MATHEMATICA BOHEMICA, Vol. 126, No. 3, pp. 593-606, 2001

The period of a whirling pendulum

Hana Lichardova

Hana Lichardova, Department of Mathematics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava, Slovakia, e-mail: lichardova@kmat.elf.stuba.sk

Abstract: The period function of a planar parameter-depending Hamiltonian system is examined. It is proved that, depending on the value of the parameter, it is either monotone or has exactly one critical point.

Keywords: Hamiltonian system, period function, Picard-Fuchs equations

Classification (MSC 2000): 37G15, 34C05


Full text available as PDF (smallest), as compressed PostScript (.ps.gz) or as raw PostScript (.ps).

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.


[Previous Article] [Next Article] [Contents of This Number] [Contents of Mathematica Bohemica]
[Full text of the older issues of Mathematica Bohemica at EMIS]