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conditions mentioned, where bifurcation for this classical problem is excluded. In
the case when a bifurcation parameter is a size of the domain, the result says
that bifurcation for the unilateral problem occurs for some diffusion coefficients for
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diffusion coefficients it occurs for the unilateral problem in smaller domains than for
the classical boundary conditions. The problem is formulated as a quasivariational
inequality and the proof is based on the Leray-Schauder degree.
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1 Introduction.

Suppose that Ω is a bounded domain in R
N, N ≥ 2, with a Lipschitzian

boundary ∂Ω and ΓD, ΓN , ΓU are pairwise disjoint open parts of ∂Ω such
that

meas ΓD > 0, meas ΓU > 0, meas {∂Ω \ (ΓD ∪ ΓN ∪ ΓU)} = 0. (1)

Our goal is to prove the existence and describe a location of a global bifurcation
of stationary solutions for the reaction-diffusion system




ut = d1∆u+ b11u+ b12v + n1(d1, d2, u, v)

vt = d2∆v + b21u+ b22v + n2(d1, d2, u, v)
in (0,+∞) × Ω, (2)

with the unilateral implicit boundary conditions





u = 0, v = 0 on ΓD,
∂u

∂n
= 0 on ∂Ω \ ΓD,

∂v

∂n
= 0 on ΓN ,

v ≥ −
∫

ΓU

Φ(x, y)
∂v

∂n
(y)dΓ(y),

∂v

∂n
≥ 0,


v +

∫

ΓU

Φ(x, y)
∂v

∂n
(y)dΓ(y)



∂v

∂n
= 0 on ΓU .

(3)

Here d1, d2 are positive real parameters (diffusion coefficients), n1, n2 are
small perturbations, bij (i, j = 1, 2) are real coefficients and Φ ∈ C2(Ω×Ω)
is a given function. Of course, if Φ(x, y) ≡ 0 in Ω × Ω then we get the
Signorini boundary condition on ΓU for v. Clearly [0, 0] is a solution of
(2) with (3) as well as with the classical mixed boundary conditions

u = 0, v = 0 on ΓD,
∂u

∂n
= 0,

∂v

∂n
= 0 on ΓN ∪ ΓU . (4)

The bifurcation point of (2) , (4) will be obtained in the domain of parameters
where the trivial solution of the classical problem (2) , (4) is stable and
where a bifurcation for (2) , (4) is excluded. To explain these relations it is
necessary to start ou exposition with the evolution system (2) , (4) , but in
fact we will consider the stationary problem corresponding to (2), (3) with
d changing along a curve σ in R

2
+. More precisely, we will consider a
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continuous mapping σ = [σ1, σ2] : R+ → R
2
+ and the problem




σ1(s)∆u+ b11u+ b12v + n1(σ1(s), σ2(s), u, v) = 0

σ2(s)∆v + b12u+ b22v + n2(σ1(s), σ2(s), u, v) = 0
in Ω, (5)

with the unilateral boundary conditions (3) and with the real bifurcation
parameter s ∈ R+.

We always suppose that

b11 > 0, b12 < 0, b21 > 0, b22 < 0,

b11 + b22 < 0, b11b22 − b12b21 > 0.
(6)

If our system is related to a chemical reaction, u, v describe the concen-
trations of reactants, then the assumptions (6) mean that u and v
is an activator and inhibitor, respectively. It is well-known that under the
assumptions (6), the trivial solution is stable as the solution of the sys-
tem without any diffusion (i.e. ODE’s obtained for d1 = d2 = 0), but as
a solution of (2) with the classical boundary conditions (4) it is stable
only for d = [d1, d2] from some subdomain DS ⊂ R

2
+ and unstable for

d = [d1, d2] from DU = R
2
+ \DS (see Proposition 2.2, Figure 1). Standard

methods of bifurcation theory guarantee that stationary spatially inhomoge-
neous solutions of the classical problem (2), (4) bifurcate from the trivial
solution on the border CE between the domain of stability and instability
and also in some points of the domain of instability DU , and that there are
no bifurcation points in the domain of stability. For the unilateral problem
(2), (3), (even with Φ = 0) classical approaches based on linearization fail
because this problem has no real linearization.

Our goal is to show that there are global bifurcations of stationary solutions
of the problem (2), (3) even in DS (domain of stability corresponding to
the classical problem), where bifurcation for (2), (4), is excluded. Hence,
the unilateral boundary conditions (4) have a certain destabilizing effect (in
the sense of arising of bifurcation).

We will prove that if the curve σ comes from the domain DS to a neigh-
borhood of a suitable part of CE then there is a global bifurcation point
sB for (2), (3) sB with σ(sB) ∈ DS. The problem will be formulated in
terms of a quasi-variational inequality which can be written also as a strongly
nonlinear operator equation with a projection onto a closed convex set depend-
ing implicitly on a solution. The Leray-Schauder degree will be used to this
equation. The first result of this type (in a very simple form) for variational,
not quasivariational, inequalities was proved in [1] by a method from [7]. It
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was based on a certain nonstandard combination of a penalty method with
Dancer’s global bifurcation result for equations. An other proof of a result of
this type, based on a direct use of the Leray-Schauder degree (jump of the
degree implies bifurcation) was given in [12]. In both cases, only particu-
lar curves σ1(s) = s, σ2(s) = 1 were considered and local bifurcation was
described. Generalizations to general curves and various types of unilateral
boundary conditions were proved in a series of papers (see e.g. references in
[2]), which gives the most complex and abstract result in this direction for
the case of unilateral multivalued conditions. (The conditions (3) are not
included neither with Φ = 0). The problem with implicit boundary condi-
tions (3) was studied in [8] for the case of general curves intersecting the
border CE in suitable places. We generalize here the result from [8] in the
following directions. First, the assumptions concerning positivity on ΓU of
some eigenfunctions of the Laplacian are weakened Further, we describe here
a global behavior of the bifurcation branch, while only local bifurcation was
shown in [8]. In contrast to [8], we also consider the perturbations n1, n2 de-
pendent on diffusion coefficients and Φ depends not only on x. Finally, our
curve coming from the domain DS need not to intersect the border CE but
only its suitable neighborhood, and the bifurcation point obtained in DS is
localized in more details. The last generalization mentioned has the following
consequence. For the particular case σ1(s) = s−2d1, σ2(s) = s−2d2 (d1, d2

fixed), the parameter s describes a growth of the domain, and our result
says not only (as in [8]) that for some diffusion coefficients d1, d2 a bifurca-
tion for (2), (3) occurs ”sooner” (for smaller domains) than for the classical
problem (2), (4), but (in addition) even for some d1, d2 for which the whole
curve σ lies in DS and (2), (4) has no bifurcation points at all.

Let us recall that implicit unilateral boundary condition considered were in-
troduced (in a different situation) by U. Mosco [10], [3]. In our case it can
describe a unilateral membrain allowing a flux of the inhibitor v only in one
direction (inwards Ω, not outwards) on the surface ΓU which is surrounded by
a reservoir with a basic concentration (whose value is shifted to zero in our
model) which is lowered by the amount of the material just flowing through
ΓU .

2 Notation and general remarks.

In the whole paper, we assume that

(i) if y ∈ ΓU then Φ(x, y) ≥ 0 a.a. for all x ∈ ∂Ω;

(ii) if x ∈ ΓD then Φ(x, y) = 0 a.a. for all y ∈ ∂Ω.
(7)
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Suppose that n1, n2 are real differentiable functions on R
4 and

nj(d1, d2, 0, 0) = 0,
∂nj

∂u
(d1, d2, 0, 0) =

∂nj

∂v
(d1, d2, 0, 0) = 0, j = 1, 2, (8)

for all d = [d1, d2] ∈ R
2
+. Assume that for each d = [d1, d2] ∈ R

2
+ there is

c(d1, d2) such that the functions nj, j = 1, 2 satisfy the growths conditions

|nj(d1, d2, u, v)| ≤ c(d1, d2)(1 + |u|q−1 + |v|q−1), j = 1, 2 (9)

with some q ≥ 1 for N = 2 and 1 ≤ q <
2N

N − 2
for N > 2. Furthermore,

assume that

|nj(d1, d2, u, v) − nj(d
0
1, d

0
2, u, v)| ≤ c0(d1, d2)(1 + |u|q−1 + |v|q−1) (10)

for j = 1, 2, [d1, d2], [d0
1, d

0
2] ∈ R

2
+, and where c0(d1, d2) ≥ 0, c0(d1, d2) → 0 as

[d1, d2] → [d0
1, d

0
2].

We denote by R+ the set of all positive reals, R
2
+ = R+ × R+, → and

⇀ will denote the strong convergence and the weak convergence, respectively.

Let us denote by kj (j = 1, 2, ...) the eigenvalues of the boundary value
problem





−∆u = ku in Ω,

u = 0 on ΓD,

∂u/∂n = 0 on ∂Ω \ ΓD.

(11)

Further, let ej (j = 1, 2, ...) be the system of eigenfunctions of (11) which
is complete and orthogonal in L2(Ω). By mj we denote the multiplicity of
the eigenvalue kj.

Remark 2.1 Let us consider the eigenvalue problem




d1∆u+ b11u+ b12v = λu

d1∆v + b21u+ b22v = λv
in Ω, (12)

with the boundary conditions (4). Let us recall that if Re λ ≤ −ε <
0 for all eigenvalues of the problem (12), (4) then the trivial solution of
(2), (4) is linearly stable (see e.g. [14]) and if there is at last one eigenvalue
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of (12), (4) satisfying Re λ > 0 then the trivial solution of (2), (4) is
linearly unstable.

Remark 2.1 together with Proposition 2.2 below justify the following nota-
tion:

Cj :=

{
d = [d1, d2] ∈ R

2
+; d2 =

b12b21/k
2
j

d1 − b11/kj

+
b22
kj

}
, j = 1, 2, ... (Cj are in

R
2
+ lying parts of certain hyperbolas – see Figure 1),

CE− the envelope of the hyperbolas Cj, j = 1, 2, ... (see Figure 1),
DU− the set of all d ∈ R

2
+ lying to the left from CE, i.e. from at least one

of Cj (domain of instability of the trivial solution of (2), (4) – see Remark
2.1, Proposition 2.2 and Figure 1),
DS := R

2
+\(CE ∪DU)− the set of all d ∈ R

2
+ lying to the right from CE,

i.e. from all Cj (domain of stability of the trivial solution of (2), (4)– see
Remark 2.1, Proposition 2.2 and Figure 1),

Fig. 1.

Finally, we will consider the linearized system




d1∆u+ b11u+ b12v = 0

d2∆v + b21u+ b22v = 0
in Ω, (13)

and denote E(d1, d2)− the set of all solutions u, v of the problem (13), (4).

Proposition 2.2 Let (1), (6) hold.
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Then
+∞⋃
j=1

Cj is the set of all d = [d1, d2] ∈ R
2
+ for which λ = 0 is an

eigenvalue of the problem (12), (4). If d ∈ DS then there is ε > 0 such
that Reλ < −ε for all eigenvalues of (12), (4) and if d ∈ DU then there
exists at least one positive eigenvalue of (12), (4).

If d lies only on one hyperbola Cp, i.e. d ∈ Cp = ... = Cp+mp−1, d /∈
Cq, q 6= p, ..., p+mp − 1, mp is the multiplicity of kp then

E(d1, d2) = Lin{[ej ,
b21

d2kj − b22
ej]}

p+mp−1

j=p .

If d ∈ Cp ∩ Cq, Cp 6= Cq (the intersection of two different hyperbolas) then

E(d1, d2) = Lin{[ej,
b21

d2kj − b22
ej]}

p+mp−1

j=p ∪ Lin{[ej,
b21

d2kj − b22
ej]}

q+mq−1

j=q .

3 Problem formulation. Main result

Let us introduce the space

H := {ϕ ∈ W 12(Ω); ϕ = 0 on ΓD in the sense of traces }. (14)

Then H is a real Hilbert space with the scalar product

〈u, ϕ〉 =
∫

Ω

n∑

i=1

uxi
ϕxi

dx for all u, ϕ ∈ H,

and the corresponding norm ‖ϕ‖2 = 〈ϕ, ϕ〉 is equivalent to the usual Sobolev
norm under the assumption (1) (see e.g. [9]). We denote H̃ = H×H, 〈U,W 〉 =
〈u, v〉+ 〈w, z〉 and ‖U‖2 = ‖u‖2 + ‖v‖2 for U = [u, v], W = [w, z], U, W ∈
H̃ . Furthermore, we will introduce the Banach space

V := {ϕ ∈ H : ∆ϕ ∈ L2(Ω)}, (15)

with the norm

|||ϕ||| =



∫

Ω

|∇ϕ|2 dx




1

2

+



∫

Ω

|∆ϕ|2 dx




1

2

.

See e.g. [9].
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Remark 3.1 If v ∈ V then the normal derivative
∂v

∂n
can be defined as a

linear bounded functional on the space H by

[
∂v

∂n
, ϕ

]
=
∫

Ω

(∆vϕ+ ∇v∇ϕ)dx for all ϕ ∈ H.

If v is sufficiently smooth up to the boundary then, of course,

[
∂v

∂n
, ϕ

]
=
∫

∂Ω

∂v

∂n
ϕdΓ for all ϕ ∈ H,

where
∂v

∂n
in the integral on the right hand side is the classical derivative of

v with respect to the outer normal to ∂Ω (that means the classical Green
formula holds). As usual, given a relatively open subset ΓU of ∂Ω, we will

write that
∂v

∂n
= 0 on ΓU if

[
∂v

∂n
, ϕ

]
= 0 for all ϕ ∈ H with ϕ = 0 on

∂Ω \ ΓU and similarly
∂v

∂n
≥ 0 on ΓU if

[
∂v

∂n
, ϕ

]
≥ 0 for all ϕ ∈ H with

ϕ = 0 on ∂Ω\ΓU and ϕ ≥ 0 on ΓU . Here all equalities and inequalities for
ϕ on parts of the boundary ∂Ω are understood in the sense of traces. Let us
recall that for any x ∈ Ω, Φ(x, ·) ∈ C2(Ω), i.e. also Φ(x, ·) ∈ H. Hence, for

v ∈ V and given x, the integrals in (3) can be understood as

[
∂v

∂n
,Φ(x, ·)

]
.

For any v ∈ V , define the closed convex set Kv in H by

Kv :=

{
ϕ ∈ H; ϕ(x) ≥ −

[
∂v

∂n
,Φ(x, ·)

]
a.e. on ΓU

}
, (16)

where
∂v

∂n
: H → R is the functional from Remark 3.1.

Now, we introduce a weak solution of the problem (5), (3) as a couple
[u, v] satisfying the quasivariational inequality





u, v ∈ V, v ∈ Kv,
∫
Ω

σ1(s)∇u∇ϕ− (b11u+ b12v + n1(σ(s), u, v))ϕdx = 0,

∫
Ω

σ2(s)∇u∇(ψ − v) − (b21u+ b22v + n2(σ(s), u, v))(ψ − v) dx ≥ 0

(17)
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for all ψ ∈ Kv. Similarly, a weak solution of the problem (13), (3), is a couple
[u, v] satisfying the quasivariational inequality





u, v ∈ V, v ∈ Kv,
∫
Ω

d1∇u∇ϕ− (b11u+ b12v)ϕdx = 0 for all ϕ ∈ H,

∫
Ω

d2∇v∇(ψ − v) − (b21u+ b22v)(ψ − v) dx ≥ 0 for all ψ ∈ Kv.

(18)

Speaking about a solution of a boundary value problem we will have always
in mind a weak solution.

Lemma 3.2 A couple U = [u, v] ∈ H is a weak solution of the problem
(5), (3) or (13), (4) if and only if 4u, 4v ∈ L2(Ω), (5) or (13) hold
a.e. in Ω and the boundary conditions (3) or (4) are fulfilled in the sense
of Remark 3.1.

Proof follows by standard considerations concerning weak solutions (choice
of suitable test functions, Green’s formula, etc.). 2

Definition 3.3 A bifurcation point of the problem (17) is a parameter
sB ∈ R+ such that in any neighborhood of [sB; 0, 0] ∈ R+ × V × V there
exists [s; u, v] ∈ R+ × V × V, |||u||| + |||v||| 6= 0 satisfying (17). By a
bifurcation point of the problem (5), (3) we mean a bifurcation point of the
weak formulation (17).

In the sequel, we will consider a hyperbola Cp (Cp−1 6= Cp = · · · = Cp+mp−1 6=
Cp+mp

) or two consequent hyperbolas Cp, Cq (i.e. Cp−1 6= Cp = · · · =
Cp+mp−1 6= Cq = · · · = Cq+mq−1 6= Cq+mq

, q = p+mp) such that the following
assumption (19) (i) or (19) (ii), respectively, is fulfilled:




(i)
p+mp−1∑

i=p
αiei > 0 on ΓU for some {αi}

p+mp−1

i=p ;

(ii)
q+mq−1∑

i=p
α̃iei > 0 on ΓU for some {α̃i}

q+mq−1

i=p .
(19)

Denote by S the set of all nontrivial weak solutions of (5) , (3), i.e.

S = {[s; u, v] ∈ R+ × V × V : [s; u, v] satisfies (17) with |||u||| + |||v||| 6= 0} .

Theorem 3.4 (Main Theorem). Assume that ΓU ⊂ ∂Ω is a smooth manifold
in R

N−1 with the smooth boundary. Let (6) (8), (9), (10) be fulfilled. If
(19) (i) or (19) (ii) hold with some p then there is an open set U ⊂
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R
2
+ which contains the arc CE ∩Cp or the point d = Cp ∩Cq, respectively,

and has the following properties. If σ = [σ1, σ2] : R+ → R
2
+ is a curve such

that σ(ŝ) ∈ U∩DS for some ŝ and σ1(s
0) >

b11
k1

for some s0, s0 < ŝ, then

there exists a bifurcation point sB ∈ (s0, ŝ) of the problem (5) , (3) with

σ1(sB) ≤
b11
k1

. Moreover, the bifurcation is global in the following sense.

There is a connected set F ⊆ S such that F (the closure in V ×V ) contains
a point [sB; 0, 0] and F has at least one of the following properties:
1) F is unbounded in R+ × V × V ,
2) F contains a point of the type [0; u, v], |||u|||+|||v||| 6= 0 or [s; 0, 0] with
s ∈ R+ \ [s0, ŝ].

Fig. 2.

Remark 3.5 The assertion of Theorem 3.4 remains valid if we ommit the
assumption that ΓU is a smooth manifold but replace (19)(i) or (ii) by the
stronger assumption (33) (i) or (ii) from Remark 4.6 below. This will be seen
from the proof of Theorem 3.4 because none of these assumptions is used
directly, only their consequence (31) is essential - see Lemma 4.5 and Remark
4.6.

Remark 3.6 If the curve σ in Theorem 3.4 satisfies in addition σ1(s) >
b11
k1

for all s < s0 then we can replace s ∈ R+ \ [s0, ŝ] in the case 2) by s > ŝ. It
follows from the fact that there are no bifurcation points of (17) with σ1(s) >
b11
k1

(see Lemmas 4.4, 4.9).
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4 Proof of the Main Result

Introduce the operators A : H → H , Nj : R
2
+ ×H ×H → H (j = 1, 2) by

〈Au, ϕ〉 =
∫

Ω

uϕ dx for all u, ϕ ∈ H, (20)

〈Nj(d, U), ϕ〉 =
∫

Ω

nj(d1, d2, u, v)ϕdx, U = [u, v] ∈ H ×H, ϕ ∈ H. (21)

Then

A is linear, continuous, symmetric, positive and compact, (22)

Nj : R
2
+ ×H ×H are nonlinear, continuous, compact operators (23)

under the assumptions (9), (10). (This folows from the properties of the
Nemyckij operators and compact embedding theorems). Moreover, using the
conditions (8) and (9) it is possible to prove that

lim
‖U‖→0

‖Nj(d, U)‖

‖U‖
= 0,

uniformly for d from compact

subsets of R
2
+, j = 1, 2.

(24)

See [2], Proposition 3.2.

The weak formulation of the problem (5), (3) (i.e. (17)) can be written in
the form





u, v ∈ V, v ∈ Kv,

σ1(s)u− b11Au− b12Av −N1(σ(s), u, v) = 0,

〈σ2(s)v − b21Au− b22Av −N2(σ(s), u, v), ψ − v〉 ≥ 0 for all ψ ∈ Kv.

(25)

The weak formulation of the problem (13), (3) (i.e. (18)) the form




u, v ∈ V, v ∈ Kv,

d1u− b11Au− b12Av = 0,

〈d2v − b21Au− b22Av, ψ − v〉 ≥ 0 for all ψ ∈ Kv.

(26)

For a given d = [d1, d2] ∈ R
2
+, we denote
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EI(d1, d2) = {[u, v] ∈ V × V ; (26) is fulfilled } (26).

Let us note that the problem (26) is positively homogenous, i.e. [u, v] ∈
EI(d1, d2) if and only if [τu, τv] ∈ EI(d1, d2) for all τ ∈ R+.

Remark 4.1 For any v ∈ V we define the operator Pv : H → Kv (the
projection of H onto the closed convex set Kv) by

Pv(z) ∈ Kv, ‖z − Pv(z)‖ = min
ϕ∈Kv

‖z − ϕ‖ for all z ∈ H.

For any v ∈ V and z ∈ H the element Pv(z) is uniquely defined by the
conditions

Pv(z) ∈ Kv and 〈Pv(z) − z, ϕ− Pv(z)〉 ≥ 0 for all ϕ ∈ Kv.

(See e.g. [4]). It can easily be checked that Ptv(tz) = tPv(z) for all v ∈
V, z ∈ H, t > 0.

Lemma 4.2 Let (1), (7) hold. The operator A and Nj, (j = 1, 2) defined
by (20), (21) maps V and R

2
+ × V × V , respectively, into V . Further,

A : V → V , Nj : R
2
+ × V × V → V are continuous, compact operators.

Moreover, if Un = [un, vn] → 0, Wn = [wn, zn] =
Un

|||Un|||
⇀ W = [w, z] in

V, dn = [dn
1 , d

n
2 ] → d = [d1, d2], d2 > 0 then

b11Awn + b12Azn −
N1(d, un, vn)

|||Un|||
→ b11Aw + b12Az in V,

Pzn

[
(dn

2 )−1

(
b21Awn + b22Azn −

N2(d
n, un, vn)

|||Un|||

)]
→ Pz[d

−1
2 (b21Aw+b22Az)] in V.

Proof is the same as that of Lemma 2.1 in [5], where the quasivariational
inequality for u and equation for v is considered. Cf. also [8]. 2

Using Remark 4.1 we can write the problem (25) in the form





u, v ∈ V, v ∈ Kv,

σ1(s)u− b11Au− b12Av −N1(σ(s), u, v) = 0,

σ2(s)v − Pv(b21Au+ b22Av +N2(σ(s), u, v)) = 0.

(27)
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Remark 4.3 Let us define

T (d, U) =




1

d1

(b11Au+ b12Av +N1(d, u, v))

1

d2

Pv(b21Au+ b22Av +N2(d, u, v))


 , (28)

T0(d, U) =




1

d1

(b11Au+ b12Av)

1

d2

Pv(b21Au+ b22Av)


 . (29)

Due to Lemma 4.2, T, T0 : R
2
+ × V × V → V × V are nonlinear, continuous

and compact operators. The problem (26) and (27) is equivalent to

U − T0(d, U) = 0

and

U − T (σ(s), U) = 0, (30)

respectively.

The Leray-Schauder degree of I − T (σ(s), ·) at the point s ∈ R+ with
respect to the ball Br = {U ∈ V × V ; ‖U‖ < r} and at the point zero, will
be denoted by

deg(I − T (σ(s), ·), Br, 0).

Lemma 4.4 (See [5], Lemma 1.2). Let (8), (9) be fulfilled. Then for any
bifurcation point sB of the problem (27), we have EI(σ1(sB), σ2(sB)) 6= {0}.

The following lemma is a modification of Lemma 3.1 in [6], where a variational
inequality with a fixed cone K0 is studied.

Lemma 4.5 Assume that ΓU ⊂ ∂Ω is a smooth manifold in R
N−1 with

the smooth boundary. Let (19) (i) or (19) (ii) hold with some p. Then

EI(d) ⊂ E(d) (31)

holds for all d = [d1, d2] ∈ Cp or for d = d0 ∈ Cp ∩ Cq.

Proof. Let d = [d1, d2] ∈ Cp with some p from (19) (i). By the assumption

(19) (i) there is {αi}
p+mp−1

i=p such that
p+mp−1∑

i=p
αiei > on ΓU . According

13



to Proposition 2.2, for any fixed d = [d1, d2] ∈ Cp the couple [u0, v0] :=

[
p+mp−1∑

i=p
αiei,

p+mp−1∑
i=p

b21
d2kp−b22

αiei] is a solution of the problem (13), (4), i.e.

we have

u0 ∈ H,
∫
Ω

d1∇u0∇ϕ− (b11u0 + b12v0)ϕ dx = 0 for all ϕ ∈ H,

v0 ∈ H,
∫
Ω

d2∇v0∇ψ − (b21u0 + b22v0)ψ dx = 0 for all ψ ∈ H.
(32)

Due to Lemma 3.2, (32) is valid if and only if 4u, 4v ∈ L2(Ω), (13) holds
a.e. in Ω and (4) hold in sense of the functional from Remark 3.1. Let [u, v] ∈
EI(d1, d2). We want to show that [u, v] ∈ E(d1, d2). According to Lemma

3.2, it is sufficient to prove that
∂v

∂n
= 0 on ΓU , that means

[
∂v

∂n
, ζ

]
= 0 for

any ζ ∈ H such that ζ = 0 on ∂Ω\ΓU (see Remark 3.1). Let us consider such

an arbitrary fixed ζ. Denote by W
1

2
,2(ΓU) the space of traces of all functions

from W 12(Ω) (see e.g. [9]). Under the assumption that ΓU is a smooth

manifold with a smooth boundary, we have W
1

2
2(ΓU) = D(ΓU) (closure of

the set of smooth functions with a compact support in ΓU). For ϕ ∈ H, let us

denote by Tϕ its trace. The traces of functions from H lie in W
1

2
2(∂Ω) and

therefore there exist ωn ∈ D(ΓU), ωn → Tζ in W
1

2
2(ΓU). We can extend

ωn onto the whole boundary ∂Ω by

ω̃n :=




ωn on ΓU

0 on ∂Ω \ ΓU .

Denoting this ω̃n by ωn again, we have ωn ∈ W
1

2
2(∂Ω). There is a linear

continuous extension mapping R : W
1

2
2(∂Ω) → W 12(Ω) (see [9], Theorem

5.7) such that TRϕ = ϕ on ∂Ω for all ϕ ∈ W
1

2
2(∂Ω). Setting ζn =

Rωn + ζ − RTζ, we get ζn ∈ H, ζn → ζ. Since, v0 is smooth and
Tζn = ωn on ΓU , ωn ∈ D(ΓU), for any n there is εn > 0 such that
v0 ± εnζn ∈ Kv0

= {φ ∈ H; φ ≥ 0 on ΓU} Let us set ϕ = u0, ψ =
v + v0 ± εnζn in (18) (v + v0 ± εnζn > 0 on ΓU , i.e. ψ ∈ Kv) and
ϕ = u, ψ = v in (32). Subtracting the first expressions obtained in this way
from (18) and (32), then the second expressions we get

∫

Ω

d2∇v∇ζn − (b21u+ b22v)ζn dx = 0.

Using the Green Formula and the second equation from (13), we get

[
∂v

∂n
, ζn

]
=

0. The limiting process gives

[
∂v

∂n
, ζ

]
= 0. Since ζ ∈ H was arbitrary
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such that ζ = 0 on ∂Ω \ ΓU , we have
∂v

∂n
= 0 on ΓU in the sense of the

functional (see Remark 3.1). Hence, [u, v] ∈ E(d1, d2). In the same way we
can treat the case d = d0 ∈ Cp ∩ Cq with p, q from in (19) (ii). 2

Remark 4.6 Note that the assertion of Lemma 4.5 is proved in [8], Lemma
2.2 without any assumption that ΓU is a smooth manifold, but under the
following stronger version of the positivity assumptions (19) :

There is a small ε > 0 such that one of the following conditions is fulfilled.




(i)
p+mp−1∑

i=p
αiei ≥ ε > 0 on ΓU for some {αi}

p+mp−1

i=p ;

(ii)
q+mq−1∑

i=p
α̃iei ≥ ε > 0 on ΓU for some {α̃i}

q+mq−1

i=p .
(33)

Lemma 4.7 Assume that ΓU ⊂ ∂Ω is a smooth manifold in R
N−1 with

the smooth boundary and let (19) (i) or (19) (ii) hold with some p. Then
there is an open set U ⊂ R

2
+ which contains the arc CE ∩ Cp or the point

d0 = Cp ∩ Cq, respectively, such that EI(d) = {0} for all d ∈ U ∩DS.

Proof Lemma 2.3 in [8], states that under the assumptions (33)(i) or (33)(ii)
for any d0 ∈ Cp ∩ CE or for d0 = Cp ∩ Cq there exists a neighbourhood U(d0)
such that EI(d) = {0} for all d ∈ U(d0) ∩ DS. The same assertion can be
proved exactly in the same way under the assumption (19) (i) or (19) (ii) ,
respectively, if ΓU is a smooth manifold with a boundary. It is sufficient to use
our Lemma 4.5 instead of Lemma 2.2 in [8]. Hence, the assertion of Lemma
4.7 holds with U = ∪d∈Cp∩CE

U(d) or U(d0) in the case of the assumption
(19) (i) or (19) (ii) , respectively.

Lemma 4.8 Let all the assumptions of Lemma 4.7 hold and let U be from
that Lemma. Then

deg(I − T0(d, 0), Br, 0) = 0

for all r > 0 and all d ∈ U ∩DS.

Proof is the same as the proof of Lemma 2.4 in [8], but by using our
stronger Lemma 4.7 instead of Lemma 2.3 from [8]. 2

Lemma 4.9 Let (6) hold. If d = [d1, d2] ∈ R
2
+, d1 >

b11
k1

then EI(d1, d2) =

{0}.

Proof. Let d1 >
b11
k1

hold and let u, v be a solution of the problem (26). It is

easy to see that
1

k1

is the largest eigenvalue of the operator A. In particular,
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d1

b11
is no eigenvalue of A for d1 >

b11
k1

and therefore d1I−b11A is invertible.

Expressing u from the first equation of (26) and substituting it into the
second inequality we obtain

u = b12[d1I − b11A]−1Av, (34)

〈d2v + Sv, ϕ− v〉 ≥ 0 for all ϕ ∈ Kv, (35)

where

Sv := −b21b12A[d1I − b11A]−1Av − b22Av.

The operator S : H → H is linear, continuous, compact, symmetric and
positive.
It follows from the assumptions (7) (i) and Lemma 3.2, that if u, v satisfy
(26) with some [d1, d2] ∈ R

2
+ then 0 ∈ Kv. Hence, choosing ϕ = 0 in

(35) we get

d2‖v‖
2 + 〈Sv, v〉 ≤ 0. (36)

The left hand side of (36) is nonnegative and the inequality (36) holds
only if v = 0. Due to (34), we have u = 0. Hence, EI(d1, d2) = {0} if
d1 >

b11
k1

. 2

Lemma 4.10 (See [8], Lemma 2.5). Let (1), (6) hold. Then for any δ >
0 there is M > 0 such that

deg(I − T0(d, 0), Br, 0) = 1

for all d = [d1, d2], d1 > M, d2 > δ.

The following Rabinowitz type global bifurcation theorem is a particular case
of a more abstract version [15], Theorem 7, cf. [2], Theorem 2.4.

Theorem 4.11 Assume that X is a Hilbert space and Λ is an interval (not
necessarily closed or bounded) with [s1, s2] ⊆ Λ. Let F : Λ × X → X be
a nonlinear, continuous, compact mapping such that F (s, 0) = 0 for all
s ∈ Λ. Hence, for any s, U = 0 is a solution of the equation

U − F (s, U) = 0. (37)

Let us assume that there are ε, r > 0 such that

if s ∈ Λ ∩ ([s1 − ε, s1] ∪ [s2, s2 + ε]), U ∈ Br, (37) holds then U = 0(38)
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and

deg(I − F (s1, ·), Br, 0) 6= deg(I − F (s2, ·), Br, 0).

Then there is a connected set C ⊆ Λ × (X \ {0}) of nontrivial solutions of
(37) with the foll with X = V × V, Λ = R+, F (s, U) = T (σ(s), U), s1 =
s0, s2 = ŝ. owing two properties:
(i) C contains a solution of the form (s, 0) with s ∈ [s1, s2].
(ii) At least one of the following conditions is fulfilled.
1. C is unbounded.
2. C contains a point of the form (s, 0) with s ∈ Λ \ (s1 − ε, s2 + ε).
3. C contains a point of the form (s, U) where U 6= 0 and s ∈ ∂Λ.

Proof of Theorem 3.4. We will show that if U is the open set from the
assertion of Lemma 4.7 then all assumptions of Theorem 4.11 are fulfilled
with X = V × V, Λ = R+, F (s, U) = T (σ(s), U), s1 = s0, s2 = ŝ for s0,
ŝ satisfying the assumptions of Theorem 3.4. According to Remark 4.3, the
problem (17) is equivalent to (30). It is clear that U = 0 satisfies the
equation (30) for all s ∈ R+. It follows from Lemmas 4.7, 4.9 and Lemma
4.4 that the parameters s0, ŝ satisfying the assumptions of Theorem 3.4 are
not bifurcation points of (30), i.e. the assumption (38) is fulfilled. Further,
we shall show that

deg(I − T (σ(s0), ·), Br, 0) 6= deg(I − T (σ(ŝ), ·), Br, 0), (39)

for r small enough. It follows from (24), Lemmas 4.7, 4.9 and the homotopy
invariance property of the Leray-Schauder degree that for small r > 0 and

for all s satisfying σ1(s) >
b11
k1

or σ(s) ∈ U ∩DS we get

deg(I − T (σ(s), ·), Br, 0) = deg(I − T0(σ(s), ·), Br, 0) (40)

(in particular, the degrees are defined). Hence it is sufficient to show that

deg(I − T0(σ(s0), ·), Br, 0) 6= deg(I − T0(σ(ŝ), ·), Br, 0) (41)

instead of (39). Due to Lemma 4.9, for s0 : σ1(s
0) >

b11
k1

the equation

U − T0(σ(s0), U) = 0 (42)

has only trivial solution. Consequently, it follows from the homotopy invari-
ance of the Leray-Schauder degree and Lemma 4.10 that

deg(I − T0(σ(s0), ·), Br, 0) = 1. (43)
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Let U be the open set from the assertion of Lemma 4.7 . Using Lemma 4.8 and
the assumption σ(s) ∈ U we get

deg(I − T0(σ(ŝ), ·), Br, 0) = 0. (44)

So, it follows from (40), (43), (44) that (41) holds, i.e. we have (39)
for r > 0 small enough. Hence, we can apply Theorem 4.11, where Λ =
R+, X = V × V, F (s, U) = T (σ(s), U), s1 = s0, s2 = ŝ. According to
Theorem 4.11, there is a connected set F ⊆ S such that F contains
a point of the form [sB; 0, 0] with sB ∈ (s0, ŝ). In particular, sB is a
bifurcation point of the problem (17). Due to Lemma 4.4 and Lemma 4.9, it

must be σ1(sB) ≤
b11
k1

. In particular, sB is a bifurcation point of the

problem (17). Also, the set F is either unbounded or F contains a
point of the type [s; 0, 0] with s ∈ R+ \ [s0, ŝ] or a point of the type
[0; u, v], |||u||| + |||v||| 6= 0. This completes the proof of Theorem 3.4. 2
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