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1. Introduction

A complete Boolean algebra B is a measure algebra if it carries a strictly positive
o-additive measure. B is a Maharam algebra if it carries a strictly positive con-
tinuous submeasure. Every measure algebra is a Maharam algebra and every Ma-
haram algebra is weakly distributive and satisfies the countable chain condition
(cce).

The 1937 problem of von Neumann from the Scottish book [1] asks if every
weakly distributive ccc Boolean algebra is a measure algebra. In [2], Balcar, Jech
and Pazak proved that it is consistent that every weakly distributive complete ccc
Boolean algebra is a Maharam algebra, and in [3], Talagrand proved that there
exists a Maharam algebra that is not a measure algebra.

For more details on the history see [4].

The present paper investigates diagonal properties of complete Boolean alge-
bras. These properties are related to the weak distributive law and to the exis-
tence of a continuous submeasure. We apply these properties to get a closer look
at Maharam algebras, in particular those that are not measure algebras.

2. Diagonal properties

A Boolean algebra is a set B with Boolean operations a Vb and —a and constants
0 and 1. If every subset A of B has a least upper bound \/ A and the greatest
lower bound A A then B is complete Boolean algebra. An antichain in B is a
nonempty set A C B such that distinct a,b € A are disjoint, i.e. a ANb = 0. B
satisfies the countable chain condition (ccc) if it has no uncountable antichains.

ISupported in part by the GAAV Grant IAA100190509 and by the Research Program CTS
MSM 0021620845



Let B be a complete Boolean algebra. B is weakly distributive (more precisely,
(w,w)-weakly distributive), if whenever Ay, Ay,..., A, ... (n € w) are countable
maximal antichains, then there exists a dense set D such that each d € D meets
only finitely many elements of each A,,.

Definition. Let B be a complete Boolean algebra.

(1) B has the diagonal property if whenever Ag, A1, ..., An,... (n €w) are
countable mazximal antichains, then each A, has a finite subset E, such
that

1iyrbn\/{a ra€E,} = 1.

(2) B has the strategic diagonal property if Player II has a winning
strategy in the infinite game where Player I plays mazimal antichains
Ag, A1, Aa, ..., Player II plays finite sets Eg C Ag, E1 C Ay, Ea C Ag, ...
and Player II wins if and only if

1im\/{a ra€ B} = 1.

(8) B has the uniform diagonal property if there exist functions Fy, Fy, ...,
F,, ... (n € w) acting on mazimal antichains such that whenever Agy, Az,
As, ... are mazimal antichains and for each n, E, = F,(A,,), then

1iyrbn\/{a ra€E,} = 1.

Clearly, the uniform diagonal property implies the strategic diagonal property,
which in turn implies the diagonal property.

It has been long well known that if B satisfies ccc then the diagonal property
is equivalent to weak distributivity.

If B satisfies ccc then either the strategic diagonal property or the uniform
diagonal property is equivalent to the existence of a continuous submeasure (see
Fremlin [5] or Balcar - Jech [4]).

In [6] (Lemma 3.5) it is shown that the diagonal property implies the b-chain
condition, where b is the bounding number, the least cardinal b of a family F of
functions from w to w such that for every g € w® there is some f € F such that
g(n) < f(n) for infinitely many n:

Theorem 1. [6] A complete Boolean algebra B satisfies the diagonal property if
and only if it is weakly distributive and satisfies the b-chain condition.

Proof. First let B be weakly distributive and b-cc. Let A,, = {ank : k € w},n € w,
be countable maximal antichains. By weak distributivity,

\/ hmninf\/{ank k< f(n)} = 1,

feww

and by b-cc there is a family F of size less then b such that



\/ hmninf\/{ank k< f(n)} = 1.

feF

Let g € w* be an upper bound of F under eventual domination. It follows that
lim inf \/{ank k<gin)} =1
n

proving that B has the diagonal property.

Conversely, if B does not have the b-chain condition then B contains P(b)
as a complete subalgebra, and it suffices to prove that P(b) does not have the
diagonal property.

Let {fo : @ < b} be an unbounded family of functions from w to w, and let,
for each n, k € w,

anky = {a<b : fo(n)=k},

Apn={anw  k€w }.

Each 4,, is a maximal antichain in P(b), and if g € w*, then there exist an oo < b
such that g(n) < fu(n) for infinitely many n. Hence for infinitely many n,

o @\ ame : k< g(n) ),

and so o ¢ liminf, J{anr : & < g(n)}. So P(b) does not have the diagonal
property. O

We now show that the strategic diagonal property implies ccc, and so both
the strategic diagonal property and the uniform diagonal property are equivalent
to B being Maharam algebra.

If B does not have ccc then it contains P(w1) as a complete subalgebra, so it
is enough to show that P(w1) does not have the strategic diagonal property.

Theorem 2. The algebra P(w1) does not have the strategic diagonal property. Con-
sequently, if B is a complete Boolean algebra with the strategic diagonal property
then B satisfies the countable chain condition.

Proof. For each # < wy, let fg be a one-to-one function from [ into w. For o < wy
and n € w, let

Qon = {6<w1 : fﬂ(a):n}v

Aoy = {aan : nEwW}.

Now assume that o is a strategy for Player II in the game (2). We shall find «,,
n € w, such that if Player I plays A,, and Player II uses o, then II loses.



Let wi denote the set of all increasing finite sequences of countable or-
dinals. For s € wi¥, s = (ag,...,an_1), let F(s) = k be such that if Player
IT applies 0 to (Agg,---Aa, ;) resulting in a finite set £ C A,, ,, then
E C {aa, 1.0y---50a, .k} For each s € w there exists some k such that the
set

Wy ={a<w : F(sTa)=k }

is uncountable. Let Cs be the set of all § < wy such that W, N G is unbounded in
B. Cs is a closed unbounded set.
Let C be the diagonal intersection of the Cg, i.e.

C ={B<uw : (Vsep~¥)BeC}.

C is closed unbounded, so let 8 > 0 be some 5 € C.

We shall construct {a, }, such that for every n, if E, = 0(Aq,, - .- Aa,, ) then
8 ¢ U{a : a € E,}. This witnesses that II loses the game and so o is not a
winning strategy.

We construct «,, by induction. For n € w, assume that ag, ..., a,_1 have been
found, and let s = {(ag, ..., an—1). Let k be such that F(s”«a) =k for all « € W.
Since Wy N B is infinite and f3 is one-to-one, there exists some oo € W such that
fa(a) > k. We let o, = . Since 3 & aq o U...aq,  we have 3 & | J{a:a € E,}
where E,, = 0(Aa,,- .- Aa,,)

Thus if Player I plays A,,, n € w, Player II loses: we have

B¢ | Ja:acE}
n=0

proving that it is not the case that lim, (J{a:a € E,} = w;. O

3. Forcing iteration

Let us consider the operation on complete Boolean algebras corresponding to
iterated forcing: if B is a complete Boolean algebra and €' is a complete Boolean
algebra in VB, then B +C'is a complete Boolean algebra that produces the iterated
forcing model (VB)©. For the details, see [7].

It is well known that if B is a measure algebra and if C is a measure algebra
in VB then B % C is a measure algebra. Similarly, if B is a ccc and weakly
distributive and C' is ccc and weakly distributive in V2, then B * C is ccc and

weakly distributive. We prove the same for Maharam algebras:

Theorem 3. If B is a Maharam algebra and if C is a Maharam algebra in VB,
then B = C is a Maharam algebra.

According to Fremlin’s notes [5], Theorem 3 was also proved by Farah by a
different argument.



If f and ¢ are functions from w to w, we say that g dominates f, f <* g, if
for some N € w, f(n) < g(n) for all n > N.

A Boolean-valued name @ for a natural number corresponds to a (countable
indexed) partition of 1, namely

(la=k| : kew)

A Boolean-valued name f for a function from w to w corresponds to a matrix
of partitions {A,, : n € w}, where

= {If) =k| : kew).
If f is a name for a function from w to w and if ¢ : w — w, then
If <*gl = 1 iff lim||f(n) <" g(n)] = 1.

Using these observations, we can reformulate the diagonal properties as fol-
lows, obtaining another characterization of ccc weakly distributive and Maharam
algebras (see [4, pp. 258, 259 and 261]).

Let B be a complete Boolean algebra. Then

(1) B has the diagonal property if and only if for every name f for a function
from w to w there exists a function g : w — w such that || f <* g|| = 1.

(2) B has the strategic diagonal property if Player II has a winning strategy
in the game where I plays names f(0), (1), f(2),... for integers and II
plays integers ¢(0),g(1),¢g(1),... and II wins if and only if [|f <*g| =1.

(3) B has the uniform diagonal property if and only if there exist functions
F,, n € w, acting on names for natural numbers such that for every name
f for a function from w to w, we have

If <gll =1,

where ¢ : w — w is obtained as follows: for every n, g(n) = F,(f(n)).

Theorem 4. The diagonal properties are preserved under two-step forcing itera-
tion:

If B has the diagonal property (resp. the uniform diagonal property) and if
C has, in VB, the diagonal property (resp. the uniform diagonal property) then
B« C has the diagonal (resp. uniform diagonal) property.

Theorem (3) now follows.

Proof. First we give a proof for the diagonal property which is somewhat simpler.

Let D = B+ C and assume that both B and C' (in V?) have the diagonal
property. Then if f is a D-name, then (since f corresponds to a B-name for a
C-name) VP satisfies that there is some ¢ such that ||f <* [z = 1. Now g



is a B-name, so there exists some h such that ||g <* h||p = 1. It follows that
IIf <*gllp=1and ||g <* h||p =1, hence || f <* h||p = 1.

Now let D = B*C and assume that both B and C' (in V?) have the uniform
diagonal property.

There exist functions F), acting on B-names for natural numbers that witness
the domination of each B-name f , and similarly, in VB there are functions G,,
acting on C-names for natural numbers. We obtain functions H,, for the algebra
D = BxC as follows: If & is a D-name for a natural number, apply G, inside VB
to get a B-valued natural number b, and then let H,(a) = F,(b). (In other words,
H,(d) = F,(Gn(a)) where & on the right hand side is considered a B-name for
a C-name.) Then we verify that the functions H, witness the uniform diagonal
property of D. O

4. Pathological Maharam algebras

Let us call a Maharam algebra pathological if it is not a measure algebra. Tala-
grand’s construction produces an example of pathological Maharam algebra B of
size 280 The following theorem implies that there are arbitrary large pathological
Maharam algebras.

Theorem 5. If B is a measure algebra and C is a pathological Maharam algebra
in VB then B xC is pathological.

Moreover, BxC' has a continuous submeasure that extends the given measure
on B.

The algebra B * C' contains a measure algebra (B) as a complete subalgebra.
It is not known whether there exists a Maharam algebra that does not contain a
measure algebra as a complete subalgebra.

Proof. Let D = B x C. The algebra D is a Maharam algebra by Theorem (3). If
D were a measure algebra, then C = D : B would also be a measure algebra:
this is proved e.g. in Kunen’s paper [8]. Since Theorem (5) claims a little more,
we give a proof that D is pathological by explicitly describing the pathological
submeasure.

Let B be a measure algebra. There is a measure space M and o-additive
measure g on M such that B is isomorphic to the o-algebra of Borel sets in M mod
the ideal of p-null sets. An argument due to Dana Scott gives a representation of
real numbers in VB by real-valued measurable function on M: a name 7 € VB
for a real number corresponds to a measurable function f : M — R such that for
every real ¢q

lF=qlls = {zeM : f(z)=q}.

Now let C be a B-name for a pathological Maharam algebra, and let i be a
name for a continuous submeasure on C' that is not uniformly exhaustive. That



is, for every ¢ € BY there exist a p € BT, p < ¢, and an € > 0 such that for every
kew,

p I+ Fdisjoint ¢y, ..., ¢, with m(c;) > e, i =1,...,k. (1)

Let D = B % C. We define a function v : D — [0,1] as follows: An element
of D is a B-name ¢ for an element of C. The value m(¢) is a B-name for a real
number in [0, 1], hence represented by a measurable function f : M — [0,1]. We
let

() = /M Fdu.

It is a routine argument to verify that v is a subadditive function on D, and
v(¢) > 0 when ¢ # 0. Moreover, if ||¢ € B|| = 1, then let b be the unique b € B
such that ||¢ = 1|| = b and ||¢ = 0] = —b. We have v(¢) = [, du = pu(b).

We’ll show that v is continuous and is not uniformly exhaustive.

First let ¢g > ¢é1 > -+ > ¢, > ... be a sequence in D such that /\new Cn
Let € > 0. We shall find an N € w such that v(é,) < 2, for every n > N.

In VB, the sequence {¢y }new is a decreasing sequence and || A, ., ¢n = 0| =
1, and since 1 is continuous, we have || lim,, m(¢,) = 0]| = 1. Thus there exists
a maximal antichain {py : k € w} and for each k a number nj such that

=0.

pr I m(é,) <e, for all n > ny.

Now let K be such that

o0

M( \/ Pk)<€,

k=K+1

and let N = max{n; : k < K}. Let a =poV---Vp, and b = \/;O:Kﬂpk. For
each n, let f,, be a measurable function representing 7 (¢, ). If n > N, we have

V(c'n)z/and,uz/fnd,u—l—/bfndu</edu+/bld,uS et+e = 2e.

Thus v is continuous.

In order to show that v is not uniformly exhaustive, we first find some p # 0
and € > 0 such that Eq. (1) holds for every k € w. Thus for every k there exist

¢1,...,¢ € D such that p IF ¢q,...,¢, are pairwise disjoint and p IF m(é;) > €
for i =1,..., k. We may assume that —p IF ¢; = 0 for all 4, and so ¢4, ..., ¢ are
pairwise disjoint. Moreover, for each i = 1,...,k,

v(é) = /6 dp = € p(p).

Thus v is not uniformly exhaustive. O
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