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Žitná 25, CZ-115 67 Praha 1, Czech Republic

December 21, 2007

Abstract

We survey our current knowledge of circuit complexity of regular languages and we
prove that regular languages that are in AC0 and ACC0 are all computable by almost
linear size circuits, extending the result of Chandra et. al [5]. As a consequence we
obtain that in order to separate ACC0 from NC1 it suffices to prove for some ε > 0
an Ω(n1+ε) lower bound on the size of ACC0 circuits computing certain NC1-complete
functions.
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1 Introduction

Regular languages and associated finite state automata occupy a prominent position in
computer science. They come up in a broad range of applications from text processing
to automatic verification. In theoretical computer science they play an important role in
understanding computation. The celebrated result of Furst, Saxe and Sipser [7] separates
circuit classes by showing that the regular language PARITY is not in AC0, the class of
languages that are computable by bounded-depth polynomial-size circuits consisting of un-
bounded fan-in And, Or gates and unary Not gates. The result of Barrington [1] shows
that there are regular languages that are complete for the class NC1, the class of languages
computable by logarithmic-depth circuits consisting of fan-in two And, Or gates and unary
Not gates. Recently in [10], regular languages were shown to separate classes of languages
computable by ACC0 circuits using linear number of gates and using linear number of wires.
The ACC0circuits are similar to AC0 circuits but in addition they may contain unbounded
fan-in Mod-q gates.

There is a rich classification of regular languages based on properties of their syntactic
monoids (see e.g. [20, 19]). (The syntactic monoid of a regular language is essentially the
monoid of transformations of states of the minimal finite state automata for the language.
See the next section for precise definitions.) It turns out that there is a close connection
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between algebraic properties of these monoids and computational complexity of the associated
regular languages. In this article we survey our current knowledge of this relationship from
the perspective of circuit complexity and we point out the still unresolved open questions.
Furthermore, we prove that all regular languages that are in AC0 and ACC0 are recognizable
by AC0 and ACC0 circuits, resp., of almost linear size. As a consequence we obtain that in
order to separate ACC0 from NC1 it suffices to prove for some ε > 0 an Ω(n1+ε) lower bound
on the size of ACC0 circuits computing certain NC1-complete functions.

2 Preliminaries on monoids

In order to understand regular languages one needs to understand their finite state au-
tomata. It turns out that the proper framework for such a study are associated transforma-
tion monoids. Hence, to facilitate the algebraic classification of regular languages we need to
recall few elementary concepts regarding monoids. We should warn the reader however that
the transformation monoids do not give a complete picture of regular languages and that one
needs to look at certain other properties of the languages as well.

A monoid M is a set together with an associative binary operation that contains a
distinguished identity element 1M . We will denote this operation multiplicatively, e.g., for
all m ∈ M , m1M = 1Mm = m. For a finite alphabet Σ, an example of a monoid is the
(free) monoid Σ∗ with the operation concatenation and the identity element the empty word.
Except for the free monoid Σ∗, all the monoids that we consider in this paper will be finite.

An element m ∈ M is called an idempotent if m = m2. One can easily verify that since
M is finite, there exists the smallest integer ω ≥ 1, the exponent of M , such that for every
m ∈ M , mω is an idempotent. A monoid G where for every element a ∈ G there is an inverse
b ∈ G such that ab = ba = 1G is a group. A monoid M is called group-free if every group
G ⊆ M is of size 1. (A group G in a monoid M does not have to be a subgroup of M , i.e.,
1M may differ from 1G).

For a monoid M the product over M is the function f : M∗ → M such that f(m1m2 · · ·mn) =
m1m2 · · ·mn. The prefix-product over M is the function Πp : M∗ → M∗ defined as Πp(m1m2 . . .mn) =
p1p2 · · · pn, where for i = 1, . . . , n, pi = m1m2 · · ·mi. Similarly we can define the suffix-
product over M as a function Πs : M∗ → M∗ defined by Πs(m1m2 . . .mn) = s1s2 · · · sn,
where si = mimi+1 · · ·mn. For a ∈ M , the a-word problem over M is the language of words
from M∗ that multiply out to a. When we are not particularly concerned about the choice
of a we will often refer to such problems just as word problems over M . Notice that all word
problems over M are indeed regular languages.

For monoids M,N , a function φ : N → M is a morphism if for all u, v ∈ N , φ(uv) =
φ(u)φ(v). We say that L ⊆ Σ∗ can be recognized by M if there exist a morphism φ : Σ∗ → M
and a subset F ⊆ M so that L = φ−1(F ). A trivial variant of Kleene’s theorem states that a
language L is regular iff it can be recognized by some finite monoid. For every such L there
is a minimal monoid M(L) that recognizes L, which we call the syntactic monoid of L, and
the associated morphism νL : Σ∗ → M(L) we call the syntactic morphism of L. It turns
out that the syntactic monoid M(L) of L is the monoid of state transformations generated
by the minimum state finite automaton recognizing L, i.e. every element of M(L) can be
thought of as a map of states of the automaton to itself.
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2.1 Boolean circuits

Boolean circuits are classified by their size, depth and type of gates they use. For us the
following classes of circuits will be relevant. NC1 circuits are circuits of logarithmic depth
consisting of fan-in two And and Or gates, and unary Not gates. Because of the bound on
the depth and fan-in, NC1 circuits are of polynomial size. AC0, AC0[q], ACC0, TC0 circuits
are all of constant depth and polynomial size. AC0 circuits consist of unbounded fan-in And
and Or gates, and unary Not gates whereas AC0[q] circuits contain in addition unbounded
fan-in Mod-q gates. (A Mod-q gate is a gate that evaluates to one iff the number of ones
that are feed into it is divisible by q.) ACC0 circuits are union of AC0[q] circuits over all
q ≥ 1. Finally, TC0 circuits are circuits consisting of unbounded fan-in And, Or and Maj
gates, and unary Not gates. (A Maj gate is a gate that evaluates to one iff the majority of
its inputs is set to one.)

So far we did not say what we mean by the size of a circuit. There are two possible
measures of the circuit size—the number of gates and the number of wires. As these two
measures usually differ by at most a square the difference in these measures is usually not
important. As we will see for us it will make a difference. Unless we say otherwise we will
mean by the size of a circuit the number of its gates.

Beside languages over a binary alphabet we consider also languages over an arbitrary
alphabet Σ. In such cases we assume that there is some fixed encoding of symbols from Σ
into binary strings of fixed length, and inputs from Σ∗ to circuits are encoded symbol by
symbol using such encoding. Similarly, a circuit for a function with non-Boolean output
produces a binary encoding of the output symbol.

There is a close relationship between a circuit complexity of a regular language L and
the circuit complexity of a word problem over its syntactic monoid M(L). One can easily
establish the following relationship.

Proposition 1 1. If a regular language L is computable by a circuit family of size s(n)
and depth d(n) and for some k ≥ 0, νL(L=k) = M(L) then the product over its syntac-
tic monoid M(L) is computable by a circuit family of size O(s(O(n)) + n) and depth
d(O(n)) + O(1).

2. If the product over a monoid M is computable by a circuit family of size s(n) and depth
d(n) then any regular language with the syntactic monoid M is computable by a circuit
family of size s(n) + O(n) and depth d(n) + O(1).

The somewhat technical condition that for some k, νL(L=k) = M(L) is unfortunately nec-
essary as the language LENGTH(2) of strings of even length does not satisfy the conclusion
of the first part of the claim in the case of AC0 circuits. However, the first part of the propo-
sition applies in particular to regular languages that contain a neutral letter, a symbol that
can be arbitrarily added into any word without affecting its membership/non-membership in
the language. For L ⊆ Σ∗, L=k means L ∩ Σk.

3 Mapping the landscape

It is folklore that all regular languages are computable by linear size NC1 circuits. Indeed by
Proposition 1 it suffices to show that there are NC1 circuits of linear size for the product of n
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elements over a fixed monoid M : recursively reduce computation of a product of n elements
over M to a product of n/2 elements over M by computing the product of adjacent pairs of
elements in parallel. Turning such a strategy into a circuit provides a circuit of logarithmic
depth and linear size. Thus we can state:

Theorem 2 Every regular language is computable by NC1 circuits of linear size.

Can all regular languages be put into even smaller circuit class? A surprising result of
Barrington [1] indicates that this is unlikely: if a monoid M contains a non-solvable group
then the word problem over M is hard for NC1 under projections. Here, a projection is a
simple reduction that takes a word w from a language L and maps it to a word w′ from a
language L′ so that each symbol of w′ depends on at most one symbol of w and the length
of w′ depends only on the length of w. Thus, unless NC1 collapses to a smaller class such as
TC0, NC1 circuits are optimal for some regular languages. The theorem of Barrington was
further extended by Barrington et al. [2] to obtain the following statement.

Theorem 3 ([1, 2]) Any regular language whose syntactic monoid contains a non-solvable
group is hard for NC1 under projections.

An example of a monoid with a non-solvable group is the group S5 of permutations on
five elements. Thus for example the word problem over the group S5 is hard for NC1 under
projections.

Chandra, Fortune and Lipton [5] identified a large class of languages that are computable
by AC0 circuits.

Theorem 4 ([5]) If a language L has a group-free syntactic monoid M(L) then L is in
AC0.

The regular languages with group-free syntactic monoids have several alternative charac-
terizations. They are precisely the star-free languages, the languages that can be described
by a regular expression using only union, concatenation and complement operations but not
the operation star where the atomic expressions are languages {a} for every a ∈ Σ. They are
also the non-counting languages, the languages L that satisfy: there is an integer n ≥ 0 so
that for all words x, y, z and any integer m ≥ n, xymz ∈ L iff xym+1z ∈ L.

The proof of Chandra et al. uses the characterization of counter-free regular languages by
flip-flop automata of McNaughton and Papert [11]. Using this characterization one only needs
to prove that the prefix-product over carry semigroup is computable by AC0 circuits. The
carry semigroup is a monoid with three elements P,R, S which multiply as follows: xP = x,
xR = R, xS = S for any x ∈ {P, S,R}. The carry semigroup is especially interesting because
of its relation to the problem of computing the addition of two numbers represented in binary.

Chandra et al. also prove a partial converse of their claim.

Theorem 5 ([5]) If a monoid M contains a group then the product over M is not in AC0.

Their proof shows how a product over a monoid with a group can be used to count the
number of ones in an input from {0, 1}∗ modulo some constant k ≥ 2. However, by the
result of Furst, Saxe and Sipser [7] that cannot be done in AC0 so the product over monoids
containing groups cannot be in AC0.
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There is still an apparent gap between Theorems 4 and 5. Namely, the language LENGTH(2)
of words of even length is in AC0 although its syntactic monoid contains a group. This gap
was closed by Barrington et al. [2].

Theorem 6 ([2]) A regular language is in AC0 iff for every k ≥ 0, the image of L=k under
the syntactic morphism νL(L=k) does not contain a group.

Surprisingly, there is a beautiful characterization of these languages using regular ex-
pressions provided by [2]. L is in AC0 iff it can be described by a regular expression using
operations union, concatenation and complement with the atoms {a} for every a ∈ Σ and
LENGTH(q) for every q ≥ 1. LENGTH(q) is the language of all words whose length is
divisible by q.

The remaining gap between regular languages with group-free monoids and monoids that
contain non-solvable groups was essentially closed by Barrington [1]:

Theorem 7 ([1]) If a syntactic monoid of a language contains only solvable groups then the
language is computable by ACC0 circuits.

An example of such a language is the language PARITY of words from {0, 1}∗ that
contain an even number of ones. There is a very nice characterization of also these languages
by regular expressions of certain type. For this characterization we need to introduce one
special regular operation on languages. For a language L ⊆ Σ∗ and w ∈ Σ∗, let L/w denote
the number of initial segments of w which are in L. For integers m > 1 and 0 ≤ r < m
we define 〈L, r, m〉 = {w ∈ Σ∗; L/w ≡ r modm}. Straubing [16] shows that the syntactic
monoid of a language contains only solvable groups iff the language can be described by a
regular expression built from atoms {a}, for a ∈ Σ, using operations union, concatenation,
complement and 〈La, r,m〉, for any a ∈ Σ, m > 1 and 0 ≤ r < m.

The above results essentially completely classify all regular languages with respect to their
circuit complexity—they are complete for NC1, they are computable in AC0 or otherwise they
are in ACC0. It is interesting to note that the class TC0 does not get assigned any languages
unless it is equal either to NC1 or ACC0. Proving that a regular language with its syntactic
monoid containing non-solvable group is in TC0 would collapse NC1 to TC0. Currently not
much is known about the relationship of classes ACC0, TC0, and NC1 except for the trivial
inclusions ACC0⊆TC0⊆NC1.

In the next section we refine the classification of regular languages even further.

4 Circuit size of regular languages

In the previous section we have shown that all regular languages are computable by linear
size NC1 circuits. Can anything similar be said about regular languages in AC0 or ACC0?
The answer may be somewhat surprising in the light of the following example. Let Th2 be
the language over the alphabet {0, 1} of words that contain at least two ones. This is clearly
a regular language and it is in AC0: check for all pairs of input positions whether anyone
of them contains two ones. However this gives an AC0 circuit of quadratic size and it is
not at all obvious whether one can do anything better. Below we show a general procedure
that produces more efficient circuits. We note here that the language Th2 as well as all the
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threshold languages Thk for up-to even poly-logarithmic k are in fact computable by linear
size AC0 circuits [14]. The construction of Ragde and Wigderson [14] is based on perfect
hashing and it is not known if it could be applied to other regular languages.

Despite that we can easily reduce the size of constant depth circuits computing regular
languages as follows. Assume that a regular language L and the product over its syntactic
monoid is computable by O(nk)-size constant-depth circuits. We construct O(n(k+1)/2)-size
constant-depth circuits for product over M(L): divide an input x ∈ M(L)n into consecutive
blocks of size

√
n and compute the product of each block in parallel; then compute the

product of the
√

n products obtained in the previous step. Clearly, the computation of the
block products can be done in size O(

√
n · nk/2), as computing the product of

√
n monoid

elements requires circuits of size O(nk/2). Thus, the total size of the circuit is O(n(k+1)/2) and
the depth of the circuit only doubles. This construction can be further iterated constantly
many times to obtain the following result.

Proposition 8 Let L be a regular language computable by a polynomial-size constant-depth
circuits over arbitrary gates. If the product over its syntactic monoid M(L) is computable by
circuits of the same size then for every ε > 0, there is a constant-depth circuit family of size
O(n1+ε) that computes L.

A substantial improvement comes in the work of Chandra et al. [5] who prove:

Theorem 9 ([5]) Let g0(n) = n1/4 and further for each d = 0, 1, 2, . . ., gd+1(n) = g∗d(n).
Every regular languages L with a group-free syntactic monoid is computable by AC0 circuits
of depth O(d) and size O(n · g2

d(n)), for any d ≥ 0.

Here g∗(n) = min{i; g(i)(n) ≤ 1}, where g(i)(·) denotes g(·) iterated i-times. Hence,
Chandra et al. prove that almost all languages that are in AC0 are computable by circuit
families of almost linear size. Clearly the same is true for the product over group-free monoids.
We generalize this to all regular languages computable in AC0.

Theorem 10 Let gd(n) be as in Theorem 9. Every regular languages L in AC0 is computable
by AC0 circuits of depth O(d) and size O(n · g2

d(n)), for any d ≥ 0.

The proof is a simple extension of the result of Chandra et al. We need to establish the
following proposition that holds for all languages in AC0.

Proposition 11 Let for every n ≥ 0, the image of L=n under the syntactic morphism νL

does not contain any group. Then there is a k ≥ 1 and a group-free monoid M ⊆ M(L) such
that for all w ∈ Σ∗, if k divides the length of w then νL(w) ∈ M .

Proof. For every group G in M(L) let vG ∈ Σ∗ be an arbitrary non-empty word such that
νL(vG) = 1G if such a word exists. Let k be the product of the lengths |vG|. (Set k = 1
if no vG exists.) Let M = {νL(w); w ∈ Σ∗ & k | |w|}. Clearly, M is a monoid so we only
need to argue that it is group-free. Let g be an element of a group G in M(L). Assume
that g 6= 1G and that there is a word w of length divisible by k such that νL(w) = g. As
M(L) is finite, there exists ` ≥ 1 such that g` = 1G. Since νL(w`) = 1G, vG exists. Clearly,
{g1, g2, . . . , g`} forms a group. This group is the image of words wj(vG)(`−j)|w|/|vg| under νL,
for j = 1, 2, . . . , `. Since all these words are of the same length, the word w cannot exist. 2
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Proof of Theorem 10. If L is a regular language in AC0 then by the previous proposition
there is a group-free monoid M and an integer k ≥ 1 such that all words of length divisible
by k are mapped into M by the syntactic morphism of L. Consider an integer n ≥ 1. It
suffices to show that we can compute νL(w) for any word w ∈ Σn. The word w can be
divided into blocks b1, b2, . . . , bm of length k and one block b of length at most k so that
w = b1b2 · · · bmb. Clearly, νL(w) = νL(b1) · νL(b2) · · · νL(bm) · νL(b). Hence we can build a
circuit that divides its input w into blocks bi of length k, for each block bi it computes the
mapping νL(bi) to obtain elements in M , computes the product m′ = νL(b1)·νL(b2) · · · νL(bm)
using the circuit of depth O(d) and size O(n · g2

d(n)) guaranteed to exist by Theorem 9, and
computes νL(w) = m′ · νL(b). As k is a constant the depth of the circuit will be O(d) and
size O(n · g2

d(n)). 2

Chandra et al. prove actually the even stronger statement that the prefix-problem of these
regular languages is computable in that size and using that many wires. We use the technique
of Chandra et al. [5] together with the regular expression characterization of languages to
show a similar statement for the regular languages in ACC0 whose syntactic monoid does not
contain a non-solvable group. (Alternatively, instead of characterization of regular languages
in ACC0 by regular expressions we could use their similar characterization by Thérien [20].)

Theorem 12 Let gi(n) be as in Theorem 9. Every regular language L whose syntactic
monoid contains only solvable groups is computable by ACC0 circuits of size O(n · g2

i (n)).

Assuming that ACC0 and NC1 are different the above theorem indeed applies to all
regular languages in ACC0.

The following general procedure that allows to build more efficient circuits for the prefix-
product over a monoid M from circuits for the product over monoid M and less efficient
circuits for the prefix-product over M is essentially the procedure of Chandra et al. Together
with the inductive characterization of regular languages by regular expressions it provides
the necessary tools to prove the above theorem. Let g : N → N be a non-decreasing function
such that for all n > 0, g(n) < n, and M be a monoid with the product and prefix-product
computable by constant-depth circuits.

CFL procedure:

Step 0. We split the input x ∈ Mn iteratively into sub-words. We start with x as the only
sub-word of length n and we divide it into n/g(n) sub-words of size g(n). We iterate and
further divide each sub-word of length l > 1 into l/g(l) sub-words of length g(l). Hence, for
i = 0, . . . , g∗(n) we obtain n/g(i)(n) sub-words of length g(i)(n).
Step 1. For every sub-word obtained in Step 0 we compute its product over M .
Step 2. Using results from Step 1 and existing circuits for prefix-product, for each sub-word
of length l > 1 from Step 0 we compute the prefix-product of the products of its l/g(l)
sub-words.
Step 3. For each i = 1, . . . , n, we compute the product of x1 · · ·xi by computing the product
of g∗(n) values of the appropriate prefixes obtained in Step 2.

Let us analyze the circuit obtained from the above procedure. Assume that we have
existing circuits of size s(n) and constant depth ds for computing product over M and of size
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p(n) and constant depth dp for computing prefix-product over M . Then the above procedure
gives a circuits of depth 2ds + dp and size

g∗(n)∑
i=0

n

g(i)(n)
· s(g(i)(n)) +

g∗(n)−1∑
i=0

n

g(i)(n)
· p

(
g(i)(n)

g(i+1)(n)

)
+ n · s(g∗(n)).

We demonstrate the use of the above procedure. Let M be a monoid such that the product
over M is computable by polynomial size constant-depth circuit family. Choose ε > 0. From
Proposition 8 we have circuits of size s(n) = O(n1+ε) for computing the product over M . By
choosing g(n) = n/2 and computing the prefix-product of two elements by a trivial circuit
we obtain a circuit for the prefix-product over M of constant depth and size O(n1+ε log n).
We can state the following proposition.

Proposition 13 Let L be a regular language computable by a polynomial-size constant-depth
circuits over arbitrary gates. If the product over its syntactic monoid M(L) is computable by
similar circuits then for every ε > 0, there is a constant-depth circuit family of size O(n1+ε)
that computes the prefix-product over the monoid M(L).

The previous proposition states clearly something non-trivial as a näıve construction of a
prefix-product circuit would produce at least quadratic size circuits. We can derive also the
following key lemma from the CFL procedure.

Lemma 14 Let g0(n) = n1/4 and further for i = 0, 1, 2, . . ., gi+1(n) = g∗i (n). Let M be a
monoid. If there is a size O(n · gi+1(n)) depth ds circuit family for computing product over
M and a size O(n · g2

i (n)) depth dp circuit family for computing prefix-product over M then
there is a size O(n · g2

i+1(n)) depth 2ds + dp circuit family for computing prefix-product over
M .

Proof. Use the CFL procedure and choose g(n) = g2
i (n). The size of the resulting circuit

can be bounded by

g∗(n)∑
i=0

n

g(i)(n)
· g(i)(n) · gi+1(g(i)(n)) +

g∗(n)−1∑
i=0

n

g(i)(n)
· g(i)(n)
g(i+1)(n)

· g2
i

(
g(i)(n)

g(i+1)(n)

)
+n · g∗(n) · gi+1(g∗(n))

≤ g∗(n) · n · gi+1(n) + g∗(n) · n + n · g∗(n) · gi+1(n).

Since gi(n) ≤ n1/4, g2
i (g2

i (n)) ≤ gi(n). Thus g∗(n) = (g2
i )∗(n) ≤ 2g∗i (n) = 2gi+1(n). 2

It is trivial that if we can compute the prefix-product over some monoid M by O(n·g2
i (n))

circuits then we can also compute the product by the same size circuits. The above lemma
provides essentially the other direction, i.e., building efficient circuits for the prefix-product
from circuits for the product.

Since we will need to go back and forth from a language to the product over its syntactic
monoid and Proposition 1 is not applicable to some languages without a neutral letter we
will extend every language by a neutral letter. For a language L ⊆ Σ∗ and ε 6∈ Σ we define
the extension Lε of L by the neutral letter ε to be the set of words w ∈ (Σ ∪ {ε})∗ such that
if we remove all occurrences of ε from w we get a word from L. One can easily verify that
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if we take a regular expression R for a language L that uses operations union, complement,
concatenation and 〈La, r,m〉-operation, and we replace in R every occurrence of each atom
{a} by a regular expression for {a}ε we get a regular expression that describes precisely Lε.
It is clear that if Lε is computable by circuits of some particular size and depth then L is
computable by essentially the same circuits as L = Lε ∩ Σ∗.
Proof of Theorem 12. We prove the theorem by an induction on the depth of the regular
expression describing L. Indeed, we will prove that Lε is computable by constant-depth
circuits of size O(n · g2

i (n)). The base case is simple as the languages {a} and {a}ε are
recognized by linear size circuits of constant depth.

For the induction step let L be obtained from L1 via complement or the 〈L, r, m〉-operation
or from L1 and L2 via union or concatenation. By induction hypothesis, for all i ≥ 0, L1ε

and L2ε are computable by constant-depth ACC0 circuits of size O(n · g2
i (n)). Thus, if L

is obtained via union or complement then clearly L as well as Lε are computable by ACC0

circuits of size O(n · g2
i (n)).

If we can argue that for all i ≥ 0, the computation of the membership in L1ε of all prefixes
of an input w and of the membership in L2ε of all suffixes of w can be done in parallel by
ACC0 circuits of size O(n ·g2

i (n)) then we will be done with the proof as such an information
can be processed by a simple circuitry to obtain the answer whether w is in Lε.

We claim that the membership of all prefixes of an input w in L1ε can be computed in
parallel by ACC0 circuit of size O(n · g2

i (n)), for all i ≥ 0. Since L1ε has a neutral letter
we can apply Propositions 1 and 13 to conclude that the prefix-product over M(L1ε) can be
computed by constant-depth ACC0 circuits of size O(n1+1/2) = O(n · g2

0(n)). By induction
hypothesis the product over M(L1ε) is computable by ACC0 circuits of size O(n · g2

i (n)), for
all i ≥ 0. Thus by repeated use of Lemma 14, the prefix-product over M(L1ε) is computable
by constant-depth circuits of size O(n · g2

i (n)), for any i ≥ 0. The claim follows.
One can argue similarly for the membership of suffixes of w in L2ε since computing a

suffix-product over M(L2ε) can be done by a procedure similar to the CFL procedure. 2

5 Wires vs. gates

It is a natural question whether all languages that are in AC0 and ACC0 could be computed
by AC0 and ACC0 circuits, resp., of linear size. This is not known, yet:

Open problem 15 Is every regular language in AC0 or ACC0 computable by linear-size
AC0 or ACC0 circuits?

One would be tempted to conjecture that this must be the case as O(n · gd(n)) may not
look like a very natural bound. However, as we shall see further such an intuition fails when
considering the number of wires in a circuit. As we mentioned earlier, Chandra et al. in fact
proved Theorem 4 in terms of wires instead of gates. A close inspection of our arguments in
the previous section reveals that our Theorems 10 and 12 also hold in terms of wires. Hence
we can strengthen the results of the previous section as follows:

Theorem 16 Let L be a regular language and functions gd be as in Theorem 9.

• If L is in AC0 then for every d ≥ 0 it is computable by AC0 circuits using O(ng2
d(n))

wires.
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• If L is in ACC0 and it is not hard for NC1 then for every d ≥ 0 it is computable by
ACC0 circuits using O(ng2

d(n)) wires.

• If L is in ACC0 then for every ε > 0 it is computable by ACC0 circuits using O(n1+ε)
wires.

Interestingly enough the wire variant of Problem 15 was answered negatively in [10].

Theorem 17 ([10]) There is a regular language in AC0 that requires AC0 and ACC0 circuits
of depth O(d) to have Ω(n · gd(n)) wires.

The language from the theorem is the following simple language U = c∗(ac∗bc∗)∗. Al-
though we have described it by a regular expression using the star-operation it is indeed in
AC0. What is really interesting about this language is that it is computable by ACC0 circuits
using a linear number of gates.

Theorem 18 ([10]) The class of regular languages computable by ACC0 circuits using linear
number of wires is a proper subclass of the languages computable by ACC0 circuits using linear
number of gates.

It is not known however whether the same is true for AC0.

Open problem 19 Are the classes of regular languages computable by AC0 circuits using
linear number of gates and liner number of wires different?

The proof of Theorem 17 in [10] shows that any circuit computing U must contain within
a weak type of super-concentrator, a graph that is known to require Ω(n · gd(n)) of edges
[6, 13]. A similar type of argument already appeared in [4] however in a substantially simpler
setting of multi-output functions such as Integer Addition.

[10] provides a precise characterization of regular languages with neutral letter that are
computable by AC0 and ACC0 circuits using linear number of wires.

Theorem 20 ([10]) Let L be a regular language with a neutral letter.

• L is computable by AC0 circuits with linear number of wires iff the syntactic monoid
M(L) satisfies the identity (xyz)ωy(xyz)ω = (xyz)ω, for every x, y, z ∈ M(L).

• L is computable by ACC0 circuits with linear number of wires iff the syntactic monoid
M(L) contains only commutative groups and (xy)ω(yx)ω(xy)ω = (xy)ω, for every
x, y, z ∈ M(L).

The class of regular languages that are computable by AC0 circuits with linear number of
wires has several other characterizations. It is the class of unambiguous languages, languages
that are recognized by a two-way finite state automata whose graph of transitions is a directed
acyclic graph except for the self-loops (see [15] for more definitions). It is also the class of
regular languages that can be described by boolean combinations of so called turtle programs.
A turtle program is a sequence of simple instructions of the type “go left until you find letter
a”, or go “right until you find letter c”. If on an input one never falls of either end of the
input word when following the instructions while starting at the left or right end of the word,
the word is accepted by the program. A similar turtle programs can also be defined for
languages in ACC0, where the turtle also evaluates some product in a commutative group as
it moves along the word (see [10, 18] for more details).
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6 Applications to circuit complexity

In the previous sections we have shown that all regular languages that have constant-depth
circuits of a particular type have actually constant-depth circuits of the same type and of
almost linear size (Proposition 8 and Theorem 16). This is true regardless of whether we
count the number of wires or gates. Thus we get:

Theorem 21 If for some ε > 0 a regular language L does not have ACC0 circuits of size
n1+ε then ACC0 6= NC1.

A consequence of a Barrington’s result in Theorem 3 is that there are regular languages
that are complete for NC1 under projections, e.g., word problems over the permutation
group S5. If a language L has NC1 circuits of depth d, d ∈ O(log n), then by the theorem of
Barrington [1] it is reducible by projections to a word problem over S5 of size 4d. A typical
proof that a language belongs to a certain circuit class is constructive, i.e., typically if we
know that L is in NC1 then we can actually determine d. Hence the following claim could
be useful.

Theorem 22 If a language (function) L is computable by NC1 circuits of depth d, d ∈
O(log n) but not by ACC0 circuits of size O(4d+ε) for some d, ε > 0 then ACC0 6= NC1.

Hence instead of proving super-polynomial circuit lower bounds, for separating ACC0 from
NC1, polynomial lower bounds should suffice. This may also partially explain the obstacles
that one encounters when proving Ω(nc) lower bounds, most of the currently known circuit
lower bounds are well below n4.

7 Conclusions

We have demonstrated that regular languages are very low on the ladder of complexity—they
are computable by almost linear size circuits of different types. Still they provide important
examples of explicit languages that separate different complexity classes. It is not much of
an exaggeration to say that the state of the art circuit separations that we currently have
are based on regular languages. Regular languages could still provide enough ammunition to
separate for example ACC0 from NC1 which is currently a big open problem.

Several other questions that may be more tractable remain also open. We already men-
tioned the one whether all languages that are in AC0 and ACC0 are computable by linear
size constant-depth circuits. The language U defined in the previous section is in particular
interesting as it is the essentially simplest regular language not known to be computable by
linear size AC0 circuits. It is also closely related to Integer Addition: if two binary repre-
sented numbers can be summed up in AC0 using linear size circuits then U is computable by
linear size circuits as well. We can state the following open problem of wide interest:

Open problem 23 What is the size of AC0 and ACC0 circuits computing Integer Addition?

(Previously an unsupported claim appeared in literature that Integer Addition can be
computed by linear size AC0 circuits [14, 9].) If U indeed is computable by linear size
AC0 circuits then it presents an explicit language that separates the classes of languages
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computable in AC0 using linear number of gates and using linear number of wires. Such an
explicit language is already known [10] however that language is not very natural and was
constructed explicitly to provide this separation. The language U would be a more natural
explicit example. If U is not computable by AC0 circuits of linear size then neither is Integer
Addition.

We conclude with yet another very interesting problem that rather reaches somewhat
outside of the realm of regular languages.

Open problem 24 What is the number of wires in AC0 and ACC0 circuits computing Thk,
for k ∈ ω(n)?
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