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Abstract. We give characterizations for uniform exponential stability and uniform ex-
ponential instability of linear skew-product flows in terms of Banach sequence spaces and
Banach function spaces, respectively. We present a unified approach for uniform exponen-
tial stability and uniform exponential instability of linear skew-product flows, extending
some stability theorems due to Neerven, Datko, Zabczyk and Rolewicz.
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1. Introduction

In recent years, important progress has been made in the theory of evolution equa-

tions with unbounded coefficients in infinite dimensional spaces. Significant questions

have been answered using the theory of linear skew-product flows (see [1], [2], [3],

[6], [7], [10], [11], [13], [15], [16], [20], [21], [23], [24]). New concepts of exponential

dichotomy have been introduced and studied (see [1], [2], [3], [6], [7], [13], [15], [20],

[24]). In [24], Sacker and Sell proved that exponential dichotomy of a weakly hy-

perbolic linear skew-product semiflow can be obtained by imposing the condition of

finite dimension for the unstable manifold. Giving up this last condition for the case

of skew-product sequences, Chow and Leiva presented in [2] necessary and sufficient

conditions for discrete dichotomy. The authors generalized the concept of discrete

dichotomy introduced by Henry in [5] and thus, they gave characterizations for expo-

nential dichotomy of linear skew-product semiflows. The case of linear skew-product

flows has been also considered by Latushkin, Montgomery-Smith and Randolph in

[6] and by Latushkin and Schnaubelt in [7]. In [7], dichotomy has been discretely
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characterized in terms of the hyperbolicity of a family of weighted shift operators

defined on c0( � ,X). In the spirit of Henry’s theory, in [13] exponential dichotomy is

expressed using the uniform admissibility of the pair (c0( � , X), c0( � , X)) for a linear

skew-product semiflow on X × Θ.

The concept of uniform exponential stability for linear skew-product semiflows

has been studied in [10] and [16]. In [16], we have obtained stability theorems of

Perron type, which connect the uniform exponential stability of a linear skew-product

semiflow with (lp( � , X), lq( � , X))-stability and (c0( � , X), l∞( � , X))-stability. The

controllability of systems associated with linear skew-product semiflows has been

studied in [11].

One of the most remarkable results in the theory of stability of evolution families

has been presented by Rolewicz in [22]:

Theorem 1.1. Let ϕ : � ∗+ × � + → � be a function such that for every t > 0,

s → ϕ(t, s) is a continuous non-decreasing function with ϕ(t, 0) = 0, ϕ(t, s) > 0 for

all s > 0, and for every s > 0, t → ϕ(t, s) is non-decreasing. If U = {U(t, s)}t>s>0

is a strongly continuous evolution family on a Banach space X such that for every

x ∈ X there is α(x) > 0 with

sup
s>0

∫ ∞

s

ϕ(α(x), ‖U(t, s)x‖) dt <∞

then U is uniformly exponentially stable.

Giving up the continuity of the function ϕ, which was essentially used in the

original proof of Theorem 1.1, Neerven gave in [18] a similar characterization for

uniform exponential stability of C0-semigroups, as follows:

Theorem 1.2. A C0-semigroup � = {T (t)}t>0 on a Banach space X is uniformly

exponentially stable if and only if there is a non-decreasing function ϕ : � + → � +

with ϕ(t) > 0 for all t > 0 and ϕ(0) = 0, such that

∫ ∞

0

ϕ(‖T (t)x‖) dt <∞, ∀x ∈ X.

In fact, this theorem is a particular case of another result presented by Neerven

in [18], which expresses the uniform exponential stability of C0-semigroups in terms

of Banach function spaces:
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Theorem 1.3. A C0-semigroup � = {T (t)}t>0 on the Banach space X is uni-

formly exponentially stable if and only if there exists a Banach function space B with

the property lim
t→∞

FB(t) = ∞ such that for every x ∈ X the mapping t 7→ ‖T (t)x‖
belongs to B.

In the above result, FB denotes the fundamental function of the Banach function

space B (for details see its definition in Section 2.2, after Remark 2.1). Theorem 1.3

has been generalized in [10] for the case of linear skew-product semiflows. There, the

uniform exponential stability of linear skew-product semiflows has been characterized

using Banach sequence spaces and Banach function spaces. Characterizations for

exponential stability and exponential instability of C0-semigroups in terms of Banach

function spaces have been presented in [9].

The purpose of this paper is to present a unified approach to uniform exponential

stability and uniform exponential instability of linear skew-product flows. We will

continue the study begun in [9] and in [10], and thus we will give other generalizations

for Neerven’s theorem for the general case of stability and instability of linear skew-

product flows. We will characterize the uniform exponential stability and the uniform

exponential instability, using Banach sequence spaces and Banach function spaces,

respectively, which are different compared to the spaces considered in [10]. Thus, we

will obtain some versions of the theorems due to Rolewicz (see [22]) and Zabczyk (see

[25]) for the case of linear skew-product flows. All the stability theorems presented

here will be extended to exponential instability. In this manner, we will give new

versions of the theorems due to Neerven, Rolewicz and Zabczyk for the case of

uniform exponential instability of linear skew-product flows.

2. Preliminaries

2.1. Linear skew-product flows. Let X be a Banach space, let (Θ, d) be a

metric space and let E = X × Θ.

Definition 2.1. A continuous mapping σ : Θ × � → Θ is called a flow on Θ, if

it has the following properties:

(i) σ(θ, 0) = θ for all θ ∈ Θ;

(ii) σ(θ, s+ t) = σ(σ(θ, s), t) for all (θ, s, t) ∈ Θ × � 2 .

Definition 2.2. A pair π = (Φ, σ) is called a linear skew-product flow on E =

X ×Θ if σ is a flow on Θ and Φ: Θ× � + → B(X) satisfies the following conditions:

(i) Φ(θ, 0) = I , the identity operator on X , for all θ ∈ Θ;

(ii) Φ(θ, t+ s) = Φ(σ(θ, s), t)Φ(θ, s) for all (θ, t, s) ∈ Θ× � 2
+ (the cocycle identity);

(iii) there are M > 1 and ω > 0 such that ‖Φ(θ, t)‖ 6 Meωt for all (θ, t) ∈ Θ × � + .
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If, in addition, for every (x, θ) ∈ E , the mapping t → Φ(θ, t)x is continuous, then

π is called a strongly continuous linear skew-product flow.

If π = (Φ, σ) is a linear skew-product flow, then the mapping Φ is called the

cocycle associated with the linear skew-product flow π.

Definition 2.3. Let π = (Φ, σ) be a linear skew-product flow on E = X × Θ.

The cocycle Φ is said to be injective if for every (θ, t) ∈ Θ× � + , the operator Φ(θ, t)

is injective.

� �! #"%$'&)(
2.1. Let Θ be a metric space, let σ be a flow on Θ and let � =

{T (t)}t>0 be a C0-semigroup on X . Then the pair πT = (ΦT , σ), where ΦT (θ, t) =

T (t) for all (θ, t) ∈ Θ × � + , is a strongly continuous linear skew-product flow on

E = X×Θ, which is called the linear skew-product flow generated by the C0-semigroup

� and the flow σ.
� �! #"%$'&)(

2.2. Let Θ = � , σ(θ, t) = θ + t and let U = {U(t, s)}t>s be an

evolution family on a Banach space X . We define Φ(θ, t) = U(t + θ, θ) for all

(θ, t) ∈ Θ × � + . Then π = (Φ, σ) is a linear skew-product flow on E = X × Θ called

the linear skew-product flow generated by the evolution family U .

Classical examples of cocycles appear as operator solutions for variational equa-

tions. Let σ be a flow on a locally compact metric space Θ and let {A(θ)}θ∈Θ

be a family of densely defined closed operators on a Banach space X . A strongly

continuous cocycle Φ is said to solve the variational equation

(A) ẋ = A(σ(θ, t))x, θ ∈ Θ, t ∈ � +

if for every θ ∈ Θ there exists a dense subset Dθ ⊂ D(A(θ)) such that for every xθ ∈
Dθ the function t 7→ x(t) := Φ(θ, t)xθ is differentiable for t > 0, x(t) ∈ D(A(σ(θ, t)))

for every t > 0 and t 7→ x(t) satisfies the differential equation (A).

� �! #"%$'&)(
2.3. Let C( � , � ) be the space of all continuous functions f : � → � ,

which is metrizable by the metric

d(f, g) =

∞∑

n=1

1

2n

dn(f, g)

1 + dn(f, g)

where dn(f, g) = sup
t∈[−n,n]

|f(t) − g(t)|. Let a : � → � + be a continuous increasing

function with lim
t→∞

a(t) < ∞. If we denote as(t) = a(t + s) and Θ is the closure of

{as : s ∈ � } in C( � , � ), then σ : Θ × � → Θ, σ(θ, t)(s) := θ(t+ s), is a flow on Θ.
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For every θ ∈ Θ we consider the time dependent parabolic system with Neumann

boundary conditions:

(S1)





∂y

∂t
(t, ξ) = θ(t)

∂2y

∂ξ2
(t, ξ), t > 0, ξ ∈ (0, 1)

y(0, ξ) = y0(ξ), ξ ∈ (0, 1)

∂y

∂ξ
(t, 0) =

∂y

∂ξ
(t, 1) = 0, t > 0.

Let X = L2(0, 1), D(A) = {x ∈ H2(0, 1) : ẋ(0) = ẋ(1) = 0} and Ax = d2

dξ2 x.

If for every θ ∈ Θ we denote A(θ) := θ(0)A the system (S1) can be rewritten in

X as

(S2)

{
ẋ(t) = A(σ(θ, t))x(t), t > 0

x(0) = x0.

We have that X is a separable Hilbert space with respect to the inner product

〈x, y〉 =

∫ 1

0

x(ξ)y(ξ) dξ.

If ϕ0 = 1 and

ϕn(ξ) =
√

2 cosnπξ, ∀ξ ∈ [0, 1], ∀n ∈ � ∗ ,
then {ϕn}n>0 is an orthonormal basis in X . The operator A generates a C0-

semigroup � = {T (t)}t>0, given by

T (t)x =
∞∑

n=0

e−n2 * 2t 〈x, ϕn〉ϕn, ∀x ∈ X.

Then

Φ: Θ × � + → B(X), Φ(θ, t)x = T

(∫ t

0

θ(s) ds

)
x

is a cocycle and π = (Φ, σ) is a strongly continuous linear skew-product flow on

E = X × Θ. Moreover, for every x0 ∈ D(A)

x(t) = Φ(θ, t)x0, t > 0

is a strong solution of the system (S2).

� �! #"%$'&)(
2.4. Let Ω be a suitable region in � p (with p = 2 or p = 3). Let D be

the set of all mappings u ∈ C∞
0 (Ω, � p ) with ∇u = 0 and let Y be the closure of D in

L2(Ω, � p ). Let D(A) = H2(Ω, � p ) ∩ Y and let −A be the generator of an analytic
semigroup.
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Consider the Navier-Stokes equation as a nonlinear abstract evolution equation

on Y :

(NS)

{ du

dt
+ νAu+B(u, u) = f

u(0) = u0.

If f is a time forcing function, denote by Ω(f) the ω-limit set of f . Then (NS)

has a compact attractor Θ ⊂ D(A) × Ω(f). If θ = (u, v) ∈ Θ, we define the flow

σ(θ, t) = (ut, vt), where ut(s, ·) = u(t+ s, ·) and vt(s, ·) = v(t + s, ·). The linearized
Navier-Stokes equation has the form

(LNS)

{ dx

dt
+ νAx +B(u(t), x) +B(x, u(t)) = 0

x(0) = x0.

Then there is a linear skew-product flow π = (Φ, σ) on E = D(A1/2) × Θ such that

for every x0 ∈ D(A1/2)

x(t) = Φ(θ, t)x0, t > 0

is a strong solution of the above equation. For notation and details concerning the

results presented in this example we refer to [24], Section 4.1 and the references

therein.

Definition 2.4. A linear skew-product flow π = (Φ, σ) on E = X ×Θ is said to

be

(i) uniformly exponentially stable if there are N, ν > 0 such that

‖Φ(θ, t)‖ 6 Ne−νt, ∀(θ, t) ∈ Θ × � + ;

(ii) uniformly exponentially unstable if there are N, ν > 0 such that

‖Φ(θ, t)x‖ > Neνt‖x‖, ∀(x, θ, t) ∈ E × � + .

� �! #"%$'&)(
2.5. Let X be a Banach space. Consider C( � , � )-the space defined in

Example 2.3. Let a, b : � → � + , where a is an increasing continuous function with

α := lim
t→∞

a(t) < ∞ and b is a decreasing continuous function such that there exists
β := lim

t→∞
b(t) > 0.

If as(t) = a(t+s) and Θ = {as : s ∈ � }, then σ : Θ× � → Θ, σ(θ, t)(s) := θ(t+s),

is a flow on Θ. If δ > α and

Φ: Θ × � + → B(X), Φ(θ, t)x = e−δt+ + t

0
θ(τ)dτx
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we have that π = (Φ, σ) is a strongly continuous linear skew-product flow on X×Θ.

Moreover, π is uniformly exponentially stable.

In the same manner, if bs(t) = b(t + s) and Θ̃ = {bs : s ∈ � }, then σ̃ : Θ̃ × � →
Θ̃, σ̃(θ, t)(s) := θ(t+ s), is a flow on Θ̃. Moreover, for

Φ̃ : Θ̃ × � + → B(X), Φ̃(θ, t)x = e + t

0
θ(τ) dτx

we have that π̃ = (Φ̃, σ̃) is a strongly continuous linear skew-product flow on X× Θ̃.

It is easy to see that

‖Φ̃(θ, t)x‖ > eβt‖x‖, ∀(x, θ, t) ∈ X × Θ̃ × � + ,

so π̃ is uniformly exponentially unstable.

Other examples of linear skew-product flows can be found in [1]–[3], [6], [7], [11],

[13], [15], [20], [21], [23], [24].

Proposition 2.1. Let π = (Φ, σ) be a linear skew-product flow on E = X × Θ.

If there are t0 > 0 and c ∈ (0, 1) such that ‖Φ(θ, t0)‖ 6 c for all θ ∈ Θ, then π is

uniformly exponentially stable.
,.-0/1/32

. Let M > 1 and ω > 0 be given by Definition 2.2. Let ν be a positive

number such that c = e−νt0 .

Let θ ∈ Θ be fixed. For t > 0 there are n ∈ � and r ∈ [0, t0) such that t = nt0 + r.

Then we obtain

‖Φ(θ, t)‖ 6 ‖Φ(σ(θ, nt0), r)‖ ‖Φ(θ, nt0)‖ 6 Meωt0e−nνt0 6 Ne−νt,

where N = Me(ω+ν)t0 . So, π is uniformly exponentially stable. �

Proposition 2.2. Let π = (Φ, σ) be a linear skew-product flow on E = X × Θ.

If there are t0 > 0 and δ > 1 such that

‖Φ(θ, t0)x‖ > δ‖x‖, ∀(x, θ) ∈ E ,

then π is uniformly exponentially unstable.
,.-0/1/32

. Let M > 1, ω > 0 be given by Definition 2.2 and let ν > 0 be such

that δ = eνt0 . Let (x, θ) ∈ E . For t > 0 there are k ∈ � and r ∈ [0, t0) such that

t = kt0 + r. Using the cocycle identity and the hypothesis, it follows that

δk+1‖x‖ 6 ‖Φ(θ, (k + 1)t0)x‖ 6 Meωt0‖Φ(θ, t)x‖.

Denoting N = 1/Meωt0 , we deduce from the above that

‖Φ(θ, t)x‖ > Neνt‖x‖, ∀(x, θ, t) ∈ E × � + ,

so π is uniformly exponentially unstable. �
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2.2. Banach function spaces. Let (Ω,Σ, µ) be a positive σ-finite measure

space. We denote by M(µ) the linear space of µ-measurable functions f : Ω → 4 ,
identifying the functions which are equal µ-a.e.

Definition 2.5. A Banach function norm is a function N : M(µ) → [0,∞] with

the following properties:

(i) N(f) = 0 if and only if f = 0µ-a.e.;

(ii) if |f | 6 |g|µ-a.e. then N(f) 6 N(g);

(iii) N(af) = |a|N(f) for all a ∈ 4 and all f ∈M(µ) with N(f) <∞;
(iv) N(f + g) 6 N(f) +N(g) for all f, g ∈ M(µ).

Let B = BN be the set defined by B := {f ∈ M(µ) : |f |B := N(f) < ∞}. It is
easy to see that (B, | · |B) is a linear space. If B is complete then B is called the

Banach function space over Ω.

56(7"8 #-09
2.1. B is an ideal in M(µ), i.e., if |f | 6 |g|µ-a.e. and g ∈ B then also

f ∈ B and |f |B 6 |g|B .

Let (Ω,Σ, µ) = ( � + ,M,m), whereM is the σ-algebra of all Lebesgue measurable

sets A ⊂ � + and m is the Lebesgue measure. For a Banach function space over � +

we define

FB : � + → � +, FB(t) :=

{
|χ[0,t)|B , if χ[0,t) ∈ B

∞, if χ[0,t) /∈ B

where χ[0,t) denotes the characteristic function of [0, t). The function FB is called

the fundamental function of the Banach function space B.

In what follows, we will denote by L( � + ) the set of all Banach function spaces B

with the property that for every ε > 0 there exists t0 ∈ � + such that

|χ[t−t0,t)|B > ε, ∀t > t0.

56(7"8 #-09
2.2. If B is a Banach function space with the property that B ∈ L( � + )

then lim
t→∞

FB(t) = ∞.

Similarly, let (Ω,Σ, µ) = ( � ,P( � ), µc ), where µc is the countable measure and let

B be a Banach function space over � (in this case B is called a Banach sequence
space). We define

FB : � ∗ → � +, FB(n) :=

{
|χ{0,...,n−1}|B , if χ{0,...,n−1} ∈ B

∞, if χ{0,...,n−1} /∈ B

and call it the fundamental function of the Banach sequence space B.
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We denote by L( � ) the set of all Banach sequence spaces B with the property

that for every ε > 0 there exists n0 ∈ � such that
|χ{k−n0,...,k}|B > ε, ∀k ∈ � , k > n0.

56(7"8 #-09
2.3. If B is a Banach sequence space with the property that B ∈ L( � )

then lim
n→∞

FB(n) = ∞.

56(7"8 #-09
2.4. If B is a Banach function space over � + which belongs to L( � + ),

then

SB :=

{
(αn)n :

∞∑

n=0

αnχ[n,n+1) ∈ B

}
,

with the norm

|(αn)n|SB
:=

∣∣∣∣
∞∑

n=0

αnχ[n,n+1)

∣∣∣∣
B

,

is a Banach sequence space which belongs to L( � ). Indeed, this assertion easily

follows by observing that

|χ{k−n0,...,k}|SB
= |χ[k−n0,k+1)|B , ∀k, n0 ∈ � , k > n0.

� �! #"%$'&)(
2.6. (Orlicz spaces) Let g : � + → � + be a non-decreasing, left con-

tinuous function, which is not identically 0 or ∞ on (0,∞). We define the function

Yg(t) =

∫ t

0

g(s) ds,

which is called the Young function associated with g.

Let (Ω,Σ, µ) ∈ {( � + ,M,m), ( � ,P( � ), µc )}. For every h : Ω → 4 we consider
Mg(h) =

∫

Ω

Yg(|h(ω)|) dµ.

The set of all functions h : Ω → 4 with the property that there exists k > 0 such

that Mg(kf) < ∞, is easily checked to be a linear space. With respect to the norm
|h|g := inf{k > 0: Mg(h/k) 6 1}, it is a Banach function space over Ω called the

Orlicz function space. For Ω = � + we will denote it by Eg and for Ω = � by Og (in

this case it is called the Orlicz sequence space).
56(7"8 #-09

2.5. Let p ∈ [1,∞]. The Orlicz function spaces and the Orlicz sequence

spaces associated with

gp(t) = ptp−1 for 1 6 p <∞ and g∞(t) =

{
0, t ∈ [0, 1]

∞, t > 1
for p = ∞

are Lp( � + , 4 ) and lp( � , 4 ), respectively.
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56(7"8 #-09
2.6. If g : � + → � + is a non-decreasing left continuous function with

g(t) > 0 for all t > 0 and g(0) = 0, then the Orlicz function space Eg belongs to

L( � + ) and the Orlicz sequence space Og belongs to L( � ).

3. Uniform exponential stability in terms of Banach function spaces

In this section we will give necessary and sufficient conditions for uniform exponen-

tial stability of linear skew-product flows using Banach sequence spaces and Banach

function spaces.

Throughout this section, we denote by F the set of all non-decreasing functions
f : � + → � + with f(0) = 0 and f(t) > 0 for all t > 0.

Let X be a Banach space, let Θ be a metric space and let E = X ×Θ. We denote

D = {x ∈ X : ‖x‖ 6 1}.
We start with a characterization for uniform exponential stability of linear skew-

product flows in terms of Banach sequence spaces.

Theorem 3.1. Let π = (Φ, σ) be a linear skew-product flow on E = X × Θ.

Then π is uniformly exponentially stable if and only if there exist a Banach sequence

space B ∈ L( � ), a function ϕ ∈ F and an increasing sequence (tn) ⊂ � + with

δ = sup
n

(tn+1 − tn) <∞ such that
(i) for every (x, θ) ∈ D × Θ, the sequence

γx,θ : � → � + , γx,θ(n) = ϕ(‖Φ(θ, tn)x‖)

belongs to B;

(ii) there is a constant K > 0 such that |γx,θ|B 6 K for all (x, θ) ∈ D × Θ.

,.-0/1/32
. : (�;<(�=�=?>A@ B results by considering B = l1( � , 4 ), ϕ(t) = t for all t > 0

and tn = n for all n ∈ � .
C D 2E2F>E;<>)(HGI; B

. We distinguish two possible cases:

J  K=?(
1. T = sup

n
tn <∞.

Let M,ω be given by Definition 2.2. For every x ∈ D we set x̃ = x/MeωT . We

observe that

‖Φ(θ, T )x̃‖ 6 MeωT ‖Φ(θ, tn)x̃‖ = ‖Φ(θ, tn)x‖, ∀(θ, n) ∈ Θ × � .
This yields

χ{0,...,n}ϕ(‖Φ(θ, T )x̃‖) 6 γx,θ, ∀(θ, n) ∈ Θ × � ,
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and hence we obtain that

FB(n)ϕ(‖Φ(θ, T )x̃‖) 6 K, ∀(θ, n) ∈ Θ × � .

Because B ∈ L( � ) using Remark 2.3, we obtain from the last inequality that

ϕ(‖Φ(θ, T )x̃‖) = 0. Taking into account that ϕ ∈ F it follows that

Φ(θ, T )x = 0, ∀(x, θ) ∈ D × Θ,

so π is uniformly exponentially stable.

J  K=?(
2. sup

n
tn = ∞. Let n0 ∈ � ∗ be such that

|χ{k−n0,...,k}|B >
K

ϕ(1)
, ∀k > n0.

Let (x, θ) ∈ D × Θ and x̃ = x/Meωn0δ. For every k > n0 we have

‖Φ(θ, tk)x̃‖ 6 ‖Φ(θ, tn)x‖, ∀n ∈ {k − n0, . . . , k}.

It follows that

χ{k−n0,...,k}ϕ(‖Φ(θ, tk)x̃‖) 6 γx,θ,

so
K

ϕ(1)
ϕ(‖Φ(θ, tk)x̃‖) < |γx,θ|B 6 K, ∀k > n0.

From ϕ ∈ F we deduce that

‖Φ(θ, tk)‖ 6 Meωn0δ, ∀k > n0.

For K1 = Meω(n0δ+tn0
) we obtain

‖Φ(θ, tk)‖ 6 K1, ∀(θ, k) ∈ Θ × � .

Let t > t0. Then there exists k ∈ � such that tk 6 t 6 tk+1. Thus we deduce that

‖Φ(θ, t)‖ 6 Meωδ‖Φ(θ, tk)‖ 6 MeωδK1.

Denoting K2 = M(eωδK1 + eωt0), we have

‖Φ(θ, t)‖ 6 K2, ∀(θ, t) ∈ Θ × � + .
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Let (x, θ) ∈ D × Θ. For every n ∈ � we observe that

‖Φ(θ, tn)x‖ 6 K2‖Φ(θ, tk)x‖, ∀k ∈ {0, . . . , n}.

Setting x̃ = x/K2, from the last inequality we obtain

ϕ(‖Φ(θ, tn)x̃‖) 6 γx,θ(k), ∀n, k ∈ � , n > k

and so

(3.1) FB(n)ϕ(‖Φ(θ, tn)x̃‖) 6 |γx,θ|B 6 K, ∀n ∈ � .

According to Remark 2.3 there is m0 ∈ � ∗ such that

FB(m0) >
K

ϕ( 1
2K2

)
.

Since ϕ ∈ F , it results from (3.1) that

‖Φ(θ, tm0
)x‖ < 1/2.

Taking into account that m0 does not depend on θ and x, we obtain that

‖Φ(θ, tm0
)x‖ < 1/2, ∀(x, θ) ∈ D × Θ.

From Proposition 2.1 we conclude that π is uniformly exponentially stable. �

As a consequence we obtain a new version of the theorem of Zabczyk (see [25]),

for linear skew-product flows:

Corollary 3.1. Let π = (Φ, σ) be a linear skew-product flow on E = X×Θ. Then

π is uniformly exponentially stable if and only if there exist a sequence (tn) ⊂ � +

with sup
n

|tn+1 − tn| <∞, a function ϕ ∈ F and a constant K > 0 such that

∞∑

n=0

ϕ(‖Φ(θ, tn)x‖) 6 K, ∀(x, θ) ∈ D × Θ.

,.-0/1/32
. : (�;<(�=�=?>A@ B immediately follows for tn = n for all n ∈ � and ϕ(t) = t

for all t > 0.
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C D 2E2F>E;<>)(HGI; B
. If T = sup

n∈ L tn <∞ then the hypothesis yields that

nϕ
(∥∥∥Φ(θ, T )

x

MeωT

∥∥∥
)

6 K, ∀(x, θ, n) ∈ D × Θ × � ∗ ,

where M , ω are given by Definition 2.2. It follows that Φ(θ, T ) = 0 for all θ ∈ Θ, so

by Proposition 2.1 π is uniformly exponentially stable.

If sup
n∈ L tn = ∞, then without loss of generality we may assume that the sequence

(tn) is increasing (if not, we can consider a subsequence and the proof is the same).

Thus, from Theorem 2.1 for B = l1( � , 4 ) we conclude that π is uniformly exponen-

tially stable. �

Now, we give a characterization of uniform exponential stability in terms of Banach

function spaces obtaining a theorem of Neerven type for linear skew-product flows.

Theorem 3.2. Let π = (Φ, σ) be a strongly continuous linear skew-product flow

on E = X × Θ. Then π is uniformly exponentially stable if and only if there exist a

Banach function space B ∈ L( � + ) and a function ϕ ∈ F such that
(i) for every (x, θ) ∈ D × Θ, the mapping

fx,θ : � + → � + , fx,θ(t) = ϕ(‖Φ(θ, t)x‖)

belongs to B;

(ii) there is a constant K > 0 such that |fx,θ|B 6 K for all (x, θ) ∈ D × Θ.

,.-0/1/32
. : (�;M(�=0=?>A@ B easily follows for ϕ(t) = t for all t > 0 and B = L1( � + , 4 ).

C D 2E2F>E;<>)(HGI; B
. We consider SB =

{
(αn)n :

∞∑
n=0

αnχ[n,n+1) ∈ B
}
. From Re-

mark 2.4 it follows that SB ∈ L( � ). We define

ψ : � + → � + , ψ(t) = ϕ
( 1

Meω
t
)
,

where M,ω are given by Definition 2.2.

Let (x, θ) ∈ D × Θ. We consider the sequence

γx,θ : � + → � + , γx,θ(n) = ψ(‖Φ(θ, n+ 1)x‖).

We deduce that

ψ(‖Φ(θ, n+ 1)x‖) 6 ϕ(‖Φ(θ, t)x‖), ∀t ∈ [n, n+ 1), ∀n ∈ � .
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It results that

γx,θ(n)χ[n,n+1) 6 fx,θ(t), ∀t ∈ [n, n+ 1), ∀n ∈ � .
We obtain that

∞∑

n=0

γx,θ(n)χ[n,n+1) 6 fx,θ.

It follows that γx,θ ∈ SB and

|γx,θ|B 6 K, ∀(x, θ) ∈ D × Θ.

From Theorem 3.1 we conclude that π is uniformly exponentially stable. �

A theorem of Rolewicz type, for the case of linear skew-product flows, can be

expressed as follows:

Corollary 3.2. Let π = (Φ, σ) be a strongly continuous linear skew-product flow

on E = X × Θ. Then π is uniformly exponentially stable if and only if there exist a

function ϕ ∈ F and a constant K > 0 such that

∫ ∞

0

ϕ(‖Φ(θ, t)x‖) dt 6 K, ∀(x, θ) ∈ D × Θ.

,.-0/1/32
. : (�;<(�=0=N>A@ B is obvious, for ϕ(t) = t, for all t > 0.

C D 2E2F>E;<>)(HGI; B
results from Theorem 3.2 for B = L1( � + , 4 ). �

56(7"8 #-09
3.1. Let p ∈ [1,∞). If ϕ(t) = tp for all t > 0 and π is generated by an

evolution family, then from Corollary 3.2 we obtain the theorem of Datko (see [4]).

4. Uniform exponential instability and Banach function spaces

In this section we will characterize the concept of uniform exponential instability

in terms of Banach sequence spaces and Banach function spaces, our purpose being to

give modifications of the theorems from the previous section for the case of uniform

exponential instability of linear skew-product flows.

Let X be a Banach space, let Θ be a metric space and let E = X ×Θ. We denote

C = {x ∈ X : ‖x‖ = 1}.
We maintain the notation F for the set of all non-decreasing functions f : � + →

� + with f(0) = 0 and f(t) > 0 for all t > 0.

First, we give a characterization for uniform exponential instability of linear skew-

product flows, using Banach sequence spaces.
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Theorem 4.1. Let π = (Φ, σ) be a linear skew-product flow on E = X×Θ. Then

π is uniformly exponentially unstable if and only if Φ is injective and there exist a

Banach sequence space B ∈ L( � ) and a function ϕ ∈ F such that
(i) for every (x, θ) ∈ C × Θ, the mapping

γx,θ : � → � + , γx,θ(n) = ϕ
( 1

‖Φ(θ, n)x‖
)

belongs to B;

(ii) there is a constant K > 0 such that |γx,θ|B 6 K for all (x, θ) ∈ C × Θ.

,.-0/1/32
. : (�;<(�=0=N>A@ B results for ϕ(t) = t for all t > 0 and B = l1( � , 4 ).

C D 2E2F>E;<>)(HGI; B
. Because B ∈ L( � ) there is n0 ∈ � ∗ with the property that

(4.1) |χ{k−n0,...,k}|B >
K

ϕ(1)
, ∀k > n0.

Let x ∈ C. We set x̃ = Lx, where L = Meωn0 andM,ω are given by Definition 2.2.

Let θ ∈ Θ and p ∈ � . We have

‖Φ(θ, p+ k)x‖ 6 Meωk‖Φ(θ, p)x‖ 6 ‖Φ(θ, p)x̃‖, ∀k ∈ {0, . . . , n0}.

It results that

ϕ
( 1

‖Φ(θ, p)x̃‖
)

6 ϕ
( 1

‖Φ(θ, p+ k)x‖
)
, ∀k ∈ {0, . . . , n0}.

Hence, we have

χ{p,...,p+n0}ϕ
( 1

‖Φ(θ, p)x̃‖
)

6 γx,θ.

Using (4.1) we obtain that

K

ϕ(1)
ϕ
( 1

‖Φ(θ, p)x̃‖
)
< K.

From the last inequality we deduce

(4.2)
1

‖Φ(θ, p)x‖ 6 L, ∀(x, θ, p) ∈ C × Θ × � .

Because B ∈ L( � ) there is m0 ∈ � ∗ such that

(4.3) |χ{k−m0,...,k}|B >
K

ϕ( 1
2L)

, ∀k > m0.
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Let (x, θ) ∈ C × Θ and let x̃ = Lx. From (4.2) we have

‖Φ(θ, k)x‖ 6 L‖Φ(θ,m0)x‖, ∀k ∈ {0, . . . ,m0}.

It follows that

ϕ
( 1

‖Φ(θ,m0)x̃‖
)

6 ϕ
( 1

‖Φ(θ, k)x‖
)
, ∀k ∈ {0, . . . ,m0}.

This yields that

χ{0,...,m0}ϕ
( 1

‖Φ(θ,m0)x̃‖
)

6 γx,θ,

and hence from (4.3) and ϕ ∈ F we deduce that

1

‖Φ(θ,m0)x̃‖
<

1

2L
.

So, we obtain that

‖Φ(θ,m0)x‖ > 2, ∀(x, θ) ∈ C × Θ.

From Proposition 2.2. we conclude that π is uniformly exponentially unstable. �

As a consequence, we obtain a theorem of Zabczyk type for uniform exponential

instability, given by

Corollary 4.1. Let π = (Φ, σ) be a linear skew-product flow on E = X × Θ.

Then π is uniformly exponentially unstable if and only if Φ is injective and there

exist a function ϕ ∈ F and a constant K > 0 such that

∞∑

n=0

ϕ
( 1

‖Φ(θ, n)x‖
)

6 K, ∀(x, θ) ∈ C × Θ.

,.-0/1/32
. : (�;<(�=0=N>A@ B holds for ϕ(t) = t for all t > 0.

C D 2E2F>E;<>)(HGI; B
is immediate from Theorem 4.1, considering B = l1( � , 4 ). �
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Theorem 4.2. Let π = (Φ, σ) be a strongly continuous linear skew-product flow

on E = X×Θ. Then π is uniformly exponentially unstable if and only if Φ is injective

and there exist a Banach function space B ∈ L( � + ) and a function ϕ ∈ F such that
(i) for every (x, θ) ∈ C × Θ, the mapping

fx,θ : � + → � + , fx,θ(t) = ϕ
( 1

‖Φ(θ, t)x‖
)

belongs to B;

(ii) there is a constant K > 0 such that |fx,θ|B 6 K for all (x, θ) ∈ C × Θ.

,.-0/1/32
. : (�;<(O=0=?>A@ B is immediate for ϕ(t) = t for all t > 0 and B = L1( � + , C).

C D 2E2F>E;<>)(HGI; B
. If M,ω are given by Definition 2.2, then we consider

ψ : � + → � + , ψ(t) = ϕ
( t

Meω

)
.

Let (x, θ) ∈ C × Θ. We define

γx,θ : � → � + , γx,θ(n) = ψ
( 1

‖Φ(θ, n)x‖
)
.

We have

‖Φ(θ, t)x‖ 6 Meω‖Φ(θ, n)x‖, ∀t ∈ [n, n+ 1), ∀n ∈ � ,
and hence

ψ
( 1

‖Φ(θ, n)x‖
)

6 ϕ
( 1

‖Φ(θ, t)x‖
)
, ∀t ∈ [n, n+ 1), ∀n ∈ � .

This leads to

(4.4)

∞∑

n=0

γx,θ(n)χ[n,n+1) 6 fx,θ.

Let SB be the Banach sequence space associated with B according to Remark 2.4.

Then SB ∈ L( � + ) and from (4.4) we deduce that γx,θ ∈ SB . Moreover, |γx,θ|SB
6

|fx,θ|B 6 K for all (x, θ) ∈ C × Θ. Applying Theorem 4.1 for SB and ψ we deduce

that π is uniformly exponentially unstable. �

The last result of this section is a condition of Rolewicz type for uniform expo-

nential instability. It is given by
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Corollary 4.2. Let π = (Φ, σ) be a strongly continuous linear skew-product flow

on E = X×Θ. Then π is uniformly exponentially unstable if and only if Φ is injective

and there exist a function ϕ ∈ F and a constant K > 0 such that

∫ ∞

0

ϕ
( 1

‖Φ(θ, t)x‖
)

dt 6 K, ∀(x, θ) ∈ C × Θ.

,.-0/1/32
. : (�;<(�=0=N>A@ B is obvious for ϕ(t) = t for all t > 0.

C D 2E2F>E;<>)(HGI; B
easily results from Theorem 4.2 for B = L1( � + , 4 ). �

P ;Q91G'/�RS&)(�TVU3(7"%(7G1@
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