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NON-STEADY STOKES FLOW AND FINITE DIFFERENCES

Varnhorn, Werner
Mathematical Institute, University of Kassel, 34109 Kassel, Germany

Introduction
In the present paper we apply elementary energy estimates to prove optimal convergence properties of
an implicit time stepping procedure for the non-stationary Stokes equations

∂tv − ν∆v +∇p = F, div v = 0 in (0, T )×G, v
∣∣
∂G

= 0 , v
∣∣
t=0

= v0 . (1)

These equations are important in hydrodynamics. They describe the motion of a viscous incompressible
fluid, if the nonlinear term v · ∇v of the corresponding Navier-Stokes equations is ignorable small. We
consider (1) on a fixed cylindric domain (0, T ) × G, where T > 0 is given and G ⊂ R3 is a bounded
domain with a sufficiently smooth compact boundary ∂G.

Second Order Approximation
Setting h = T/N > 0, tk = k h (k = 0, 1, . . . , N) we want to approximate the solution v, p of (1) at
time tk by the solution vk, pk (k = 1, 2, . . . , N) of the second order Crank-Nicholson-type procedure

vk − vk−1

h
− ν

2
∆(vk + vk−1) +

1
2
∇(pk + pk−1) =

1
h

kh∫

(k−1)h

F (t)dt ,

(2)
div vk = 0 , vk|∂G = 0 , v0 = v0 in G .

This scheme is implicit for the sum (vk +vk−1), and we can prove similar convergence statements as for
the standard first order method. Moreover, we can prove (see [1] for the notation we use)

max
k
||vk − v(tk)||H2−i(G) = 0(h1+ i

2 ) as h → 0 , i = 0, 1, 2,

uniformly provided v ∈ C([0, T ],H2+i ∩V ), i = 0, 1, 2. It is known, however, that such an assumption
is not realistic in general, not even if the data are smooth: Any solution v ∈ C([0, T ],H3 ∩V ) of (1) has
to satisfy a non-local compatibility condition at time t = 0, which is uncheckable for given data. Never-
theless, we can prove the above assertions by prescribing the initial acceleration ∂tv|t=0 = a0 instead of
the initial velocity v|t=0 = v0 in a suitable way. In this case, the corresponding Stokes solution has the
above required continuity properties.

Main Results
Proposition 1: Let v0 ∈ H2∩V and F ∈ H1(0, T, H). Then there is a unique solution v of (1) such

that v ∈ C([0, T ],H2 ∩ V ) and ∂tv ∈ C([0, T ],H) ∩ L2(0, T, H1). Moreover, there is some constant
K1 = K1(G, ν, F, v0) independent of t ∈ [0, T ] with

T∫

0

||∇∂σv(σ)||2dσ ≤ K1 , ||v(t)||2 ≤ K1 , ||∂tv(t)|| ≤ K1 (t ∈ [0, T ]) .

The property v ∈ C([0, T ],H2 ∩V ) is the highest spatial regularity uniformly in time, which is possible
for any solution v of (1), if integer order Sobolev (Hilbert) spaces are used. Higher order spatial regular-
ity uniformly in time is possible only, if an additional compatibility condition is satisfied:
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Proposition 2: Let v0 and F be given as in Proposition 1, and let v denote the solution of the
Stokes equations (1) from Proposition 1. If in addition v0 ∈ H4 ∩ V and F ∈ H1(0, T, H2 ∩ H)
with ∂2

t F ∈ L2(0, T, H), then v ∈ C([0, T ],H4 ∩ V ) with ∂tv ∈ C([0, T ],H2 ∩ V ) and ∂2
t v ∈

C([0, T ],H) ∩ L2(0, T, H1) if and only if

∂tv(0)
∣∣
∂G

= 0 . (3)

In this case there is a constant K2 = K2(G, ν, F, v0) independent of t ∈ [0, T ] with

T∫

0

||∇∂2
t v(t)||2dt ≤ K2 , ||v(t)||4 ≤ K2 , ||∂tv(t)||2 ≤ K2 , ||∂2

t v(t)|| ≤ K2 (t ∈ [0, T ]) .

The condition (3) corresponds to the condition v(0)|∂G = 0 (we always require v0 ∈ V ), if we differen-
tiate the Stokes equations (1) with respect to t and take the resulting equations as an initial value problem
for the acceleration ∂tv. Thus (3) is satisfied, if we prescribe an initial acceleration a0 ∈ V :

Proposition 3: Let F ∈ H1(0, T, H2 ∩ H) with ∂2
t F ∈ L2(0, T, H) as in Proposition 2, and let

a0 ∈ H2 ∩ V . Then there is a unique solution v0 of the stationary Stokes equations

−νP∆v0 = F (0)− a0 in G (4)

such that v0 ∈ H4 ∩ V (here P denotes the Helmholtz projection, see [1]). The corresponding solution
v of the non-stationary equations (1) satisfies the compatibility condition (3), hence it has all regularity
properties asserted in Proposition 2 and satisfies all estimates given there.

Proposition 4: (a) Let v0 ∈ H2 ∩ V and let F ∈ L2(0, T,H). Then there is a unique solution
vk ∈ H2 ∩ V of (2) for all k = 1, 2, . . . , N .

(b) In addition, if F ∈ L2(0, T,H2 ∩H), then (vk + vk−1) ∈ H4 ∩ V for all k = 1, 2, . . . , N .
(c) If even v0 ∈ H4 ∩ V and F ∈ L2(0, T, H2 ∩H), then vk ∈ H4 ∩ V for all k = 1, 2, . . . , N .

Theorem 1: Let v0 ∈ H2 ∩ V and F ∈ H1(0, T,H) be given. Let v denote the solution of the
non-stationary Stokes equation (1) on [0, T ] from Proposition 1. Let h = T/N > 0 (N ∈ N) and let vk

for k = 1, 2, . . . , N (v0 = v0) be the solution of (2), constructed in Proposition 4 (a). Setting tk = kh,
let wk = vk − v(tk) (k = 0, 1, . . . , N) denote the discretization error. Then

max ||wk|| = 0(h) , max ||(wk + wk−1)||1 = 0(h
1
2 ) , max ||(wk + wk−1)||2 = ◦(1)

as h → 0 (or N →∞).

Theorem 2: Let v ∈ C([0, T ],H4 ∩H) denote the Stokes solution constructed in Proposition 3. Let
h = T/N > 0 (N ∈ N) and let vk for k = 1, 2, . . . , N (v0 = v0) be the solution of (2), constructed
in Proposition 4 (c). Setting tk = kh, let wk = vk − v(tk) (k = 0, 1, . . . , N) denote the discretization
error. Then

max ||wk|| = 0(h2) , max ||wk||1 = 0(h
3
2 ) , max ||wk||2 = 0(h) as h → 0 .
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