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ON k-STRONG DISTANCE IN STRONG DIGRAPHS

PING ZHANG, Kalamazoo
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Abstract. For a nonempty set S of vertices in a strong digraph D, the strong distance
d(S) is the minimum size of a strong subdigraph of D containing the vertices of S. If S
contains k vertices, then d(S) is referred to as the k-strong distance of S. For an integer
k > 2 and a vertex v of a strong digraph D, the k-strong eccentricity sey(v) of v is the
maximum k-strong distance d(S) among all sets S of k vertices in D containing v. The
minimum k-strong eccentricity among the vertices of D is its k-strong radius srad; D and
the maximum k-strong eccentricity is its k-strong diameter sdiamj, D. The k-strong center
(k-strong periphery) of D is the subdigraph of D induced by those vertices of k-strong
eccentricity srady (D) (sdiamg(D)). It is shown that, for each integer k > 2, every oriented
graph is the k-strong center of some strong oriented graph. A strong oriented graph D
is called strongly k-self-centered if D is its own k-strong center. For every integer r > 6,
there exist infinitely many strongly 3-self-centered oriented graphs of 3-strong radius 7.
The problem of determining those oriented graphs that are k-strong peripheries of strong
oriented graphs is studied.
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1. INTRODUCTION

The familiar distance d(u, v) between two vertices « and v in a connected graph is
the length of a shortest u — v path in G. Equivalently, this distance is the minimum
size of a connected subgraph of G containing v and v. This concept was extended
in [2] to connected digraphs, in particular to strongly connected (strong) oriented
graphs. We refer to [4] for graph theory notation and terminology not described
here.
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A digraph D is strong if for every pair u, v of distinct vertices of D, there is both a
directed u — v path and a directed v —u path in D. A digraph D is an oriented graph
if D is obtained by assigning a direction to each edge of a graph GG. The graph G is
referred to as the underlying graph of D. In this paper we will be interested in strong
oriented graphs. The underlying graph of a strong oriented graph is necessarily 2-
edge-connected. Let D be a strong oriented graph of order n > 3 and size m. For
two vertices u and v of D, the strong distance sd(u,v) between u and v is defined in
[2] as the minimum size of a strong subdigraph of D containing w and v. If u # v,
then 3 < sd(u,v) < m. In the strong oriented graph D of Figure 1, sd(v,w) = 3,
sd(u,y) =4, and sd(u, ) = 5.

Y
Figure 1. A strong oriented graph

A generalization of distance in graphs was introduced in [5]. For a nonempty set
S of vertices in a connected graph G, the Steiner distance d(S) of S is the minimum
size of a connected subgraph of G containing S. Necessarily, each such subgraph is
a tree and is called a Steiner tree with respect to S. We now extend this concept to
connected strong digraphs. For a nonempty set S of vertices in a strong digraph D,
the strong Steiner distance d(S) is the minimum size of a strong subdigraph of D
containing S. We will refer to such a subgraph as a Steiner subdigraph with respect
to S, or, simply, S-subdigraph. Since D itself is strong, d(S) is defined for every
nonempty set S of vertices of D. We denote the size of a digraph D by m(D). If
|S| = k, then d(S) is referred to as the k-strong Steiner distance (or simply k-strong
distance) of S. Thus 3 < d(S) < m(D) for each set S of vertices in a strong digraph
D with |S| > 2. Then the 2-strong distance is the strong distance studied in [2],
[3]. For example, in the strong oriented graph D of Figure 1, let S = {u,v,z},
Sy = {u,v,y}, and S3 = {v,w,y}. Then the 3-strong distances of S, Sz, and S; are
d(S1) =5, d(S2) = 4, and d(S3) = 3.

It was shown in [2] that strong distance is a metric on the vertex set of a strong
oriented graph D. As such, certain properties are satisfied. Among these are: (1)
sd(u,v) > 0 for vertices u and v of D and sd(u,v) = 0 if and only if u = v and (2)
sd(u, w) < sd(u,v) 4 sd(v,w) for vertices u, v, w of D. These two properties can be
considered in a different setting. Let D be a strong oriented graph and let S C V (D),
where S # (). Then d(S) > 0 and d(S) = 0 if and only if |S| = 1, which is property
(1). Let S; = {u,w}, So = {u,v}, and S3 = {v,w}. Then the triangle inequality
sd(u, w) < sd(u,v) + sd(v,w) given in (2) can be restated as d(S1) < d(S2) + d(S3),
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where, of course, |S;| =2 for 1 <4 < 3,51 C S2US3 and So NS3 # 0. We now
describe an extension of (2).

Proposition 1.1. For an integer k > 2, let Sy, 52, S5 be sets of k vertices in a
strong oriented graph with |S;| =k for 1 <i < 3. If S; C S2 U S3 and S2 N S5 # 0,
then

d(S1) < d(S2) + d(Ss).

Proof. Let D; be an S;-digraph of size d(S;) for i = 1,2, 3. Define a digraph D’
to be the subdigraph of D with vertex set V(D3)UV (D3) and arc set E(D3)UE(D3).
Since S5 N S3 # () and D, and Dj are strong subdigraphs of D, it follows that D’ is
also a strong subdigraph of D with S; C V(D’). Thus m(D;1) < m(D’). Therefore,

d(Sl) = m(Dl) < m(D') < m(Dg) + m(Dg) = d(SQ) + d(S3),

as desired. O

As an example, consider the strong oriented graph D of Figure 2. Let S; =
{s,v,2}, So = {v,x,2}, and S5 = {s,z,y}. Then |S;| = 3 for 1 < i < 3, where
S1 C SoU S35 and SoNS3 # (). For each ¢ with 1 < 4 < 3, let D; be an S;-subdigraph
of size d(S;) in D, which is also shown in Figure 2. Hence d(S1) = 3, d(S2) = 4, and
d(Ss) = 5. Note that the subdigraph D’ of D described in the proof of Proposition 1.1
has size 6. Thus d(S1) < m(D’) < d(S2) + d(S3).

t
w z
D:
n v T U
s s z s z
v T v T v T U
D, Do D5

Figure 2. An example of an extension of (2)

The extended triangle inequality d(S7) < d(S2) + d(S3) stated in Proposition 1.1
suggests a generalization of strong distance in strong oriented graphs, which we
introduce in this paper.
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2. ON k-STRONG ECCENTRICITY, RADIUS, AND DIAMETER

Let v be a vertex of a strong oriented graph D of order n > 3 and let k£ be an
integer with 2 < k < n. The k-strong eccentricity sei(v) is defined by

ser(v) = max{d(S); S CV(D),v € S,|S| = k}.
The k-strong diameter sdiamg (D) is
sdiamy (D) = max{se;(v); v € V(D)};
while the k-strong radius srady (D) is defined by
srady (D) = min{sex(v); v € V(D)}.
To illustrate these concepts, consider the strong oriented graph D of Figure 3. The

3-strong eccentricity of each vertex of D is shown in Figure 3. Thus srads(D) = 8
and sdiamg(D) = 12.

12
11 11

11 11

12 11 11 12
Figure 3. A strong oriented graph D with srad3(D) = 8 and sdiams(D) = 12

For a nontrivial strong oriented graph D of order n, the radius sequence S, (D) of
D is defined as

Sr(D): srada(D),srads(D),srads(D),. .., srady, (D)
and the diameter sequence Sq(D) of D is defined as
S4(D): sdiamg (D), sdiams (D), sdiama(D), . .., sdiam, (D).
For example, the strong oriented graph D in Figure 4 has order 9. Since srads(D)

6, srads(D) = 9, and sradg(D) = 12 for 4 < k < 9, it follows that S,(D):
6,9,12,12,...,12. Moreover, sdiama(D) = 9 and sdiamg (D) = 12 for 3 < k < 9.
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VoV

Figure 4. A strong oriented graph

Thus S4(D): 9,12,12,...,12. Note that both S, (D) and S4(D) are nondecreasing
sequences. This is no coincidence, as we now see.

Proposition 2.1. For a nontrivial strong oriented graph D of order n and every
integer k with 2 < k <n —1,

(a) sradg (D) < sradg41(D) and (b) sdiamg (D) < sdiamy41(D).

Proof. To verify (a), let u and v be two vertices of D with seg(u) = srady(D)
and seyy1(v) = sradg41(D). Let S be a set of k vertices of D such that sey(u) =
d(S) = sradi(D). Now let x be a vertex of D such that z = v if v ¢ S and
ceV(D)—Sifves. Let S = {2} US. Since § C &, it follows that d(S) < d(S").
Moreover, S’ is a set of k + 1 vertices of D containing v and so d(S’) < sexy1(v).
Thus

sradg (D) = d(S) < d(5") < seg41(v) = sradg41(D)

and so (a) holds. To verify (b), let S be a set of k vertices of D with d(S) =
sdiamg (D). If S’ is any set of k + 1 vertices of D with S C S’, then

sdiamy (D) = d(S) < d(S’) < sdiamy1 (D)

and so (b) holds. O

Equalities in (a) and (b) of Proposition 2.1 hold for certain strong oriented graphs,
for example, the directed n-cycle C_)’n for n > 3. In fact, sradk(a) = sdiamk(C_)’n) =n
for all k£ with 2 < k < n. As another example, let D be the strong oriented graph
of order n > 3 with V(D) = {v1,v2,...,v,} such that for 1 <i < j < n, (vi,v;) €
E(D), except when ¢ = 1 and j = n, and (v,,v1) € E(D) (see Figure 5). Then
sradg (D) = sdiamy (D) = n for all k£ with 2 < k < n. In fact, there are many other
strong oriented graphs D with the property that srad (D) = sdiamy (D).

(% (%) V3 Un

Figure 5. A strong oriented graph D of order n with srad (D) = sdiam (D) for 2 < k < n
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On the other hand, for a strong oriented graph D, the difference between
sradg+1(D) and sradg(D) (or sdiamgiq(D) and sdiamg (D)) can be arbitrarily
large for some k.

Proposition 2.2. For every integer N > 3, there exist a strong oriented graph
D and an integer k such that

sradg41(D) —sradg (D) > N and sdiamg1(D) — sdiamg (D) > N.

Proof. Let ¢ > 3 be an integer. For each ¢ with 1 < i < ¢, let D; be a copy of
the directed N-cycle CTN) and let v; € V(D;). Now let D be the strong oriented graph
obtained from the digraphs D; (1 < ¢ < £) by identifying the ¢ vertices vq, v, ..., vs.
It can be verified that sradg41(D) —sradi (D) = N and sdiamy11 (D) —sdiamg (D) =
N for all Kk with 2 <k </—1. O

For an integer k > 2, the k-strong radius and k-strong diameter of a strong oriented
graph satisfy familiar inequalities, which are verified with familiar arguments.

Proposition 2.3. Let k > 2 be an integer. For every strong oriented graph D,

srady (D) < sdiamy (D) < 2srady (D).

Proof. The inequality srad;(D) < sdiamg (D) follows directly from the defini-
tions. It was shown in [2] that result is true for k¥ = 2. So we may assume that k& > 3.
Let S1 = {wi,wa,...,w;} be a set of vertices of D with d(S) = sdiam (D) and let
v be a vertex of D with sey(v) = sradi (D). Define S = {v, w1, ws,...,wx—1} and
S3 = {v,wa, w3, ..., wg}. Thus S; C Sy U S3 and S2 NS5 # (). It then follows from
Proposition 1.1 that

sdiamk(D) = d(Sl) < d(SQ) + d(Sg) < 2srady (D),

producing the desired result. (|

3. ON k-STRONG CENTERS AND PERIPHERALS

A vertex v in a strong digraph D is a k-strong central vertezx if sey(v) = srady(G),
while the k-strong center SCy(D) of D is the subgraph induced by the k-strong
central vertices of D. These concepts were first introduced in [3] for k¥ = 2. For
example, consider the strong digraph D of Figure 4, which is also shown in Figure 6.
Each vertex of D is labeled with its 3-strong eccentricity. Thus the vertices x, vy, 2
are the 3-strong central vertices of D. The 3-strong center SC3(D) of D is a 3-cycle
as shown in Figure 6.
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12 12
Figure 6. The 3-strong center of a strong digraph D

It was shown in [3] that every 2-strong center of every strong oriented graph D
lies in a block of the underlying graph of D. However, it is not true in general for
k > 3. For example, although the 3-strong center of the strong oriented graph D in
Figure 6 lies in a block of the underlying graph of D, the 4-strong center of D is D
itself and D is not a block. On the other hand, as Hedetniemi (see [1]) showed that
every graph is the center of some connected graph, it was also shown in [3] that every
oriented graph is the 2-strong center of some strong digraph. We now extend this
result by showing that, for each integer k > 2, every oriented graph is the k-strong
center of some strong digraph.

Theorem 3.1. Let k > 2 be an integer. Then every oriented graph is the k-strong
center of some strong digraph.

Proof. For an oriented graph D, we construct a strong oriented graph D* from
D by adding the 3k new vertices u;,v;,w; (1 < i < k) and arcs (1) (w;,v;), (v5,u;),
and (u;,w;) for all ¢ with 1 <4 < k and (2) (us, z) and (z,v;) for all z € V(D) and
for all ¢ with 1 < ¢ < k. The oriented graph D* is shown in Figure 7. Certainly, D*
is strong. Next, we show that D is the k-strong center of D*.

Figure 7. A strong oriented graph D* containing D as its k-strong center

Let U = {uy,ua,...,uxt, V.= {v1,ve,...,05}, and W = {wy,wa,...,w;}. For
each ¢ € V(D), let S(z) = {z} U(W — {wg}). Then sey(z) = d(S) = 6(k — 1).
For each u; € U, where 1 < i < k, let S(u;) = {u;} U (W — {w;}). Then seg(u;) =
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d(S) = 6(k—1)+3for 1 < i < k. For each v; € V, where 1 < i < k, let
S(vi) = {vi} U(W — {w;}). Then sei(v;) = d(S) =6(k—1)+3for 1 < i < k.
For each w; € W, where 1 < i < k, let S = W. Then sei(w;) = d(S) = 6k for
1 < ¢ < k. Since seg(x) = 6(k — 1) for all z € V(D) and sex(v) > 6(k — 1) for all
v e V(D*) —V(D), it follows that D is the k-strong center of D*, as desired. O

Independently, V. Castellana and M. Raines also discovered Theorem 3.1 (personal
communication). A vertex v in a strong digraph D is called a k-strong peripheral
vertex if sey(v) = sdiamy (D), while the subgraph induced by the k-strong peripheral
vertices of D is the k-strong periphery SPy(D) of D. Also, these concepts were first
introduced in [3] for k = 2. A strong digraph D and its 3-strong periphery are shown
in Figure 8. The following result appeared in [3].

U1 U212 Ui U2

D: SP3(D):
9

U212 ,w212 A W

Figure 8. The 3-strong periphery of a strong digraph

Theorem A. If D is an oriented graph with srady(D) = 3 and sdiamy(D) > 3,
then D is not the 2-strong periphery of any oriented graph.

We now extend Theorem A to the k-strong periphery of a strong oriented graph
for k£ > 3 and show that not all oriented graphs are the k-strong peripheries of strong
oriented graphs.

Theorem 3.2. Let k > 3 be an integer. If D is an oriented graph with
sdiamg (D) > srad (D), then D is not the k-strong periphery of any oriented graph.

Proof. Let D satisfy the conditions of the theorem. Assume, to the contrary,
that D is the k-strong periphery of some oriented graph D’. Assume that srady (D) =
r and sdiamg (D) = d. So d > r > 3. Let u be a k-strong central vertex of D.
Since sdiamy (D) = d > r, we have sdiamy(D’) = d’ > d > r. Moreover, since
D is the k-strong periphery of D’ and v € V(D), it follows that D’ contains a set
S = {u,v1,vs,...,v5_1} such that d(S) = sdiamy(D’) = d’. Because u is a k-strong
central vertex of D, that is, u has k-strong eccentricity r in D, and r < d’, at least
one vertex from {v1,vs,...,vr—1} does not belong to V(D). Assume, without loss
of generality, that v; ¢ V(D). Then the k-strong eccentricity sex(vy) of vy in D’ is
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at least d(S) and so seg(v1) > d(S) = d’. Thus sei(v1) = d’, which implies that v;
is a k-strong peripheral vertex of D’. Since v1 ¢ V(D), it follows that D is not the
k-strong periphery of D', which is a contradiction. (|

In [3], a sufficient condition was established for an oriented graph D to be the
2-strong periphery of some oriented graph D’, which we state next.

Theorem B. Let D be an oriented graph of order n with strong diameter at least
4. Ifidv+odv < n —1 for every vertex v of D, then D is the 2-strong periphery of
some oriented graph D’.

Observe that if v is a vertex of an oriented graph D of order n such that id v+od v <
n — 1, then there is a vertex u € V(D) such that v and u are nonadjacent vertices
of D, that is, v belongs to an independent set, namely {u, v}, of cardinality 2 in D.
Thus the sufficient condition given in Theorem B is equivalent to that every vertex in
D belongs to an independent set of cardinality 2 in D. We now extend Theorem B to
obtain a sufficient condition for an oriented digraph D to be the k-strong periphery
of some oriented graph D’ for all integers k > 2.

Theorem 3.3. Let k > 2 be an integer and let D be a connected oriented graph.
If every vertex of D belongs to an independent set of cardinality k in D, then D is
the k-strong periphery of some oriented graph D’.

Proof. By Theorem B the result holds for £ = 2. So we assume that k > 3. Let
D be an oriented graph of order n which satisfies the conditions of the theorem and
let V(D) = {uy,usg,...,u,}. We construct a new oriented graph D’ of order 2n + 2
with V(D) = V(D)U{v1, v, ..., vn, z,y} such that the arc set of D’ consists of E(D)
together with arcs (1) (us,v;) and (v;,u;) for 1 < i< nand 1< j < n, (2) (vi,v5)
for 1 <i < j < n,and (3) (y,z), (vi,x), (x,u;), (ui,y), (y,v;) for 1 < i < n. The
oriented graph D’ is shown in Figure 9. We claim that D is the k-strong periphery
of D'. We will show it only for k = 3 since the argument for k > 4 is similar.

Figure 9. An oriented graph D’ containing D as its k-strong periphery

565



We first show that ses(u;) = 6 in D’ for all i with 1 < ¢ < n. Without loss
of generality, we consider only u; € V(D) and show that ses(ui) = 6. Let Sp =
{u1,up,uq} be an independent set of three vertices in D’, where 2 < p < ¢ < n.
Then the size of a strong subdigraph containing Sy is at least 6. On the other hand,
the directed 6-cycle C' shown in Figure 10 contains So. Thus d(Sp) = 6 and so
sez(uy) > 6.

Figure 10. A directed 6-cycle C in D’ containing S

To show that ses(u1) < 6. Let S be a set of three vertices of D containing u;.
Then the only possible choices for S are S1 = {u1,u;,u;}, where 2 < i < j < n,
So = {u1,v;,v;}, where 1 <i < j<n, S3={ui,u;,v;}, wherei >2and 1 < j < n,
Sy ={u1,z,y}, S5 = {u1, us,y}, where 2 < i < n, S¢ = {u1,u;, x}, where 2 < i < n,
S7 = {u1,vi,y}, and Sg = {uy,v;, 2}, where 1 < i < n. If S =57, then the directed
6-cycle w1, v1, i, vs, uj, v;, w1 is a strong subdigraph of D’ containing S and so
d(S) < 6. Let S =Sy = {u1,v;,v;}, where 1 < ¢ < j < n. If i =1, then the
directed 4-cycle uq1,v1,u;,v;,u1 is a strong subdigraph of D’ containing S and so
d(S) < 4. If i > 2, then the directed 4-cycle uq, y, v;, vj, u1 is a strong subdigraph
of D' containing S and so d(S) < 4. Let S = S3 = {ui,u;,v;}, where ¢ > 2 and
1<j<n Ifj=1o0rj =1, say j = 1, then the directed 4-cycle uy, v1, u1,
v, u1 is a strong subdigraph of D’ containing S and so d(S) < 4; Otherwise, the
directed 5-cycle u1,y, v, u;, v, uq is a strong subdigraph of D’ containing S and so
d(S) < 5. If S = Sy, then the directed 3-cycle ui,y, z,u; is a strong subdigraph of
D’ containing S and so d(S) < 3. If S = S5 (or S = Sg), then the directed 5-cycle
U1, V1, Ui, Y, Vi, u1 contains S (or the directed 5-cycle uy, vy, x, u;, v;, u1 contains S).
Thus d(S) < 5. Let S = S7 = {uy,v;,y} or S = Sg = {uy,v;,x}, where 1 < i < n.
If ¢ = 1, then directed 4-cycle u1,y, v1, 2z, u; contains S and d(S) < 4. If i > 2, then
either the directed 5-cycle uy, v1, u;, y, v;, u1 contains S or the directed 5-cycle u,
V1, T, Ui, v;, up contains S. Thus d(S) < 5. Hence d(S) < 6 for all possible choices
for S and so sez(u1) < 6. Therefore, se3(u1) = 6. Similarly, sez(u;) = 6 for all ¢ with
2<1<n.

Next we show that se(z) < 5 and se(y) < 5 in D’. Let S be a set of three vertices
in D’ containing x. Then the only possible choices for S are S1 = {z, u;, u;}, where
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1<i<j<mn S ={zv,v}, where 1l < i < j < n, S3 = {z,u;,v;}, where
l<i<nandl<j<n Sy={xy,u}, where 1 <i < n, and S5 = {z,y,v;},
where 1 <i < n. For S = 51, 52,53, the directed 5-cycle u;, v;, x, uj, v, u; contains
S and so d(S) < 5. For S = 94, the directed 3-cycle x, u;, y,  contains S and
so d(S) < 3. For S = S5, the directed 4-cycle w1, y, v;, x, v1 contains S and so
d(S) < 4. Therefore, se(z) < 5. Similarly, se(y) < 5.

Finally, we show that se(v;) < 5 in D’ for all ¢ with 1 < ¢ < n. Without loss
of generality, let v; = v; and let S be a set of three vertices in D’ containing v;.
Then the only possible choices for S are S1 = {v1,u;,u;}, where 1 < i < j < n,
So = {v1,v;,v;}, where 2 < i < j <n, S3={v1,u;,v;}, where 1l <i<nandj>2
S4 = {v1,us, x}, where 1 <i < n, S5 = {v1,v;, 2}, where 2 < i < n, Sg = {v1,us,y},
where 1 < i < n, and S7 = {v1,v;,y}, where 2 < i < n. An argument similar to the
one above shows that d(S) < 5 for each choice of S and so sez(vy) < 5.

Since sez(v) = 6 for allv € V(D) and sez(v) < 5forallv € V(D')—V (D), it follows
that D is the 3-strong periphery of the oriented graph D’. In general, for k > 3, we
have sex(v) = 2k for all v € V(D) and sex(v) < 2k — 1 for all v € V(D') — V(D).
Therefore, D is the k-strong periphery of the oriented graph D’. (]

4. ON STRONGLY k-SELF-CENTERED ORIENTED GRAPHS

Let D be a nontrivial strong digraph of order n and let & be an integer with
2 < k < n. Then D is called strongly k-self-centered if srady D = sdiamy D, that
is, if D is its own k-strong center. For example, the directed n-cycle E'Z and the
strong digraph D in Figure 5 are k-self-centered for all k£ with 2 < k < n. The
2-self-centered digraph was studied in [3]. The following result was established in [3].

Theorem C. For every integer r > 3, there exist infinitely many strongly 2-self-
centered oriented graphs of strong radius r.

We now extend Theorem C to strongly 3-self-centered oriented graphs.

Theorem 4.1. For every integer r > 6, there exist infinitely many strongly 3-
self-centered oriented graphs of strong radius r.

Proof. For each integer r > 6, we construct an infinite sequence {D,} of
strongly 3-self-centered oriented graphs of strong radius ». We consider two cases,
according to whether r is even or r is odd.

Case 1. r is even. Let r = 2p, where p > 3. Let D; be the digraph obtained from
the directed p-cycle C), : w1, wa, . .., wp, by adding the 2(p—1) new vertices u1, us, ...,
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Up—1 and vy, Ve, ..., vp—1 and the new arcs (1) (us, wit1), (vi,viq1) for 1 <i<p—2
and (2) (v,u1), (up—1,v), (v,v1), and (vp—1,v) for all v € V(Cp). The digraph D,
is shown in Figure 11 for r = 6. Let U = {u1,us2,...,up-1}, V = {v1,v2,...,0p_1},
and W = {w1,ws,...,wp}. We show that D; is a strongly 3-self-centered digraph
with 3-strong radius r.

Figure 11. The digraph D; in Case 1 for r =6

First, we make an observation. If S = {u,v,w}, where u € U, v € V, and
w € W, then d(S) > r by the construction of D;. On the other hand, let Dg
be the strong subdigraph in D; consisting of two p-cycles w,v1,v2,...,vp—1,w and
w, U1, U, ..., Up—1,W. Since Dg contains S and has size 2p = r, it follows that
d(S) = r. Therefore, for every vertex = of V(Dy), there is a set S of three vertices
of D; such that S contains x and d(S) = r. This implies that sez(z) > r for all
x € V(D1). So it remains to show that sez(z) < r for all 2 € V(D;). There are two
subcases.

Subcase 1.1. x € U or z € V. Without loss of generality, assume that x € U.
We will only consider x = u; € U since the proofs for other vertices are similar. Let
S be a set of three vertices in D containing u;. If SNV # () and SN W # (), then
d(S) = r by the observation above. So we may assume that S is one of the following
sets: S1 = {u1,u;, u;}, where2 < i < j < p—1,52 = {ur, u;, w;}, where 2 < i < p—1
and 1 < j < p, S3 = {u1,u;,v;}, where 2 < i <p—land1<j<p—1, 85 =
{u1,v;,v;}, where 1 <i < j<p—1, and S5 = {u1,w;, w;}, where 1 <i < j <p. If
S = 51, 82, then the directed p-cycle wj, w1, u2, ..., up—1,w; is a strong subdigraph
in D; containing S and so d(S) < p. If S = S3, 54, then the strong subdigraph Dg
in D; consisting of two p-cycles wi,v1,v2,...,vp—1, w1 and wi, U1, Uz, ..., Up—1, W1
contains S and so d(S) < 2p =r. If S = S5, then the strong subdigraph consisting
of two p-cycles w;, v1,va,...,vp—1,w; and wj, Uy, U2, ..., Up—1,w; contains S and so
d(S) <2p=r.

Subcase 1.2. x € W. We may assume that + = w; € W and let S be a set
of three vertices in D; containing w;. Again, if SNV # 0 and SNU # 0, then
d(S) = r by the observation above. So we may assume that S is one of the following
sets S1 = {w1, w;, w;}, where 2 < i < j < p, S = {w1,w;, u;}, where 2 <4 < p and
1<j<p—1,8 ={wi,w;,v;},where2 <i<pand1l < j<p—1, Sy ={wi,u;,u;},
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where 1 <i < j <p—1,and S5 = {w1,v;,v;}, where 1 <i < j < p—1. An argument
similar to the one in Subcase 1.1 shows that d(S) < r for all possible choices for S.

Therefore, sez(z) = r for all x € V(D;) and so D; is a strongly 3-self-centered
digraph with 3-strong radius r.

For n > 1, we define the strong digraph D, recursively from D,, by adding the
2(p — 1) new vertices z1, x2, ..., Tp—1 and y1, Y2, ..., Yp—1 and the new arcs (1)
(@i, Tig1), (YisYig1) for 1 <i<p—2and (2) (v,21), (xp-1,v), (v,91), and (yp—1,v)
for all v € V(D,,). The digraph D,, 11 is shown in Figure 12. We assume that D,, is
a strongly 3-self-centered oriented graph of 3-strong radius r for some integer n > 1
and show that D, ;i is also a strongly 3-self-centered oriented graph of 3-strong

radius 7.
T1
€2

l)n+12

Tp—1
Figure 12. The digraph D)1 in Case 1

Let X = {x1,22,...,2p—1} and Y = {y1,92,...,Yp—1}. For v € V(Dy41), let S
be a set of three vertices in D,4+1 containing v. If v € V(D,,) and S = {v,z1,y1},
then sez(v) = d(S) = r. So we may assume that v € X UY, say v = x1. Let
S = {v, 41,2}, where z € V(D,). Then d(S) = se3(v) = r. Therefore, ses(v) = r
for all v € V(D,41) and so D,,41 is also a strongly 3-self-centered oriented graph of
3-strong radius 7.

Case 2. 7 is odd. Let r = 2p+ 1, where p > 3. Let D; be the digraph obtained
from the directed (p + 1)-cycle Cpi1: w1, wa, w3, ws, w1 by adding the p — 1 new
vertices u1, ug, ..., up—1 and the new arcs (1) (u;,u;41) for 1 <4 < p—2 and (2)
(v,u1) and (up—1,v) for all v € V(Cpt1). The digraph D; is shown in Figure 13 for
r="T.

1)12

Figure 13. The digraph D in Case 2 for r =7
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For n > 1, we define D,,; recursively from D,, by adding the p — 1 new vertices
Z1, T2, ..., Tp—1 and the new arcs (1) (x;,x;41), for 1 < i < p—2 and (2) (v,z1)
and (zp—1,v) for all v € V(D,,). The digraph D, is shown in Figure 14.

Dn+1:

Tp—1
Figure 14. The digraph D, 41 in Case 2

An argument similar to the one used in Case 1 shows that each strong digraph
D,, is a strongly 3-self-centered oriented graph of strong radius r for alln > 1. O
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