω) < ∞,

since Sx ∈ domQs for all s ∈ C and x ∈ Ω, as noted above. Thus the series
(59) converges for any s ∈ C and x, y ∈ Ω. Also, since K(Re s)(x, x) — being
the restriction to the diagonal of a sesqui-analytic function — is continuous (even
real-analytic) on Ω, it follows from the third line in the last chain of inequalities
that the convergence is even uniform for x, y in compact subsets of Ω. Finally, since
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0 < λj ≤ ‖Q‖ < ∞, the fact that (59) converges absolutely for some s0 ∈ R implies
that it also converges, and uniformly so, in the strip s0 ≤ Re s ≤ s0 + κ for any
κ > 0.

In conclusion, the series (59) converges uniformly for (x, y, s) in compact subsets
of Ω × Ω × C, and thus defines a holomorphic functions of (x, y, s) there, which
coincides with the Sobolev-Bergman kernels K(s)(x, y) from Corollary 21 for s ∈ R.
This completes the proof of Theorem C. ¤

We remark that, in fact, the usual argument involving the parametrix and the
formulas (45) and (46) shows that the description of the boundary singularities of
K(s)(x, y) given in Corollary 21 remains in force even for complex s.

8. Concluding remarks

8.1 Equivalence. It has been alluded to, at several places above, that the repro-
ducing kernels of the same space with respect to two equivalent norms may have
very different boundary singularities. Here is an example.

Take the unit disc D = {z ∈ C : |z| < 1}. With respect to the normalized
Lebesgue measure, the monomials zk, k = 0, 1, 2, . . . , form an orthogonal basis,
with

(60) ‖zk‖2 =
1

k + 1
,

and the corresponding reproducing kernel is the traditional Bergman kernel

K(x, y) =
∞∑

k=0

(xy)k

‖zk‖2 =
1

(1− xy)2
.

Introduce another scalar product in L2
hol(D) by letting

(61) 〈zj , zk〉 =
δjk

k + 1 + ak

where

(62) ak ≥ 0, sup
k

ak

k + 1
< ∞.

Then the corresponding norms are clearly equivalent. The reproducing kernel with
respect to (61) is given by

K ′(x, y) =
∞∑

k=0

(k + 1 + ak) (xy)k.

Now choosing

ak =
Γ(k + 3

2 )
k!Γ( 3

2 )
'
√

k + 1

the corresponding reproducing kernel is

K ′(x, y) = (1− xy)−2 + (1− xy)−3/2,
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which is not of the form (10). More generally,

ak =
Γ(k + β)
k!Γ(β)

' (k + 1)β−1,

which satisfies (62) for any 0 < β ≤ 2, produces

K ′(x, y) = (1− xy)−2 + (1− xy)−β .

Taking
a0 = 0, ak = log k (k ≥ 1),

we get

K ′(x, y) =
1

(1− xy)2
+

∞∑

k=1

(xy)k log k

=
1

(1− xy)2
+

1
1− xy

log
1

1− xy
+ O

( 1
1− xy

)
.

It is not difficult to construct examples of even wilder boundary singularities.

8.2 Complex powers of weights. The various kernels occurring for a given
Sobolev-Bergman space W s

hol(Ω) in Theorems A, 8, 9, etc., almost never coincide.
In particular, the kernels from Theorem C are different from the ones from Theo-
rem A (with α = −2s, s < 1

2 ), even though L2
hol(Ω, |r|−2s) = W s

hol(Ω) as spaces,
with equivalent norms. Thus Theorem C does not imply that the kernels K(α)(x, y)
of L2

hol(Ω, |r|α) from Theorem A can be holomorphically continued to α ∈ C, or at
least to Re α > −1.

Conjecture. K(α)(x, y) extends to a holomorphic function of x, y, α on Ω×Ω×
{Re α > −1}.

Of course, using Proposition 2, this is tantamount to having an analytic contin-
uation of

(T|r|α)−1Kx (y), Re α > −1.

While there is no problem with the holomorphy of α 7→ T|r|α in an appropriate
sense (cf. [21], Chapter VII), the difficulty lies with taking the inverse: for α /∈ R,
there seems to be no reason to expect T|r|α to be injective, or Kx to be in its range.
Another possible line of attack — though yielding an analytic continuation only to
a small neighbourhood of the positive real half-axis — would be to estimate the
derivatives of the functions α 7→ T−1

|r|α on α > −1, that is, expressions of the form

〈T−1
|r|αT|r|α(log |r|)k1 T−1

|r|αT|r|α(log |r|)k2 T−1
|r|α . . . T|r|α(log |r|)km T−1

|r|αKy,Kx〉,
but this does not seem to be any easier.

It seems even likely that K(α)(x, y) extends to a holomorphic function of x, y, α
on all of Ω× Ω× (C \ Z<0), with simple poles at the negative integers.

8.3 Boundary invariants. The analysis of boundary singularities of various re-
producing kernels can be used towards obtaining important CR-invariants of the
domain, cf. e.g. [18], [15], and the references there. (This was, in fact, our original
motivation for undertaking this study.) It would be of interest to know if suitable
versions of the various Sobolev-Bergman kernels above can be useful in this regard.
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8.4 Logarithmic weights. Especially from the point of view of the last remark,
it would be desirable to extend the results of this paper to generalized Toeplitz
operators with “logarithmic” terms in the symbol, i.e. to reproducing kernels of
spaces like L2

hol(Ω, |r|α∣∣ log |r|∣∣β), α > −1, β ∈ R. The reason is that the various
kernels above — whose construction relied on quantities like the defining function r
— are manifestly not invariant under biholomorphisms: there does not exist any
holomorphic-invariant recipe for a defining function, for instance (see Hirachi and
Komatsu [17], §5.1), and similarly the definitions of the operators D and D use the
ambient Euclidean structure rather than the intrinsic geometry of Ω. A way out
of this might be replacing all those objects by suitable holomorphically-invariant
ones, e.g. the defining function −r by the solution u of the Monge-Ampere equation
J [u] = 1, or the term eg in (7) by the Bergman invariant βK := K−1 det[∂∂ log K]
(K being the ordinary Bergman kernel), or

∑
|α|=m |∂αf |2 by ∆̃m|f |2 (for f holo-

morphic), where ∆̃ is the Laplace-Beltrami operator with respect to some invariant
metric (Bergman, Poincare, etc.). (It is not completely clear what should be the
“invariant” substitute for D.) All the objects just mentioned — u, β, as well as ∆̃
— have a logarithmic singularity at ∂Ω of some sort (see [24], [11], [23]). For ΨDOs,
some results on these “logarithmic symbols” do exist (see e.g. [32]); however, their
analogues for generalized Toeplitz operators seem to be currently out of reach.

8.5 Hermite FIOs. Throughout this paper, we have largely followed the exposi-
tion of generalized Toeplitz operators in the paper [6] and in the appendix of the
book [7], which rely on FIOs with complex-valued phase functions. The rest of
[7] uses the more general “FIOs of Hermite type” instead, which seem to have the
drawback that, apparently, for them one really needs to assume that the order of
TQ is an integer or a half-integer. (What breaks down is the “parity” argument
on pp. 75–76 in [7], needed to show that certain symbols are classical, instead of
having an asymptotic expansion where the degrees of homogeneity go down by steps
of only 1

2 instead of 1; this is in turn needed in the proof of the equivalences (31)
and, hence, of the properties (P1)–(P7) (cf. Proposition 2.3 in [7]). For FIOs with
complex-valued phase functions instead of Hermite-type FIOs, things work fine.
(The reason is that degrees are not counted in the same manner for Hermite oper-
ators and for FIOs: e.g. if Q is of degree 0 and its symbol vanishes to order 1 on
Σ, then ΠQΠ is of degree −1/2 as a Hermite operator, but usually still of degree 0
as a FIO. The author is grateful to Louis Boutet de Monvel for this clarification.))
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nel, Complex analysis in several variables — Memorial conference of Kiyoshi Oka’s centennial
birthday, Adv. Stud. Pure Math. 42, pp. 115–121, Math. Soc. Japan, Tokyo, 2004.

[17] K. Hirachi, G. Komatsu: Local Sobolev-Bergman kernels of strictly pseudoconvex domains,
Analysis and geometry in several complex variables (Katata, 1997), pp. 63-96, Trends Math.,
Birkhauser, Boston, 1999.

[18] K. Hirachi, G. Komatsu, N. Nakazawa: CR invariants of weight five in the Bergman kernel,
Adv. Math. 143 (1999), 185–250.

[19] L. Hörmander: Pseudo-differential operators, Comm. Pure Appl. Math. 18 (1965), 501–517.
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