NON-STEADY STOKES FLOW AND FINITE DIFFERENCES

Varnhorn, Werner Mathematical Institute, University of Kassel, 34109 Kassel, Germany

Introduction

In the present paper we apply elementary energy estimates to prove optimal convergence properties of an implicit time stepping procedure for the non-stationary Stokes equations

$$\partial_t v - \nu \Delta v + \nabla p = F, \quad \text{div } v = 0 \quad \text{in} \quad (0, T) \times G, \quad v|_{\partial G} = 0, \quad v|_{t=0} = v_0.$$
 (1)

These equations are important in hydrodynamics. They describe the motion of a viscous incompressible fluid, if the nonlinear term $v \cdot \nabla v$ of the corresponding Navier-Stokes equations is ignorable small. We consider (1) on a fixed cylindric domain $(0, T) \times G$, where T > 0 is given and $G \subset \mathbb{R}^3$ is a bounded domain with a sufficiently smooth compact boundary ∂G .

Second Order Approximation

Setting h = T/N > 0, $t_k = k h (k = 0, 1, ..., N)$ we want to approximate the solution v, p of (1) at time t_k by the solution v^k , $p^k (k = 1, 2, ..., N)$ of the second order Crank-Nicholson-type procedure

$$\frac{v^{k} - v^{k-1}}{h} - \frac{\nu}{2} \Delta(v^{k} + v^{k-1}) + \frac{1}{2} \nabla(p^{k} + p^{k-1}) = \frac{1}{h} \int_{(k-1)h}^{kh} F(t) dt,$$

div $v^{k} = 0, \quad v^{k}|_{\partial G} = 0, \quad v^{0} = v_{0} \text{ in } G.$ (2)

This scheme is implicit for the sum $(v^k + v^{k-1})$, and we can prove similar convergence statements as for the standard first order method. Moreover, we can prove (see [1] for the notation we use)

$$\max_{k} ||v^{k} - v(t_{k})||_{H^{2-i}(G)} = 0(h^{1+\frac{i}{2}}) \text{ as } h \to 0, \quad i = 0, 1, 2,$$

uniformly provided $v \in C([0,T], H^{2+i} \cap V)$, i = 0, 1, 2. It is known, however, that such an assumption is not realistic in general, not even if the data are smooth: Any solution $v \in C([0,T], H^3 \cap V)$ of (1) has to satisfy a non-local compatibility condition at time t = 0, which is uncheckable for given data. Nevertheless, we can prove the above assertions by prescribing the initial acceleration $\partial_t v_{|t=0} = a_0$ instead of the initial velocity $v_{|t=0} = v_0$ in a suitable way. In this case, the corresponding Stokes solution has the above required continuity properties.

Main Results

Proposition 1: Let $v_0 \in H^2 \cap V$ and $F \in H^1(0, T, H)$. Then there is a unique solution v of (1) such that $v \in C([0,T], H^2 \cap V)$ and $\partial_t v \in C([0,T], H) \cap L^2(0,T, H^1)$. Moreover, there is some constant $K_1 = K_1(G, \nu, F, v_0)$ independent of $t \in [0,T]$ with

$$\int_{0}^{T} ||\nabla \partial_{\sigma} v(\sigma)||^{2} d\sigma \leq K_{1}, \qquad ||v(t)||_{2} \leq K_{1}, \qquad ||\partial_{t} v(t)|| \leq K_{1} \quad (t \in [0,T])$$

The property $v \in C([0, T], H^2 \cap V)$ is the highest spatial regularity uniformly in time, which is possible for any solution v of (1), if integer order Sobolev (Hilbert) spaces are used. Higher order spatial regularity uniformly in time is possible only, if an additional compatibility condition is satisfied: **Proposition 2:** Let v_0 and F be given as in Proposition 1, and let v denote the solution of the Stokes equations (1) from Proposition 1. If in addition $v_0 \in H^4 \cap V$ and $F \in H^1(0, T, H^2 \cap H)$ with $\partial_t^2 F \in L^2(0, T, H)$, then $v \in C([0, T], H^4 \cap V)$ with $\partial_t v \in C([0, T], H^2 \cap V)$ and $\partial_t^2 v \in C([0, T], H) \cap L^2(0, T, H^1)$ if and only if

$$\left. \partial_t v(0) \right|_{\partial G} = 0. \tag{3}$$

In this case there is a constant $K_2 = K_2(G, \nu, F, v_0)$ independent of $t \in [0, T]$ with

$$\int_{0}^{T} ||\nabla \partial_{t}^{2} v(t)||^{2} dt \leq K_{2}, \quad ||v(t)||_{4} \leq K_{2}, \quad ||\partial_{t} v(t)||_{2} \leq K_{2}, \quad ||\partial_{t}^{2} v(t)|| \leq K_{2} \quad (t \in [0, T]).$$

The condition (3) corresponds to the condition $v(0)|_{\partial G} = 0$ (we always require $v_0 \in V$), if we differentiate the Stokes equations (1) with respect to t and take the resulting equations as an initial value problem for the acceleration $\partial_t v$. Thus (3) is satisfied, if we prescribe an initial acceleration $a_0 \in V$:

Proposition 3: Let $F \in H^1(0, T, H^2 \cap H)$ with $\partial_t^2 F \in L^2(0, T, H)$ as in Proposition 2, and let $a_0 \in H^2 \cap V$. Then there is a unique solution v_0 of the stationary Stokes equations

$$-\nu P\Delta v_0 = F(0) - a_0 \quad \text{in} \quad G \tag{4}$$

such that $v_0 \in H^4 \cap V$ (here P denotes the Helmholtz projection, see [1]). The corresponding solution v of the non-stationary equations (1) satisfies the compatibility condition (3), hence it has all regularity properties asserted in Proposition 2 and satisfies all estimates given there.

Proposition 4: (a) Let $v_0 \in H^2 \cap V$ and let $F \in L^2(0,T,H)$. Then there is a unique solution $v^k \in H^2 \cap V$ of (2) for all k = 1, 2, ..., N.

(b) In addition, if $F \in L^2(0, T, H^2 \cap H)$, then $(v^k + v^{k-1}) \in H^4 \cap V$ for all k = 1, 2, ..., N. (c) If even $v_0 \in H^4 \cap V$ and $F \in L^2(0, T, H^2 \cap H)$, then $v^k \in H^4 \cap V$ for all k = 1, 2, ..., N.

Theorem 1: Let $v_0 \in H^2 \cap V$ and $F \in H^1(0,T,H)$ be given. Let v denote the solution of the non-stationary Stokes equation (1) on [0,T] from Proposition 1. Let h = T/N > 0 ($N \in \mathbb{N}$) and let v^k for k = 1, 2, ..., N ($v^0 = v_0$) be the solution of (2), constructed in Proposition 4 (a). Setting $t_k = kh$, let $w^k = v^k - v(t_k)$ (k = 0, 1, ..., N) denote the discretization error. Then

$$\max ||w^{k}|| = 0(h), \quad \max ||(w^{k} + w^{k-1})||_{1} = 0(h^{\frac{1}{2}}), \quad \max ||(w^{k} + w^{k-1})||_{2} = o(1)$$

as $h \to 0$ (or $N \to \infty$).

Theorem 2: Let $v \in C([0,T], H^4 \cap H)$ denote the Stokes solution constructed in Proposition 3. Let h = T/N > 0 $(N \in \mathbb{N})$ and let v^k for k = 1, 2, ..., N $(v^0 = v_0)$ be the solution of (2), constructed in Proposition 4 (c). Setting $t_k = kh$, let $w^k = v^k - v(t_k)$ (k = 0, 1, ..., N) denote the discretization error. Then

$$\max ||w^k|| = 0(h^2), \quad \max ||w^k||_1 = 0(h^{\frac{3}{2}}), \quad \max ||w^k||_2 = 0(h) \quad as \quad h \to 0.$$

[1] Varnhorn, W.: *Numerical Methods for Non-Stationary Stokes Flow.* In: Advances in Mathematical Fluid Mechanics, R. Rannacher, A. Sequeira (eds.), Springer-Verlag (2010) 600 - 622