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Abstract. The incomplete Gamma function y(«a, z) and its associated functions v(«, z+)
and v(«a,z—) are defined as locally summable functions on the real line and some convo-
lutions and neutrix convolutions of these functions and the functions " and z”_ are then
found.
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The incomplete Gamma function (a, x) is defined for o > 0 and x > 0 by

(1) 7(0495):/ u* e " du,
0

see [5], the integral diverging for a < 0.

Alternatively, we can define the incomplete Gamma function by

@) o) = [ laf e dn
0

and equation (2) defines v(«, x) for all z, the integral again diverging for o < 0.

We note that if z > 0 and « > 0, then by integration by parts we see that

(3) v(a+1,z) = ay(a,x) — %™
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and so we can use equation (3) to extend the definition of v(«, =) to negative, non-
integer values of a. In particular, it follows that if —1 < @ < 0 and = > 0, then

o  —T

y(a, ) = a My(a+1,2) + otz

x
= 704_1/ ud(e™ — 1)+ a tz%e ™
0
and by integration by parts we see that

Y, x) = / u* e ™ — 1) du + o tz®.
0

More generally, it is easily proved by induction that if —r < o < —r+ 1 and x > 0,
then

r—1

o - el B e SRR

K2

It follows that

(5) lim y(a,z) = (o)
for a #£0,—1,—2,..., where I" denotes the Gamma function.

We now define locally summable function (o, 24) by
/ u* e du, x>0,
7(047 I+> = 0
0, z <0
if &« > 0 and we define the distribution y(a, z) inductively by the equation

x

(6) '}/(OL,I+> = a*l,.y(a+ 15I+) +a71x3‘>67

fora<0and a # —1,-2,....
If now z < 0 and « > 1, then by integration by parts we see that

(7) Wa+1,2) = —ay(a,z) —[z]"e™™

and so we can use equation (7) to extend the definition of v(«, =) to negative, non-
integer values of «.
We now define locally summable function v(a, z_) by

/ lul|*"te " du, x <0,
Ya,z) =4 Jo
0, z >0
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if « > 0 and we define the distribution y(a, z_) inductively by the equation

1 T

(8) Y,z )= —atyla+1,z_) —a ta%e”

for « < 0 and a # —1,—2,.... It follows that

lim ~(o,z_) = 0.
r——00

The classical definition of the convolution of two functions f and g is as follows:

Definition 1. Let f and g be functions. Then the convolution f x g is defined
by

(Fro)@) = [ fogle -1
for all points = for which the integral exists.

It follows easily from the definition that if f % g exists then g x f exists and
(9) fxg=gx*f,
and if (f*g) and f * g’ (or f’ * g) exists, then
(10) (fxg) =f=*g" (or f *g).

Definition 1 can be extended to define the convolution f * g of two distributions f
and g in D’ by the following definition, see Gel’fand and Shilov [4].

Definition 2. Let f and g be distributions in D’. Then the convolution f * g
is defined by the equation

((fx9)(@), ) = (F(y), (9(x), p(x + 1))

for arbitrary ¢ in D, provided f and g satisfy at least one of the conditions

(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side.

It follows that if the convolution f x g exists by this definition then equations (9)
and (10) are satisfied.
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The following convolutions were proved in [3]:

T

a) @) ear =) () (Dirati+1as)a,

: (3
1=0

r+1
T r+1
(12) Yo, xy) xaly = (

i

= )1t i),

(13)  (age e = Z( ) Dla+i+ 1)’

=0

forr=0,1,2,...and o« #0,—1,-2,....
We now prove some further results involving the convolution.

Theorem 1.
T .
14 o —T T — (1 r—1 - 1.z )"
(14) (z%e™) x a2’ =(-1) E (i>v(a+%+ S T_)T

forr=0,1,2,...and a« #0,—1,-2,....

Proof. We first of all prove equation (14) when a > 0. It is obvious that
(xe™®)x " =0if x > 0. When z < 0 we have

0
(x%e ™) x 2" = / | — u|"u|%e™™ du
x

r 0
=(-1)" E (r)xrz/ lu|*Te™" du
i
i=0 x

and equation (14) follows for the case a > 0.

Now suppose that equation (14) holds when —s < o < —s + 1. This is true when
s = 0. Then taking into account —s < a < —s + 1 and differentiating (z®e™%) x z”,
we get

(—az®le ™ — g% ?) xx

T

= —r(z%e ") x "L

It follows from our assumption and equation (8) that

alz® e ) k2" = —(2%e™7)
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= (-1t ZO <:> [(+i)y(a+i,z_)z" " + z2Fie™?]

and so equation (14) holds when —s — 1 < a < —s. It therefore follows by induction
that equation (14) holds for all & # 0, —1,—2,. .., which completes the proof of the
theorem. O

Theorem 2.

r+1
. (=D S (rl ; r—itl
(15) v ral =53 (T aiage

forr=0,1,2,...and « #0,—1,-2,....

Proof. We first of all prove equation (15) when a > 0. It is obvious that
Y(e,z_)* 2" =01if > 0. When = < 0 we have

0 ¢
Y(,z_)xa” = / |x — t|r/ lu|*" e du dt
T 0

0 T
= (fl)r/ |u|0‘7167“/ (x —t)" dtdu

—1)r r+1 1 ) 0 )
_ ( +)1 Z <7’+ )xrwrl/ |u|a+zflefu du
r 1 T

=0

and equation (15) follows for the case a > 0.
Now suppose that equation (15) holds when —s < o < —s + 1. This is true when
s = 0. Then noting that —s — 1 < @ < —s and using equations (8) and (14), we get

ay(ayz_)xzl = —y(a+1l,z_)x 2" — (z%e™ ) xa”
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(=) 5

1 )
R (Tj >V<a+i+ Lo )z"

+(=1) zi; (:)7(a titl )

=1 -1
) la A r 41
r+1
) r+1 r . i
r+1( i )_(il) Yo+, z)a"

r+1 )
r+1
(=) r+1 ) r—it1
= ; ; Y(a+i,z )z

and so equation (15) holds when —s —1 < a < —s. It therefore follows by induction
that equation (15) holds for all « # 0, —1,—2,..., which completes the proof of the
theorem. 0

In order to extend Definition 2 to distributions which do not satisfy conditions (a)
or (b), we let 7 be a function in D satisfying the conditions

() 7(2) = 7(~2),
(if) 0 < 7(x) <1,
(iii) 7(x) =1 for |z|
(iv) 7(z) =0 for |z

The function 7, is then defined by

1
<1,
> 1.

1, lz| < n,
m(z) = T(n"z — "), 2 >n,
r(n"z +n"t), < -n

forn=1,2,....

The next definition was given in [2].
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Definition 3. Let f and g be distributions in D’ and let f, = f7, for n =
1,2,.... Then the neutriz convolution f ® g is defined as the neutrix limit of the
sequence {f, * g}, provided the limit h exists in the sense that

N-lim(fy, % g, 0) = (h, @)

for all ¢ in D, where N is the neutrix, see van der Corput [1], having domain
N ={1,2,...,n,...} and range N, the real numbers, with negligible functions
being finite linear sums of the functions

n®In"'n, In"n (a>0, r=1,2,..)
and all functions which converge to zero in the normal sense as n tends to infinity.
In particular, if

Jim (fn % g,0) = (h, ¢)
for all ¢ in D, we say that the convolution f * g exists and equals h.

Note that in this definition the convolution f,,*g is defined in Gel’fand and Shilov’s
sense, the distribution f,, having compact support. Note also that because of the
lack of symmetry in the definition of f ® g, the neutrix convolution is in general
non-commutative.

The following theorem was proved in [2], showing that the neutrix convolution is

a generalization of the convolution.

Theorem 3. Let f and g be distributions in D’ satisfying either condition (a) or
condition (b) of Gel’fand and Shilov’s definition. Then the neutrix convolution f ® g

exists and
f®g=7[x*g.

The next theorem was also proved in [2].

Theorem 4. Let [ and g be distributions in D’ and suppose that the neutrix
convolution f ® g exists. Then the neutrix convolution f ® g exists and

(feg) =f®yg.

Note however that (f ® g)’ is not necessarily equal to f’ ® g but we do have the
following theorem, which was proved in [3].

373



Theorem 5. Let f and g be distributions in D’ and suppose that the neutrix
convolution f & g exists. If N-lim((f7],) * g, ¢) exists and equals {(h, ) for all ¢ in
n—oo

D, then the neutrix convolution [’ ® g exists and

(f®g) =f@®g+h.

For our next results, we need to extend our set of negligible functions to include
finite linear sums of

[e N2

n%", y(a,—n_): a#0,—-1,-2,....

The following neutrix convolution was proved in [3]:

LR (r+1 i i
r+1z< . )(1)F(a+z)r +1

=1

(16) Yayos) ®a” =

forr=0,1,2,...and « #0,—1,-2,....
We now prove

Theorem 6. The neutrix convolution (z®e™ %) ® a" exists and
(17) (z%e™®)@®a" =0

forr=0,1,2,...and a #0,—1,-2,....

Proof. We first of all prove equation (17) when a > 0 and put (z%e™ %), =
x®e "7, (x). Since (z*e~ "), has compact support, it follows that the convolution

(z%e™ %), * 2" exists and
—-n

0
(e ™), xa” = / (x —u)"|u| ™ du + / (x —u)"u|e™ "7 (u) du

—-n —n—n—"

(18) =1 + Ip.

r 0 T
L= Z (:) xr_i/ Ju|*Tle™" du = — Z (:) " iyla+i+1,-n)

=0 -n =0

and it follows that

(19) N-lim I; = 0.

n—oo
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Further, it is easily seen that

(20) lim I, =0

n—oo

and equation (17) follows from equations (18), (19) and (20) for the case a > 0.
Now suppose that equation (17) holds when —s < & < —s + 1. This is true when
s = 0. Then by virtue of —s < a < —s + 1, we have

[z%e 7] (2)] x 2" = / [t|“e™ 7 (t)(x — t)" dt
and

b r—n
(27! (2)] * 2" p(x)) = / / et (8) (& — 1) () dit

n—n-"n"

—n—n—"

b p—n
- / / [z — ) + t@ — £) + 18|t~ o=t (@ — )" L1 (£)eo() dt A
b

—n%e” / (z+n)"p(x) d,
where [a, b] contains the support of . It follows easily that

(21) N-lim([z% e "7/ (z)] * 2", p(z)) = 0.

n
n—oo

It now follows from Theorems 4 and 5 and equation (21) that

(—az® e — 2% ") @z" +0=r(z%e ") @2

Using our assumption, it follows that

a(z* e ®a" =0

and so equation (17) holds when —s — 1 < a < —s. It therefore follows by induction
that equation (17) holds for all @ # 0,—1,—2, ..., which completes the proof of the
theorem. O

Corollary 6.1. The neutrix convolution (z®e™") ® ', exists and

T

(22) (2%e )@l =Y @V(Q ity

i=0
forr=0,1,2,...and a #0,—1,-2,....
Proof. Equation (22) follows from equations (14) and (17) by noting that

(x%e ™) ®a" = (2% )@l + (-1)"(a%e ") @’ .
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Corollary 6.2. The neutrix convolution (|z|*e™") ® x7, exists and

T

@) (aeymat =3 (7) -0+ i+ 1) +lati+ Lol
=0

forr=0,1,2,...and « #0,—1,-2,....
Proof. Equation (23) follows immediately from equations (1) and (22). O

Theorem 7. The neutrix convolution v(«,x_) ® z" exists and
(24) Y(a,z_)®2" =0

forr=0,1,2,...and a #0,—1,-2,....
Proof. We first of all prove equation (24) when « > 0 and put v, (o, 2_) =

(e, 2_ )7 (). The convolution ~, (o, z_) * 2" then exists by Definition 1 and

0

t
Yn(a,z_) * 2" :/ (:C—t)T/ |u|*te™" du dt
0

—n

(25) . ,
+/ (z — t)T/ lu|*"te™ " dudt = Jy + Ja.
0

—n—m—"n

Now

0 t
J1 :/ (x—t)r/ lu|*te™" dudt
—-n 0
0 —-n
:/ |u|0‘7167“/ (x —t)" dtdu

r+1 0
i 1 Z (r + 1) it / |u|a+i—le—u du
T " 1
im

—n

r+1 0
1 1 ) .
1 E <r+ )nzzrwl/ |u|*te™ du
r — i .

It follows that

(26) N-lim J; = 0.
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Further, it is easily seen that

(27) lim Jy =0

n—oo

and equation (24) follows from equations (25), (26) and (27) for the case a > 0.
Now suppose that equation (24) holds when —s < & < —s + 1. This is true when
5 = 0. Then by virtue of —s — 1 < a@ < —s and using theorem 6 we get

(28) ay(layz_ )@z =y(a+l,z_)@z" 4+ (2%e ) @2" =0

and so (24) holds when —s — 1 < o < —s. It therefore follows by induction that (24)
holds for all o # 0, —1,—2, ... which completes the proof of the theorem. (I

Corollary 7.1. The neutrix convolution (o, x_) ® «7, exists and

1 Er+t
29) 7(Oé’x)@miwr1§< i >7(O‘ﬂvx)w”“

forr=0,1,2,...and a #0,—1,-2,....

Proof. Equation (29) follows from equations (15) and (24) by noting that

Yor_) ®a" = (o, z-) ® Ty + (—1) (o a_) @ a”
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