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Abstract

We will use the concept of strong generating and a simple renorm-

ing theorem to give new proofs to slight generalizations of some results

of Argyros and Rosenthal on weakly compact sets in L1(µ) spaces for

finite measures µ.

The purpose of this note is to show that a simple transfer renorming theorem

explains why L1(µ)-spaces, for finite measures µ, share some properties with

superreflexive spaces, though there is no one-to-one bounded linear operator

from L1(µ) into any reflexive space if L1(µ) is nonseparable [19, p. 232].
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The notations used here are standard (see, e.g., [11], where we refer, too,

for undefined concepts). By a measure we always understand a countably

additive measure defined on a σ-algebra Σ of subsets of some non-empty set

Ω.

Definition 1 We will say that a Banach space X is strongly generated by

a Banach space Z if there is a bounded linear operator T from Z into X

such that, for every weakly compact set W ⊂ X and every ε > 0, there exists

m ∈ N such that W ⊂ mT (BZ) + εBX . In this case we will say, too, that Z

strongly generates X.

Remark 2 Definition 1 is motivated by the concept of a strongly weakly

compactly generated Banach space (SWCG, for short), introduced by Schlüch-

termann and Wheeler [20]: A Banach space X is SWCG if there exists a

weakly compact subset K ⊂ X such that, for every weakly compact subset

W ⊂ X, we can find n ∈ N such that W ⊂ nK + εBX (we say, in this case,

that K strongly generates X, or that X is strongly generated by K, hoping

that it does not cause any misunderstanding with Definition 1). Obviously, if

X is strongly generated by a reflexive space Z then it is SWCG. The converse,

a straightforward consequence of the factorization theorem of Davis, Figiel,

Johnson and PeÃlczyński [6], holds. Precisely, if K ⊂ X is a weakly compact

subset strongly generating X, then there exists a reflexive Banach space Z

and a bounded linear mapping T : Z → X such that K ⊂ T (BZ), and so Z

strongly generates X.

Note, too, that if X is strongly generated by a Banach space Z via a bounded

linear mapping T , then X is strongly generated by the quotient Z/KerT and
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now the induced strongly generating mapping T̂ : Z/KerT → X is one-to-

one.

In [20] it is proved that a Banach space X is SWCG if and only if the topo-

logical space (BX∗ , µ(X∗, X)) is metrizable, where µ(X∗, X) denotes the dual

Mackey topology on X∗, i.e., the topology on X∗ of the uniform convergence

on the family of all absolutely convex and weakly compact subsets of X. It is

worth to recall that, according to a result of Grothendieck (see, for example,

[16, §21.6(4)]), for every Banach space X, (X∗, µ(X∗, X)) is complete.

The following result exhibits an important feature of SWCG Banach spaces.

We provide here a new simpler proof of it.

Theorem 3 (Schluchtermann, Wheeler [20])Every SWCG Banach

space is weakly sequentially complete.

Proof. Let (xn) be a Cauchy sequence in X. Put Dn := aco{xp−xq; p, q ≥ n},
n ∈ N, where aco(S) denotes the absolutely convex hull of a set S ⊂ X.

Obviously, X∗ =
⋃

n∈NDn
◦, where S◦ denotes the absolute polar in X∗ of a

set S ⊂ X. In particular, mBX∗ =
⋃

n∈N(Dn
◦ ∩mBX∗) for every m ∈ N. We

mentioned above that (BX∗ , µ(X∗, X)) is a complete metrizable space. Fix

m ∈ N. The sets (Dn
◦ ∩ mBX∗) are µ(X∗, X)-closed, hence, by the Baire

category theorem, there exists n(m) ∈ N and an absolutely convex weakly

compact subset Km of X such that

(Km
◦ ∩mBX∗) ⊂ (Dn(m)

◦ ∩mBX∗).

By taking polars in X we get

(Dn(m) ⊂) conv

(
Dn(m) ∪ 1

m
BX

)
⊂ conv

(
Km ∪ 1

m
BX

) (
⊂ Km +

1

m
BX

)
.
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In particular, xp − xq ∈ Km + 1
m

BX for every p, q ≥ n(m). Let x∗∗ be the

weak∗-limit of the sequence (xn) in X∗∗. Then x∗∗ − xq ∈ Km + 1
m

BX∗∗ for

every q ≥ n(m) and we obtain x∗∗ ∈ X + 1
m

BX∗∗ . This happens for every

m ∈ N, so x∗∗ ∈ X.

Along the whole note, the following simple consequence of Rosenthal’s di-

chotomy theorem will be frequently used.

Lemma 4 Let X be a weakly sequentially complete Banach space. Then, the

following are equivalent:

(i) X contains no isomorphic copy of `1.

(ii) X is reflexive.

Proof. Obviously, (ii)⇒(i). If (i) holds, every sequence in BX has, by Rosen-

thal’s dichotomy theorem, a weakly Cauchy (hence weakly convergent be-

cause X is weakly sequentially complete) subsequence. Then (ii) follows

from the Eberlein-Šmulyan Theorem.

Another useful tool is the following lemma.

Lemma 5 Let X be a reflexive Banach space strongly generated by a Banach

space Z. Then X is isomorphic to a quotient of Z.

Proof. Let T : Z → X be a bounded linear mapping witnessing the strongly

generation. BX is weakly compact, so for every ε > 0 there exists m ∈ N
such that BX ⊂ mTBZ + εBX . Then rBX ⊂ mTBZ for 0 < r < 1− ε. This

follows easily from the Separation Theorem. A classical argument used in

the proof of the Open Mapping Theorem ensures that the sets mTBZ and
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mTBZ have the same interior. Then {x ∈ X; ‖x‖ < r} ⊂ mTBZ , hence

the mapping T is open and the factorization T̂ : Z/KerT → X of T is an

isomorphism onto.

Proposition 6 Assume that a Banach space X is strongly generated by a

reflexive (resp. superreflexive) space and does not contain an isomorphic copy

of `1. Then X is reflexive (resp. superreflexive).

Proof. That X is reflexive follows readily from Theorem 3 and Lemma 4.

For the superreflexive case, use Lemma 5 and the fact that a quotient of a

superreflexive space is superreflexive [7, IV.4.6].

If (X, ‖ · ‖) is a Banach space, we shall denote again by ‖ · ‖ the dual norm

on X∗ if there is no misunderstanding.

Theorem 7 Assume that a Banach space X is strongly generated by a su-

perreflexive Banach space. Then X has an equivalent norm |‖ · |‖ whose dual

norm satisfies the following property: fn−gn → 0 uniformly on every weakly

compact set in X whenever fn, gn ∈ S(X∗,|‖·|‖) are such that |‖fn + gn|‖ → 2.

Proof. Assume that (Z, ‖·‖2) is a superreflexive space that strongly generates

X. We may assume that ‖ · ‖2 is uniformly rotund (Enflo), cf. e.g. [7, Ch.

IV]. Then, by a standard argument (cf. e.g. [7, Ch. II]), the dual norm |‖ · |‖
defined on X∗ by |‖f |‖2 = ‖f‖2 +‖T ∗(f)‖2

2 for f ∈ X∗, has the property that

supT (BZ) |fn−gn| → 0 whenever (fn) and (gn) are sequences in S(X∗,|‖·|‖) such

that |‖fn + gn|‖ → 2.

We will show that the predual norm to |‖ · |‖ is the required norm. Indeed,

we need to show that if (fn) and (gn) are sequences in S(X∗,|‖·|‖) such that

|‖fn + gn|‖ → 2 (1)
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then supK |fn − gn| → 0 for each weakly compact set K in X. For it, let

a weakly compact set K in X and ε > 0 be given. From the definition of

strong generating find m ∈ N such that K ⊂ mT (BZ) + εBX . Then, from

(1) we find n0 ∈ N such that

sup
T (BZ)

|fn − gn| ≤ ε

m

for each n > n0. So, for each n > n0,

sup
K
|fn − gn| ≤ sup

mW
|fn − gn|+ sup

εBX

|fn − gn| ≤ m
ε

m
+ 2ε = 3ε.

The following corollary strengthens Proposition 6.

Corollary 8 Let X be a Banach space strongly generated by a superreflexive

space. Then X admits an equivalent norm the restriction of which to any

reflexive subspace Y of X is uniformly Fréchet differentiable. In particular

any such subspace Y is superreflexive.

Proof. The restriction to Y of the norm on X defined in Theorem 7 is, by

Šmulyan’s lemma (see, for example, [7, Ch II]), uniformly Fréchet differen-

tiable and hence X is superreflexive (see, e.g., [7, Cor. IV.4.6]).

Remark 9 In Corollary 8 some condition on the subspace Y is needed in

order to ensure that it is superreflexive (here we used reflexivity). In fact,

Rosenthal’s counterexample to the heredity problem for WCG Banach spaces

(a subspace of some L1(µ) space which is not WCG) proves that there are

subspaces of strongly superreflexive generated Banach spaces (see Proposi-

tion 12) which are not WCG, and hence not superreflexive.
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Recall that a compact topological space K is uniform Eberlein if it is home-

omorphic to a compact subset of (H, w), where H is a Hilbert space. A

well-known characterization of uniform Eberlein compacta is given by the fol-

lowing Farmaki’s result (here, Σ(Γ) :=
{

s ∈ RΓ : #{γ ∈ Γ; s(γ) 6= 0} ≤ ℵ0

}
,

and this set is equipped with the product topology): Let Γ be an un-

countable set and let K ⊂ Σ(Γ) ∩ [−1, 1]Γ be a compact subset. Then

the set K is uniform Eberlein compact if, and only if, for every ε > 0

there is a decomposition Γ =
⋃∞

n=1 Γε
n such that, for all n ∈ N and for

all k ∈ K, #{γ ∈ Γε
n; |k(γ)| > ε} < n (see [12], see also [9]).

We have the following Grothendieck-like stability result:

Proposition 10 Let X be a Banach space. Let K be a subset of X such

that, for every ε > 0 there exists a uniform Eberlein compactum Uε in (X, w)

with K ⊂ Uε + εBX . Then (K, w) is a uniform Eberlein compactum.

Proof. We may assume that K ⊂ BX . Let X0 := span
⋃{Uε; ε rational, ε >

0}, a WCG Banach space. Obviously K has the same property stated, now

with respect to (X0, w), so from the very beginning we may also assume

that X is WCG. By [1], there exists, for some set Γ, a 1-1 linear mapping

T : X → c0(Γ), such that ‖T‖ ≤ 1/2. Then, Uε ⊂ 2BX (so TUε ⊂ Bc0(Γ))

for 0 < ε ≤ 1. Using Farmaki’s characterization mentioned above, for every

0 < ε ≤ 1 there is a decomposition Γ =
⋃∞

n=1 Γ
ε/2
n such that

∀n ∈ N, ∀u ∈ Uε, #{γ ∈ Γε/2
n ; |Tu(γ)| > ε

2
} < n.

Now, if k ∈ K we can write k = u + εb, where u ∈ Uε and b ∈ BX . Hence,

{γ ∈ Γ
ε/2
n ; |Tk(γ)| > ε} ⊂ {γ ∈ Γ

ε/2
n ; |Tu(γ)| > ε/2}, and the last set has
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cardinality < n. Thus this decomposition can be used in Farmaki’s theorem,

this time for the set TK. This holds for every 1 ≥ ε > 0, showing that K is

a uniform Eberlein compactum.

Corollary 11 Assume that X is a Banach space strongly generated by a su-

perreflexive space. Then any compact subset K of (X,w) is uniform Eberlein.

Proof. Assume that X is strongly generated (via the mapping T ) by a su-

perreflexive space Z. In the weak topology, the unit ball of a superreflexive

space is a uniform Eberlein compactum ([4]). Since a quotient of a super-

reflexive space is superreflexive (see, e.g., [7, IV.4.6]), we may assume that T

is 1-1. It follows that (mT (BZ), w) is a uniform Eberlein compactum. Now

it is enough to use Proposition 10.

The rest of the paper shows some applications of the former results to the

space L1(µ).

Proposition 12 If µ is a finite measure defined on a σ-algebra Σ of subsets

of a certain set Ω, then L1(µ) is strongly generated by a Hilbert space.

Proof. We will use [15, p. 17]. Assume without loss of generality that µ is

a probability measure. By using the identity operators, we have BL∞(µ) ⊂
BL2(µ) ⊂ BL1(µ). Let K be a weakly compact set in the unit ball of L1(µ).

Then K is uniformly integrable in L1(µ) ([8, p. 292]), i.e. for every ε > 0

there is δ > 0 such that for every x ∈ K,
∫

M
|x|dµ < ε whenever M ∈ Σ and

µ(M) < δ.

For k ∈ N and for x ∈ K, put Mk(x) := {t ∈ Ω; |x(t)| ≥ k}, and write

x = x1 + x2, where x1 := x.χ(Ω \ Mk(x)) and x2 := x.χ(Mk(x)) (where
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χ(S) denotes the characteristic function of a set S ⊂ Ω). Let ak(K) :=

sup{‖x2‖1; x ∈ K}. Then

K ⊂ kBL∞(µ) + ak(K)BL1(µ) ⊂ kBL2(µ) + ak(K)BL1(µ).

We have kµ(Mk(x)) ≤ ‖x2‖1 ≤ 1, hence µ(Mk(x)) ≤ 1/k for all x ∈ K.

From the uniform integrability of K, we get that ak(K) → 0 when k → ∞.

This finishes the proof.

On the other hand we have the following result.

Corollary 13 (Rosenthal [18]) Let X be a subspace of L1(µ), for a finite

measure µ. Assume that X does not contain an isomorphic copy of `1. Then

X is superreflexive.

Proof. Combine Proposition 12 and Corollary 8.

Corollary 14 (Argyros, Farmaki [2]) Every compact subset of the space

(L1(µ), w), for a finite measure µ, is uniform Eberlein.

Proof. Combine Proposition 12 and Corollary 11.

Remark 15 Note that for the proof of Corollary 14 we do not need to use

the full strength of Corollary 11; indeed, the space L1(µ) is strongly generated

by a Hilbert space, so the appeal to [4] is not necessary.

Remark 16 For an uncountable set Γ, the space `3/2(Γ) is superreflexive

and not Hilbert generated. Indeed, it follows from Pitt’s theorem that there

are no bounded linear mapping with dense image from `2(Γ) into `3/2(Γ) (see

[10]).
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Remark 17 The research on this paper was motivated by the paper [13] of

Giles and Sciffer, where it is implicitly showed that every reflexive subspace

of L1(µ) is superreflexive, which is part of a well known result of Rosenthal

in [18]. The proof of this result given in this note is different and slightly

more general. The proof of Theorem 3 is also different from the original one.
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[14] P. Hájek, V. Montesinos, J. Vanderwerff, and V. Zizler, Biorthogonal

systems in Banach spaces, Springer-Verlag (Canadian Series), to ap-

pear.

[15] W.B. Johnson and J. Lindenstrauss, Basic concepts in the geometry of

Banach spaces, in Handbook of the Geometry of Banach Spaces, W.B.

Johnson and J. Lindenstrauss eds., Elsevier, Vol. 1, pp. 1–84. 2001.
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