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Abstract. It is easily seen that the graphs of harmonic conjugate functions (the real and
imaginary parts of a holomorphic function) have the same nonpositive Gaussian curvature.
The converse to this statement is not as simple. Given two graphs with the same nonpositive
Gaussian curvature, when can we conclude that the functions generating their graphs are
harmonic? In this paper, we show that given a graph with radially symmetric nonpositive
Gaussian curvature in a certain form, there are (up to) four families of harmonic functions
whose graphs have this curvature. Moreover, the graphs obtained from these functions are
not isometric in general.
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1. Introduction

We are concerned with the graphs of harmonic conjugate functions into � 3 where

their charts are determined by the usual rectangular-coordinate transformation. We

will discuss the geometry of such charts, in particular, our focus will be the Gaus-

sian curvature of these charts: Ku = (uxxuyy − u2
xy)/(1 + u2

x + u2
y)2. In Sect. 2

we note that if u and v are harmonic conjugate functions (the real and imaginary

part of a holomorphic function), then the Gaussian curvature of the graphs of u and

v is the same. We also investigate a further property concerning the invariance of

the Gaussian curvature on graphs obtained from harmonic functions. Specifically,

the action of the unit circle, � 1, on the set of holomorphic functions preserves the

Gaussian curvature of the graphs of the real and imaginary parts. In general, this

property is not isometric, so Gauss’ Theorema Egregium does not apply. In Sect. 3

we observe that the conjugate functions of a given complex function possesses a chart

with radially symmetric nonpositive Gaussian curvature; that is, level curves of the
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graph of the Gaussian curvature are circles. With this, we show the existence of

(up to) two families of holomorphic functions whose real and imaginary parts have

a prescribed, radially symmetric, nonpositive Gaussian curvature. This is done by

“solving” a fully nonlinear PDE which represents the Gauss curvature equation and

an appropriate radially symmetric function. Thus, given the Gaussian curvature of

a graph has an appropriate radially symmetric form, there are (up to) four families

of harmonic functions (the real and imaginary parts of each holomorphic function)

which have the given curvature (to restate this from a PDE point of view, for appro-

priate Gauss curvature functions, we find (up to) four families of harmonic functions

satisfying the equation of prescribed Gauss curvature). We note that the graphs of

the functions from distinct families are not isometric, and furthermore, graphs from

the same family are not isometric in general. Whether these families of solutions are

unique is not yet determined.

Throughout the paper, Ω is assumed to be a region of � 2 or � where appropriate,
unless noted otherwise, u is (at least) a C2 function on Ω, and Ku will denote

the Gaussian curvature of the graph of u. Finally, by graph of a function, say

u, we mean (at least) a C2 chart parametrized by the (x, y)-coordinate system:

Γu(x, y) = (x, y, u).

2. The invariance of Gaussian curvature

The claims in this section will be of much use in Sect. 3.

The following fact is immediate with the use of Laplace’s equation and the Cauchy-

Riemann (C-R) equations.

Lemma 2.1. If f = u + iv is holomorphic on Ω, then Ku = Kv 6 0 on Ω.

The converse is not true via Gauss’ Theorem. See Example 3.4. The following

claim is for notational convenience.

Lemma 2.2. Let f = u + iv be a complex function on Ω and define

(1) Kf :=
−|f ′′|2

(1 + |f ′|2)2 .

If f is holomorphic on Ω, then Kf = Ku on Ω.
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. With the C-R equations and

f ′ =

{

ux + ivx,

uy + ivy,
(2)

f ′′ =

{

uxx + ivxx,

uyy + ivyy,
(3)

we can write the curvature equation on Ω as

(4) Ku = −
u2

xx + u2
xy

(1 + u2
x + u2

y)
2

= Kf.

�

The following is a direct consequence of the lemmas.

Corollary 2.3. Let f = u+iv be a holomorphic function on Ω. Let σ ∈ � where
|σ| = 1 and σf = û + iv̂. Then

(5) K(σf) = Kf = Kû = Ku = Kv = Kv̂

on Ω.

�����! "��#
2.4. We note that the first-fundamental forms on the graphs of û, u, v,

and v̂ are not the same. In fact, if gij denotes the matrix form of the Riemannian met-

ric, gij denotes its inverse, and if g denotes the determinant of gij , then gv
ij = gugij

u .

Hence a diffeomorphism between any u and v is not an isometry [2, Proposition 10.5

p. 148], [3, Theorem 5.1 pp. 101–102]. Moreover, whenever σ 6= {±1,±i}, then the
graphs of u and û or v and v̂ are not isometric.

Finally,

Lemma 2.5. Let f = u + iv be a holomorphic function on Ω and let σ ∈ � .
Suppose f ′′ 6= 0 on Ω. Then

(6) K(σf) = Kf

iff |σ| = 1.
���������

. The nontrivial direction reduces to the algebraic equation

(7) |f ′′|2(1 − |σ|2|f ′|4)(1 − |σ|2) = 0.

�
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3. Radially symmetric Gaussian curvature

Lemma 3.1. Let g(z) = czn, where c ∈ � , and n ∈ $ . Set

(8) Ω = {z ∈ � : z = %eiθ for % ∈ (0,∞), θ ∈ (−π, π)}.

Let s = |z|, and w(s) = |g′(z)|. Then for all z ∈ Ω

(9) (w(k)(s))2 = |g(k+1)(z)|2.

���������
. Write c = reiϕ where r = |c| and ϕ = arg c. Notice that |g′| = r|n|sn−1

as |za| = |z|a for a ∈ � . Now

(10) (w′(s))2 =
( d

ds
rnsn−1

)2

= r2n2(n − 1)2s2(n−2) = |g′′(z)|2.

Suppose k = m − 1, and

(11) (w(m−1)(s))2 = r2n2(n − 1)2 . . . (n − (m − 1))2s2(n−m) = |g(m)(z)|2.

Then

(w(m)(s))2 =
( d

ds
w(m−1)(s)

)2

(12)

= r2n2(n − 1)2 . . . (n − (m − 1))2(n − m)2s2(n−(m+1))

= |g(m+1)(z)|2.

�

�����! "��#
3.2. Notice that the notation in the conclusion of Lemma 3.1 begins

with the first derivative. This is because the term |f | =
√

u2 + v2 has no equivalent

“nice” expression in terms of u alone. Rather |f ′| =
√

u2
x + v2

x =
√

u2
x + u2

y by the

C-R equations.

Lemma 3.3. Let Ω, g(z) = czn, s = |z|, and w(s) = |g′( z)| be as in Lemma 3.1.

Then

(13) Kg = −
[ d

ds
arctan(w(s))

]2

on Ω.

���������
. This is an application of Lemma 3.1. �
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Now we turn our attention to the converse of Lemma 2.1; that is, given two

graphs with the same nonpositive Gaussian curvature, when can we conclude that the

functions generating their graphs are harmonic? There are nonharmonic functions

whose Gaussian curvature is nonpositive. After mapping this by an isometry we can

obtain another nonharmonic function with the same Gaussian curvature by Gauss’

Theorema Egregium. We give an illustration.

% &' "�)(+*,�
3.4. Let u(x, y) = −2x2 + y2 be our nonharmonic function. Then

(14) Ku =
−8

(1 + 16x2 + 4y2)
2 < 0

for all (x, y) ∈ � 2 . Furthermore, notice that

(15) Ku = −2
[ d

ds
arctan(2s)

]2

,

where s =
√

4x2 + y2 = |2x+iy|. Hence, the graph of Ku is not radially symmetric;

rather, its level curves are elliptical. See Figure 1.

Figure 1. The graph of Ku in Example 3.4.

We consider another example, but where u is harmonic.

% &' "�)(+*,�
3.5. Suppose Ω is a simply-connected open subset of � 2 , and u(x, y) =

x2 − y2. Since u is harmonic on a simply-connected open set Ω, there is a harmonic

conjugate function v on Ω s.t. g = u + iv is holomorphic on Ω [1, Theorem 2.2(j),
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p. 202]. The harmonic conjugate v is given by v(x, y) = 2xy + C (we set C = 0 for

simplicity), so now g(z) = z2 = (x2 − y2) + i(2xy). Then

(16) K· =
−4

(1 + 4x2 + 4y2)
2 ,

or by Lemma 3.3 this can be written as

(17) Kg =
−4

(1 + 4|z|2)2
= −

[ d

ds
arctan(2s)

]2

where s = |z| =
√

x2 + y2. Hence, the graph of Kg is radially symmetric. See

Figure 2.

Figure 2. The graph of Kg in Example 3.5.

In light of Corollary 2.3, we know that if f1(z) = σz2 +C2, where C2 is a complex

constant, and σ ∈ � where |σ| = 1, then Kf1 = Kg. By this, we mean the graphs of

the real and imaginary parts of f1 have the same Gaussian curvature as the graph

of the given u. Also, one can show that the function

(18) f2(z) = − z

C1
+

σ(C2
1 + 1)

2C2
1

ln(2C1z + σ) + C2,

(here C1 is a real constant) also satisfies equation (17); that is Kf2 = Kg.

As f1 is a polynomial, it’s entire. Thus u1 = < (f1) and v1 = = (f1) are harmonic

conjugates whose Gaussian curvature is given by equation (16). For f2, we use a
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the principal branch of the logarithm: � ∼ {z ∈ � : <(2C1z + σ) 6 0}. Hence f2 is

holomorphic on � less the branch cut. So there is another set of harmonic conjugates,
u2 and v2, whose graphs have the curvature given by equation (16). Moreover, these

are not the same graphs. Say σ = 1, C1 = 1, and C2 = 0. Then

u2 = −x +
1

2
ln((2x + 1)2 + 4y2)

v2 = −y + arctan
( 2y

2x + 1

)











∀(x, y) ∈ � 2 ∼
{

(x, 0) : x 6 −1

2

}

.

This example shows that there are two families of holomorphic functions whose

real and imaginary parts share the same Gaussian curvature on a subset of � 2 . Of

course their real and imaginary parts are harmonic conjugates, but they are not

all conjugate to each other (e.g.u1 is not conjugate to u2 or v2). So in these first

two examples, we have seen that when given two graphs determined by functions,

say u and v, then it may be the case that either u and v are nonharmonic, or

u and v are the real or imaginary part of some holomorphic function; hence they

are harmonic functions, though not necessarily conjugate. In contrast, recall the

nonharmonic functions in Example 3.4 did not have radially symmetric Gaussian

curvature, whereas the graphs of the harmonic functions in Example 3.5 did have

radially symmetric Gaussian curvature.

We will present a general method to obtain the families f1 and f2 as seen in

Example 3.5. Before we proceed with this, we note that not all harmonic functions

have radially symmetric Gaussian curvature by a counterexample.
% &' "�)(+*,�

3.6. Let f(z) = ez = ex (cos y + i sin y). Then

(20) Kf = −1

4
sech2(x),

and hence Kf is not radially symmetric even though f is entire, and every term in

its power series has radially symmetric Gaussian curvature.

Theorem 3.7. Let Ω be as in Lemma 3.1. Suppose u is a C2 function on Ω with

(21) Ku = −
[ d

ds
arctan(rnsn−1)

]2

,

where n ∈ $ , r ∈ (0,∞) and s = |z|. Then for

(22) f1(z) = σczn + C2

defined on Ω where σ, c, C2 ∈ � with |σ| = 1 and |c| = r, and

(23) f2(z) =

∫

C1 + σcnzn−1

1 − σC1cnzn−1
dz
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defined on D = {z ∈ � : |z| < (|C1|r|n|)1/(1−n)}, the functions uj = < (fj) and

vj = = (fj), j = 1, 2, are four families of harmonic functions s.t.Kuj = Kvj = Ku

on Ω ∩ D.

���������
. Choose c ∈ � s.t. |c| = r. Then there is a holomorphic function of the

form

(24) g(z) = czn

where Kg = Ku on Ω. Now it suffices to show that there are two holomorphic

functions, f1 and f2, on a simply-connected subset of Ω where Kf1 = Kf2 = Kg. If

Kh = Ku, |h′| = m(s), and |h′′| = m′′(s) where s = |z|, then the equation,

(25) −
[ d

ds
arctan(m(s))

]2

= −
[ d

ds
arctan(rnsn−1)

]2

holds iff

(26)



























m1(s) = ±rnsn−1 for C ≡ 0 mod π,

m2(s) =
C1 ± rnsn−1

1 ∓ C1rnsn−1
for C1 = tan C &

C 6= {arctan(±1/rnsn−1), 1
2π + kπ : k ∈ - },

undefined otherwise.

The distinction between m1 and m2 by C ≡ 0 and C 6≡ 0 is important. By this, we

obtain two distinct families.

Let σ ∈ � where |σ| = 1, and choose f ′

1(z) = σcnzn−1. Hence f1(z) = σg(z) + C2

and Kf1 = Kg by Corollary 2.3. For f2 choose

(27) f ′

2(z) =
C1 + σcnzn−1

1 − σC1cnzn−1

for appropriate C1. Now (m2(s))
2 6= |f ′

2|
2
, but we can verify that Kf2 = Kg

independently of m2. We explicitly show Kf2 = Kg in the Appendix. This is just a

tedious calculation.

As g is holomorphic on Ω, then f1 is. For f2, we need the antiderivative of the

right hand side of equation (27). As n is arbitrary, this is nontrivial. It is given

by the Lerch-Phi function [4, Search “lerchphi”]). When n 6= 1 the antiderivative is

given by

(28) f2(z) =
z

C1(n − 1)

[

1 − n + (1 + C2
1 )LerchPhi

(

σC1cnzn−1, 1,
1

n − 1

)]

+ C2
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where

(29) LerchPhi
(

σC1cnzn−1, 1,
1

n − 1

)

=

∞
∑

k=0

(n − 1)
(

σC1cnzn−1
)k

k(n − 1) + 1

is defined on the disk D := {z ∈ � : |z| < (|C1|r|n|)1/(1−n)}.
As both Ω and D are simply-connected and open, so is Ω∩D. Also set uj = < (fj)

and vj = = (fj) for j = 1, 2. Then uj and vj are clearly harmonic on Ω ∩ D. �

�����! "��#
3.8. For n = 2 and appropriate constants, we obtain f2 as in Exam-

ple 3.5. The principal branch cut, x 6 −1/2, lies outside the disk of radius 1/2.

Hence, in this case, the domain of f2 can be extended beyond D to � less some
branch cut.

Additionally, recall that the graphs of harmonic conjugate functions are not iso-

metric (Remark 2.4). Also, any two functions obtained from the same family do not

have isometric graphs in general. Let f = z2 as in Example 3.5. For σ = 1 and

σ̃ = 1/
√

2 + i/
√

2, then u1 = x2 − y2 and ũ1 = 1/
√

2
(

x2 − 2xy − y2
)

are of the type

given by < (f1). Thus, Theorem 3.7 gives us (up to) four continua of (mostly) non-

isometric graphs with the same Gaussian curvature. Observe that this is generated

by the unit circle, � 1, acting on the set of holomorphic functions.

4. Conclusion

We have seen that if a function is nonharmonic, then the Gaussian curvature of its

graph is not necessarily radially symmetric. Also, there are harmonic functions that

do not have radially symmetric Gaussian curvature. Theorem 3.7 has given us the

existence of (up to) four families of harmonic functions whose graphs have a given

radially symmetric Gaussian curvature. We have not shown uniqueness in the sense

that these are the only functions whose graphs have this Gaussian curvature. Also,

we have not shown that there is a nonharmonic function with radially symmetric

Gaussian curvature of the form described by equation (21). With uniqueness, we’d

have a definite “converse” to Lemma 2.1. We end with that conjecture.

Conjecture 4.1. Suppose u is C2 function on some region Ω in � 2 with

(30) Ku = −
[ d

ds
arctan(rnsn−1)

]2

< 0,

where n ∈ $ , r ∈ (0,∞) and s = |z|. Then is u harmonic?
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Appendix

In the proof of Theorem 3.7 we needed to explicitly show that Kf2 = Kg. We see

that

f2
′ =

C1 + σcnzn−1

1 − σC1cnzn−1
,(31)

|f2
′|2 =

C2
1 + σC1cnzn−1 + σC1cnzn−1 + r2n2|z|2(n−1)

1 − σC1cnzn−1 − σC1cnzn−1 + C2
1r2n2|z|2(n−1)

,(32)

and

f2
′′ =

σcn(1 + C2
1 )zn−2

(1 − σC1cnzn−1)2
,(33)

|f2
′′|2 =

r2n2(n − 1)2(1 + C2
1 )2|z|2(n−2)

(

1 − σC1cnzn−1 − σC1cnzn−1 + C2
1r2n2|z|2(n−1)

)2 .(34)

Then

Kf2 =
−|f2

′′|2
(

1 + |f2
′|2

)2(35)

= −

r2n2(n − 1)2(1 + C2
1 )2|z|2(n−2)

(1 − σC1cnzn−1 − σC1cnzn−1 + C2
1r2n2|z|2(n−1))2

(

1 +
C2

1 + σC1cnzn−1 + σC1cnzn−1 + r2n2|z|2(n−1)

1− σC1cnzn−1 − σC1cnzn−1 + C2
1r2n2|z|2(n−1)

)2

= −r2n2(n − 1)2|z|2(n−2)

(1 + r2n2|z|2(n−1))2
= Kg.

This completes the proof.
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