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Abstract. The incomplete Gamma function γ(α, x) and its associated functions γ(α, x+)
and γ(α, x−) are defined as locally summable functions on the real line and some convo-
lutions and neutrix convolutions of these functions and the functions x

r and x
r
−
are then

found.
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The incomplete Gamma function γ(α, x) is defined for α > 0 and x > 0 by

(1) γ(α, x) =

∫ x

0

uα−1e−u du,

see [5], the integral diverging for α 6 0.

Alternatively, we can define the incomplete Gamma function by

(2) γ(α, x) =

∫ x

0

|u|α−1e−u du,

and equation (2) defines γ(α, x) for all x, the integral again diverging for α 6 0.

We note that if x > 0 and α > 0, then by integration by parts we see that

(3) γ(α + 1, x) = αγ(α, x) − xαe−x
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and so we can use equation (3) to extend the definition of γ(α, x) to negative, non-

integer values of α. In particular, it follows that if −1 < α < 0 and x > 0, then

γ(α, x) = α−1γ(α + 1, x) + α−1xαe−x

= −α−1

∫ x

0

uα d(e−u − 1) + α−1xαe−x

and by integration by parts we see that

γ(α, x) =

∫ x

0

uα−1(e−u − 1) du + α−1xα.

More generally, it is easily proved by induction that if −r < α < −r + 1 and x > 0,

then

(4) γ(α, x) =

∫

x

0

uα−1

[

e−u −
r−1
∑

i=0

(−u)i

i!

]

du +
r−1
∑

i=0

(−1)ixα+i

(α + i)i!
.

It follows that

(5) lim
x→∞

γ(α, x) = Γ(α)

for α 6= 0,−1,−2, . . ., where Γ denotes the Gamma function.

We now define locally summable function γ(α, x+) by

γ(α, x+) =

{

∫

x

0

uα−1e−u du, x > 0,

0, x < 0

if α > 0 and we define the distribution γ(α, x+) inductively by the equation

(6) γ(α, x+) = α−1γ(α + 1, x+) + α−1xα

+e−x

for α < 0 and α 6= −1,−2, . . . .

If now x < 0 and α > 1, then by integration by parts we see that

(7) γ(α + 1, x) = −αγ(α, x) − |x|αe−x

and so we can use equation (7) to extend the definition of γ(α, x) to negative, non-

integer values of α.

We now define locally summable function γ(α, x−) by

γ(α, x−) =

{

∫

x

0

|u|α−1e−u du, x 6 0,

0, x > 0
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if α > 0 and we define the distribution γ(α, x−) inductively by the equation

(8) γ(α, x−) = −α−1γ(α + 1, x−) − α−1xα

−
e−x

for α < 0 and α 6= −1,−2, . . . . It follows that

lim
x→−∞

γ(α, x−) = ∞.

The classical definition of the convolution of two functions f and g is as follows:

Definition 1. Let f and g be functions. Then the convolution f ∗ g is defined

by

(f ∗ g)(x) =

∫

∞

−∞

f(t)g(x − t) dt

for all points x for which the integral exists.

It follows easily from the definition that if f ∗ g exists then g ∗ f exists and

(9) f ∗ g = g ∗ f,

and if (f ∗ g)′ and f ∗ g′ (or f ′ ∗ g) exists, then

(10) (f ∗ g)′ = f ∗ g′ (or f ′ ∗ g).

Definition 1 can be extended to define the convolution f ∗ g of two distributions f

and g in D′ by the following definition, see Gel’fand and Shilov [4].

Definition 2. Let f and g be distributions in D′. Then the convolution f ∗ g

is defined by the equation

〈(f ∗ g)(x), ϕ〉 = 〈f(y), 〈g(x), ϕ(x + y)〉〉

for arbitrary ϕ in D, provided f and g satisfy at least one of the conditions

(a) either f or g has bounded support,

(b) the supports of f and g are bounded on the same side.

It follows that if the convolution f ∗ g exists by this definition then equations (9)

and (10) are satisfied.
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The following convolutions were proved in [3]:

(xα

+e−x) ∗ xr

+ =

r
∑

i=0

(

r

i

)

(−1)iγ(α + i + 1, x+)xr−i,(11)

γ(α, x+) ∗ xr

+ =
1

r + 1

r+1
∑

i=0

(

r + 1

i

)

(−1)iγ(α + i, x+)xr−i+1,(12)

(xα

+e−x) ∗ xr =
r

∑

i=0

(

r

i

)

(−1)iΓ(α + i + 1)xr−i(13)

for r = 0, 1, 2, . . . and α 6= 0,−1,−2, . . ..

We now prove some further results involving the convolution.

Theorem 1.

(14) (xα

−
e−x) ∗ xr

−
= (−1)r−1

r
∑

i=0

(

r

i

)

γ(α + i + 1, x−)xr−i

for r = 0, 1, 2, . . . and α 6= 0,−1,−2, . . ..

 "!$#%#'&
. We first of all prove equation (14) when α > 0. It is obvious that

(xα
−

e−x) ∗ xr
−

= 0 if x > 0. When x < 0 we have

(xα

−
e−x) ∗ xr

−
=

∫ 0

x

|x − u|r|u|αe−u du

= (−1)r

r
∑

i=0

(

r

i

)

xr−i

∫ 0

x

|u|α+ie−u du

and equation (14) follows for the case α > 0.

Now suppose that equation (14) holds when −s < α < −s + 1. This is true when

s = 0. Then taking into account −s < α < −s + 1 and differentiating (xα
−

e−x) ∗ xr
−
,

we get

(−αxα−1
−

e−x − xα

−
e−x) ∗ xr

−
= −r(xα

−
e−x) ∗ xr−1

−
.

It follows from our assumption and equation (8) that

α(xα−1
−

e−x) ∗ xr

−
= −(xα

−
e−x) ∗ xr

−
+ r(xα

−
e−x) ∗ xr−1

−

= (−1)r

r
∑

i=0

(

r

i

)

γ(α + i + 1, x−)xr−i

+ (−1)rr

r−1
∑

i=0

(

r − 1

i

)

γ(α + i + 1, x−)xr−i−1
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= (−1)r−1

r
∑

i=0

(

r

i

)

[(α + i)γ(α + i, x−)xr−i + xα+i

−
e−x]

+ (−1)rr

r
∑

i=1

(

r − 1

i − 1

)

γ(α + i, x−)xr−i

= (−1)r−1α

r
∑

i=0

(

r

i

)

γ(α + i, x−)xr−i

+ (−1)r−1

r
∑

i=1

[

i

(

r

i

)

− r

(

r − 1

i − 1

)

]

γ(α + i, x−)xr−i

+ (−1)r−1

r
∑

i=0

(

r

i

)

xr+α

−
e−x

= (−1)r−1α

r
∑

i=0

(

r

i

)

γ(α + i, x−)xr−i

and so equation (14) holds when −s− 1 < α < −s. It therefore follows by induction

that equation (14) holds for all α 6= 0,−1,−2, . . ., which completes the proof of the

theorem. �

Theorem 2.

(15) γ(α, x−) ∗ xr

−
=

(−1)r+1

r + 1

r+1
∑

i=0

(

r + 1

i

)

γ(α + i, x−)xr−i+1

for r = 0, 1, 2, . . . and α 6= 0,−1,−2, . . . .

 "!$#%#'&
. We first of all prove equation (15) when α > 0. It is obvious that

γ(α, x−) ∗ xr
−

= 0 if x > 0. When x < 0 we have

γ(α, x−) ∗ xr

−
=

∫ 0

x

|x − t|r
∫

t

0

|u|α−1e−u du dt

= (−1)r

∫ 0

x

|u|α−1e−u

∫ x

u

(x − t)r dt du

=
(−1)r

r + 1

r+1
∑

i=0

(

r + 1

i

)

xr−i+1

∫ 0

x

|u|α+i−1e−u du

and equation (15) follows for the case α > 0.

Now suppose that equation (15) holds when −s < α < −s + 1. This is true when

s = 0. Then noting that −s − 1 < α < −s and using equations (8) and (14), we get

αγ(α, x−) ∗ xr

−
= −γ(α + 1, x−) ∗ xr

−
− (xα

−
e−x) ∗ xr

−
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=
(−1)r+1

r + 1

r+1
∑

i=0

(

r + 1

i

)

γ(α + i + 1, x−)xr−i+1

+ (−1)r

r
∑

i=0

(

r

i

)

γ(α + i + 1, x−)xr−i

=
(−1)r+1

r + 1

r+1
∑

i=0

(

r + 1

i

)

[(α + i)γ(α + i, x−) + xα+i

−
e−x]xr−i+1

+ (−1)r

r+1
∑

i=1

(

r

i − 1

)

γ(α + i, x−)xr−i+1

=
(−1)r+1α

r + 1

r+1
∑

i=0

(

r + 1

i

)

γ(α + i, x−)xr−i+1

+ (−1)r+1

r+1
∑

i=1

[

i

r + 1

(

r + 1

i

)

−

(

r

i − 1

)

]

γ(α + i, x−)xr−i+1

+
(−1)r

r + 1

r+1
∑

i=0

(

r + 1

i

)

(−1)ixr+α+1
−

e−x

=
(−1)r+1α

r + 1

r+1
∑

i=0

(

r + 1

i

)

γ(α + i, x−)xr−i+1

and so equation (15) holds when −s− 1 < α < −s. It therefore follows by induction

that equation (15) holds for all α 6= 0,−1,−2, . . ., which completes the proof of the

theorem. �

In order to extend Definition 2 to distributions which do not satisfy conditions (a)

or (b), we let τ be a function in D satisfying the conditions

(i) τ(x) = τ(−x),

(ii) 0 6 τ(x) 6 1,

(iii) τ(x) = 1 for |x| 6 1

2
,

(iv) τ(x) = 0 for |x| > 1.

The function τn is then defined by

τn(x) =











1, |x| 6 n,

τ(nnx − nn+1), x > n,

τ(nnx + nn+1), x < −n

for n = 1, 2, . . . .

The next definition was given in [2].
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Definition 3. Let f and g be distributions in D′ and let fn = fτn for n =

1, 2, . . . . Then the neutrix convolution f ~ g is defined as the neutrix limit of the

sequence {fn ∗ g}, provided the limit h exists in the sense that

N-lim
n→∞

〈fn ∗ g, ϕ〉 = 〈h, ϕ〉

for all ϕ in D, where N is the neutrix, see van der Corput [1], having domain

N ′ = {1, 2, . . . , n, . . .} and range N ′′, the real numbers, with negligible functions

being finite linear sums of the functions

nα lnr−1 n, lnr n (α > 0, r = 1, 2, . . .)

and all functions which converge to zero in the normal sense as n tends to infinity.

In particular, if

lim
n→∞

〈fn ∗ g, ϕ〉 = 〈h, ϕ〉

for all ϕ in D, we say that the convolution f ∗ g exists and equals h.

Note that in this definition the convolution fn∗g is defined in Gel’fand and Shilov’s

sense, the distribution fn having compact support. Note also that because of the

lack of symmetry in the definition of f ~ g, the neutrix convolution is in general

non-commutative.

The following theorem was proved in [2], showing that the neutrix convolution is

a generalization of the convolution.

Theorem 3. Let f and g be distributions in D′ satisfying either condition (a) or

condition (b) of Gel’fand and Shilov’s definition. Then the neutrix convolution f ~ g

exists and

f ~ g = f ∗ g.

The next theorem was also proved in [2].

Theorem 4. Let f and g be distributions in D′ and suppose that the neutrix

convolution f ~ g exists. Then the neutrix convolution f ~ g exists and

(f ~ g)′ = f ~ g′.

Note however that (f ~ g)′ is not necessarily equal to f ′ ~ g but we do have the

following theorem, which was proved in [3].
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Theorem 5. Let f and g be distributions in D′ and suppose that the neutrix

convolution f ~ g exists. If N-lim
n→∞

〈(fτ ′

n) ∗ g, ϕ〉 exists and equals 〈h, ϕ〉 for all ϕ in

D, then the neutrix convolution f ′ ~ g exists and

(f ~ g)′ = f ′ ~ g + h.

For our next results, we need to extend our set of negligible functions to include

finite linear sums of

nαen, γ(α,−n−) : α 6= 0,−1,−2, . . . .

The following neutrix convolution was proved in [3]:

(16) γ(α, x+) ~ xr =
1

r + 1

r+1
∑

i=1

(

r + 1

i

)

(−1)iΓ(α + i)xr−i+1

for r = 0, 1, 2, . . . and α 6= 0,−1,−2, . . . .

We now prove

Theorem 6. The neutrix convolution (xα
−

e−x) ~ xr exists and

(17) (xα

−
e−x) ~ xr = 0

for r = 0, 1, 2, . . . and α 6= 0,−1,−2, . . . .

 "!$#%#'&
. We first of all prove equation (17) when α > 0 and put (xα

−
e−x)n =

xα
−

e−xτn(x). Since (xα
−

e−x)n has compact support, it follows that the convolution

(xα
−

e−x)n ∗ xr exists and

(xα

−
e−x)n ∗ xr =

∫ 0

−n

(x − u)r|u|αe−u du +

∫

−n

−n−n−n

(x − u)r|u|αe−uτn(u) du

= I1 + I2.(18)

Now

I1 =

r
∑

i=0

(

r

i

)

xr−i

∫ 0

−n

|u|α+ie−u du = −

r
∑

i=0

(

r

i

)

xr−iγ(α + i + 1,−n−)

and it follows that

(19) N-lim
n→∞

I1 = 0.

374



Further, it is easily seen that

(20) lim
n→∞

I2 = 0

and equation (17) follows from equations (18), (19) and (20) for the case α > 0.

Now suppose that equation (17) holds when −s < α < −s + 1. This is true when

s = 0. Then by virtue of −s < α < −s + 1, we have

[xα

−
e−xτ ′

n(x)] ∗ xr =

∫

−n

−n−n−n

|t|αe−tτ ′

n(t)(x − t)r dt

and

〈[xα

−
e−xτ ′

n(x)] ∗ xr, ϕ(x)〉 =

∫ b

a

∫

−n

−n−n−n

|t|αe−tτ ′

n(t)(x − t)rϕ(x) dt dx

=

∫

b

a

∫

−n

−n−n−n

[α(x − t) + t(x − t) + rt]|t|α−1e−t(x − t)r−1τn(t)ϕ(x) dt dx

− nαen

∫

b

a

(x + n)rϕ(x) dx,

where [a, b] contains the support of ϕ. It follows easily that

(21) N-lim
n→∞

〈[xα

−
e−xτ ′

n(x)] ∗ xr , ϕ(x)〉 = 0.

It now follows from Theorems 4 and 5 and equation (21) that

(−αxα−1
−

e−x − xα

−
e−x) ~ xr + 0 = r(xα

+e−x) ~ xr−1.

Using our assumption, it follows that

α(xα−1
−

e−x) ~ xr = 0

and so equation (17) holds when −s− 1 < α < −s. It therefore follows by induction

that equation (17) holds for all α 6= 0,−1,−2, . . ., which completes the proof of the

theorem. �

Corollary 6.1. The neutrix convolution (xα
−

e−x) ~ xr
+ exists and

(22) (xα

−
e−x) ~ xr

+ =

r
∑

i=0

(

r

i

)

γ(α + i + 1, x−)xr−i

for r = 0, 1, 2, . . . and α 6= 0,−1,−2, . . . .
 "!$#%#'&

. Equation (22) follows from equations (14) and (17) by noting that

(xα

−
e−x) ~ xr = (xα

−
e−x) ~ xr

+ + (−1)r(xα

−
e−x) ~ xr

−
.

�
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Corollary 6.2. The neutrix convolution (|x|αe−x) ~ xr
+ exists and

(23) (|x|αe−x) ~ xr

+ =

r
∑

i=0

(

r

i

)

[(−1)iγ(α + i + 1, x+) + γ(α + i + 1, x−)]xr−i

for r = 0, 1, 2, . . . and α 6= 0,−1,−2, . . . .

 "!$#%#'&
. Equation (23) follows immediately from equations (1) and (22). �

Theorem 7. The neutrix convolution γ(α, x−) ~ xr exists and

(24) γ(α, x−) ~ xr = 0

for r = 0, 1, 2, . . . and α 6= 0,−1,−2, . . . .

 "!$#%#'&
. We first of all prove equation (24) when α > 0 and put γn(α, x−) =

γ(α, x−)τn(x). The convolution γn(α, x−) ∗ xr then exists by Definition 1 and

(25)

γn(α, x−) ∗ xr =

∫ 0

−n

(x − t)r

∫

t

0

|u|α−1e−u du dt

+

∫

−n

−n−n−n

(x − t)r

∫ t

0

|u|α−1e−u du dt = J1 + J2.

Now

J1 =

∫ 0

−n

(x − t)r

∫

t

0

|u|α−1e−u du dt

=

∫ 0

−n

|u|α−1e−u

∫

−n

u

(x − t)r dt du

=
1

r + 1

r+1
∑

i=1

(

r + 1

i

)

xr−i+1

∫ 0

−n

|u|α+i−1e−u du

−
1

r + 1

r+1
∑

i=1

(

r + 1

i

)

nixr−i+1

∫ 0

−n

|u|α−1e−u du

= −
1

r + 1

r+1
∑

i=1

(

r + 1

i

)

γ(α + i,−n−)xr−i+1

+
1

r + 1

r+1
∑

i=1

(

r + 1

i

)

niγ(α,−n−)xr−i+1.

It follows that

(26) N-lim
n→∞

J1 = 0.
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Further, it is easily seen that

(27) lim
n→∞

J2 = 0

and equation (24) follows from equations (25), (26) and (27) for the case α > 0.

Now suppose that equation (24) holds when −s < α < −s + 1. This is true when

s = 0. Then by virtue of −s − 1 < α < −s and using theorem 6 we get

(28) αγ(α, x−) ~ xr = γ(α + 1, x−) ~ xr + (xα

−
e−x) ~ xr = 0

and so (24) holds when −s− 1 < α < −s. It therefore follows by induction that (24)

holds for all α 6= 0,−1,−2, . . . which completes the proof of the theorem. �

Corollary 7.1. The neutrix convolution γ(α, x−) ~ xr
+ exists and

(29) γ(α, x−) ~ xr

+ = −
1

r + 1

r+1
∑

i=0

(

r + 1

i

)

γ(α + i, x−)xr−i+1

for r = 0, 1, 2, . . . and α 6= 0,−1,−2, . . . .

 "!$#%#'&
. Equation (29) follows from equations (15) and (24) by noting that

γ(α, x−) ~ xr = γ(α, x−) ~ xr

+ + (−1)rγ(α, x−) ~ xr

−
.

�
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