
Improved Online Algorithms for

Buffer Management in QoS Switches

Marek Chrobak∗ Wojciech Jawor∗ Jǐŕı Sgall † Tomáš Tichý †

Abstract

We consider the following buffer management problem arising in QoS networks: packets with
specified weights and deadlines arrive at a network switch and need to be forwarded so that the
total weight of forwarded packets is maximized. Packets not forwarded before their deadlines
are lost. The main result of the paper is an online 64/33 ≈ 1.939-competitive algorithm – the
first deterministic algorithm for this problem with competitive ratio below 2. For the 2-uniform
case we give an algorithm with ratio ≈ 1.377 and a matching lower bound.

1 Introduction

One of the issues arising in IP-based QoS networks is how to manage the packet flows at a router
level. In particular, in case of overloading, when the total incoming traffic exceeds the buffer size,
the buffer management policy needs to determine which packets should be dropped by the router.
Kesselman et al. [9, 10] postulate that the packet drop policies can be modeled as combinatorial
optimization problems. Of the two models proposed in [9, 10], the one relevant to this work is
called buffer management with bounded delay, and is defined as follows: Packets arrive at a network
switch. Each packet is characterized by a positive weight and a deadline before which it must be
transmitted. Packets can only be transmitted at integer time steps, one packet at a time. If the
deadline of a packet is reached while it is still being buffered, the packet is lost. The goal is to
maximize the total weight of the forwarded packets.

This buffer management problem is equivalent to the online version of the following single-
machine unit-job scheduling problem. We are given a set of unit-length jobs, with each job j
specified by a triple (rj, dj , wj), where rj and dj are integral release times and deadlines, and wj

is a non-negative real weight. One job can be processed at each integer time. We use the term
weighted throughput or gain for the total weight of the jobs completed by their deadline. The goal
is to compute a schedule that maximizes the weighted throughput.

In the online version of the problem jobs arrive at their release times. At each time step the
algorithm needs to choose and schedule one of the pending jobs, without knowing the jobs released
later in the future. An online algorithm A is R-competitive if its gain on any instance is at least
1/R times the optimal (offline) gain on this instance. The competitive ratio of A is the infimum of

∗Department of Computer Science, University of California, Riverside, CA 92521. Supported by NSF grants
CCR-9988360 and CCR-0208856. {marek,wojtek}@cs.ucr.edu

†Mathematical Institute, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic. Partially supported by Institu-
tional Research Plan No. AV0Z10190503, by Inst. for Theor. Comp. Sci., Prague (project 1M0545 of MŠMT ČR),
grant 201/05/0124 of GA ČR, and grant IAA1019401 of GA AV ČR. {sgall,tichy}@math.cas.cz

1

Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-12 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic

such values R. It is standard to view the online problem as a game between an online algorithm A
and an adversary, who issues the jobs and schedules them in order to maximize the ratio between
his gain and the gain of A.

We remark that in the literature on online algorithms (see, e.g., [4]), an additive constant is
often allowed in the definition of competitiveness. More specifically, in order to be R-competitive,
A’s gain on any instance needs to be at least 1/R times the optimal gain, plus B, where B is a
constant independent of the instance. Since the problem allows arbitrary weights, it is scalable
and each algorithm can be modified so that the constant B is arbitrarily small. In the algorithms
for unit job scheduling presented in our paper, as well as those in the literature, the constant B is
in fact zero. Further, all the known lower bounds on the competitive ratio discussed later in the
introduction apply to this more general definition with an additive constant.

Past work. A simple greedy algorithm that always schedules the heaviest available job is 2-
competitive, and this is the best previous bound for deterministic algorithms for this problem. A
lower bound of φ ≈ 1.618 was shown in [1, 6, 8].

Some restrictions on instances of the problem have been studied in the literature [9, 10, 1, 6, 13].
Let the span of a job be the difference between its deadline and the release time. In s-uniform
instances the span of each job is equal exactly s. In s-bounded instances, the span of each job is at
most s. The lower bound of φ ≈ 1.618 in [1, 6, 8] applies even to 2-bounded instances. A matching
upper bound for the 2-bounded case was presented in [9, 10]. Algorithms for 2-uniform instances
were studied by Andelman et al. [1], who established a lower bound of 1

2 (
√

3 + 1) ≈ 1.366 and an

upper bound of
√

2 ≈ 1.414. This upper bound is tight for memoryless algorithms [3, 5], that is,
algorithms which base their decisions only on the weights of pending jobs and are invariant under
scaling of weights. Finally, the first deterministic algorithms with competitive ratio lower than 2
for the s-bounded instances appear in [3, 5]. These ratios, however, depend on s, and approach 2
as s increases. Kesselman et al. [11, 12] gave an algorithm for s-uniform instances with ratio 1.983,
independent of s.

Kesselman et al. [9, 10, 11, 12] consider a different model related to the s-uniform case: packets
do not have individual deadlines, but instead they are stored in a FIFO buffer of capacity s (i.e.,
if a packet is served, all packets in the buffer that arrived before the served one are dropped).
Any algorithm in this FIFO model applies also to s-uniform model and has the same competitive
ratio [11, 12]. Bansal et al. [2] gave a deterministic 1.75-competitive algorithm in the FIFO model;
this implies a 1.75-competitive algorithm for the s-uniform case.

We say that jobs are similarly ordered if ri < rj implies di ≤ dj for all jobs i, j. Note that
this includes s-uniform and 2-bounded instances, but not s-bounded ones for s ≥ 3. Recently, Li
et al. [13] gave a φ-competitive algorithm for instances with similarly ordered jobs; this matches
the lower bound for 2-bounded instances, and thus it is an optimal algorithm for this case. (Li et
al. [13] use a different terminology for the same restriction on inputs and say that the jobs have
agreeable deadlines.)

Randomized algorithms have been studied in the literature as well. A randomized 1.582-
competitive algorithm for the general case was given in [3, 5]. For 2-bounded instances, there
is a 1.25-competitive algorithm [3, 5] that matches the lower bound [6]. For the 2-uniform case, the
currently best lower bound for randomized algorithms is 1.172 [3].

Our results. We present two deterministic online algorithms for the buffer management problem.
Our main result is a deterministic 64/33 ≈ 1.939-competitive algorithm for the general case. This
is the first deterministic algorithm for this problem with competitive ratio strictly below 2. All of

2

the algorithms given previously in [9, 10, 1, 3, 5, 11, 12] achieved competitive ratio below 2 only
when additional restrictions on instances were placed.

With a minor modification, our algorithm yields a (5−
√

10)-competitive algorithm for the case
of similarly ordered jobs (where 5−

√
10 ≈ 1.838). This result appeared in the conference version

of this paper [7], but it was subsequently improved in [13], and we do not include it in this paper.
We also completely solve the 2-uniform case: we give an algorithm with competitive ratio

≈ 1.377 and a matching lower bound. This ratio is strictly in-between the previous lower and
upper bounds from [1]. Our algorithm is rather technical, which is not really surprising, given the
lower bound of

√
2 for memoryless algorithms [3, 5]. To our knowledge, the lower bound of ≈ 1.377

is the best lower bound for the s-uniform case for any s.

2 Terminology and Notation

Unit job scheduling. We present our results in terms of unit job scheduling, as explained in the
introduction. A schedule S specifies which jobs are executed, and for each executed job j it specifies
an integral time t, rj ≤ t < dj , when it is scheduled. (When we say that j is scheduled at time t,
we mean that j is started at time t, and thus it occupies the processor through the time interval
[t, t + 1).) Only one job can be scheduled at any time t. The throughput or gain of a schedule
S is the total weight of the jobs executed in S. If A is a scheduling algorithm, by gainA(I) we
denote the gain of the schedule computed by A on an instance I. A job i is pending in S at time
t if ri ≤ t < di and i has not been scheduled in S before t. (Thus all jobs released at time t are
considered pending.) An instance is s-bounded if dj − rj ≤ s for all jobs j. Similarly, an instance is
s-uniform if dj − rj = s for all j. The difference dj − rj is called the span of a job j. An instance
is similarly ordered if the release times and deadlines are similarly ordered, that is ri < rj implies
di ≤ dj for any two jobs i and j.

Given two jobs i, j, we say that i dominates j if either (i) di < dj , or (ii) di = dj and wi > wj ,
or (iii) di = dj, wi = wj and i < j. (Condition (iii) only ensures that ties are broken in some
arbitrary but consistent way.) Given a non-empty set of jobs J , the dominant job in J is the one
that dominates all other jobs in J ; it is always uniquely defined as ‘dominates’ is a linear order.

A schedule S is called canonical earliest-deadline if for any jobs i and j in S, where i is scheduled
at time t and j is scheduled later, either j is released strictly after time t, or i dominates j. In
other words, at any time, the job to be scheduled dominates all pending jobs that appear later in
S. Any schedule can be easily converted into a canonical earliest-deadline schedule by rearranging
its jobs. Thus we may assume that offline schedules are canonical earliest-deadline.

3 A 64/33-Competitive Algorithm

We start with some intuitions that should be helpful in understanding the algorithm and its analysis.
The greedy algorithm that always executes the heaviest job is not better than 2-competitive. An
alternative idea is to execute the earliest deadline job at each step. This algorithm is not competitive
at all, as it could execute many small weight jobs even if there are heavy jobs pending with only
slightly larger deadlines. A natural refinement of this approach is to focus on sufficiently heavy
jobs, say the jobs of weight at least α times the maximal weight of a pending job, and chose the
dominating job among those. As it turns out, this algorithm is also not better than 2-competitive.

3

The general idea of our new algorithm is to alternatively choose either the heaviest job, or the
dominating job with sufficiently large weight (at least α times the maximum weight of a pending
job.) Although this simple algorithm, as stated, still has ratio no better than 2, we can reduce the
ratio by introducing some minor modifications.

Algorithm GenFlag: We use parameters α = 7/11, β = 8/11, and a Boolean variable E, initially
set to 0, that stores information about the previous step. At a given time step t, update the set of
pending jobs (remove jobs with deadline t and add jobs released at t). If there are no pending jobs,
go to the next time step. Otherwise, let h be the heaviest pending job (breaking ties in favor of
dominant jobs) and e the dominant job among the pending jobs with weight at least αwh. Schedule
either e or h according to the following procedure:

if E = 0 then

if e = h then

(O) schedule e
else

E← 1
(E) schedule e

else

E← 0
if de = t + 1 and we ≥ βwh then

(U) schedule e
else

(H) schedule h

As indicated in the pseudo-code above, we have four types of jobs. A job e scheduled while
E = 0 is called an O-job if e = h, otherwise it is called an E-job. A job e scheduled while E = 1
is called an U-job. A job h scheduled in the last case is called an H-job. (The letters stand for
Obvious, Early, Urgent, and Heaviest.)

Variable E is 1 iff the previous job was an E-job. Thus, in terms of the labels, the algorithm
proceeds as follows: If an O-job is available, we execute it. Otherwise, we execute an E-job, and
in the next step either a U-job (if available) or an H-job. (There always is a pending job at this
next step: if dh = t then e = h by the definition of dominance; so if an E-job is scheduled at time
t, then dh > t and h is pending in the next step.)

Theorem 3.1 GenFlag is a 64/33-competitive deterministic algorithm for unit-job scheduling.

Proof: The proof is by a charging scheme. Fix an arbitrary (offline) schedule ADV. For each job
j executed in ADV, we charge its weight wj to one or two jobs executed by GenFlag. If the
total charge to each job i of GenFlag were at most Rwi, the R-competitiveness of GenFlag

would follow by summation over all jobs. Our charging scheme does not always meet this simple
condition. Instead, we divide the jobs of GenFlag into disjoint groups, where each group is either
a single O-job, or an EH-pair (an E-job followed by an H-job), or an EU-pair (an E-job followed by
a U-job). This is possible by the discussion of types of jobs before the theorem. For each group we
prove that its charging ratio is at most R, where the charging ratio is defined as the total charge to
this group divided by the total weight of the group. This implies that GenFlag is R-competitive
by summation over all groups.

4

Charging scheme. Let j be the job executed at time t in ADV. Denote by i and h, respectively,
the job executed by GenFlag and the heaviest pending job at time t. (If there are no pending
jobs, introduce a “dummy” job of weight 0. This does not change the algorithm.) Then j is charged
to GenFlag’s jobs, according to the following rules (see Figure 1).

(EB) If j is executed by GenFlag before time t, then charge (1− β)wh to i and the remaining
wj − (1− β)wh to j. (The latter charge could be negative.)

(EF) Else, if j is executed by GenFlag after time t, then charge βwj to i and (1 − β)wj to j.
(MF) Else, if i is an H-job, wj ≥ βwi, and ADV executes i after time t, then charge βwj to i

and (1− β)wj to the job executed by GenFlag at time t + 1. (In this case, we have j 6= i,
and j is not executed by GenFlag.)

(AN) Else, charge wj to i. (Note that this case includes the case i = j.)

(AN)

hww −(1−β) hw(1−β)

j i

j

t

jw(1−β)jwβ

j

t
ji

jw(1−β)jwβ

j

i=h

i

t t+1

jw

j

t
i

(EF)(EB)

(MF)

j

Figure 1: Illustration of the charging scheme.

We label all charges as EB, EF, MF, AN, according to which case above applies. We also
distinguish upward, forward, and backward charges, defined in the obvious way. Thus, for example,
in case (EB), the charge of wj − (1−β)wh to j is a backward EB-charge. (The letters in the labels
refer to whether j was executed or missed by GenFlag, and whether j generated backward or
forward charge: Executed-Backward, Executed-Forward, Missed-Forward, Any-None.)

Each job can receive several charges, but it can get at most one upward charge (from one of
the four cases above), and at most one of each remaining type of charges: a backward EB-charge,
a forward EF-charge, and a forward MF-charge.

Fix some time t, and let j and i be the jobs scheduled at time t in ADV and in GenFlag,
respectively. As in the algorithm, among the jobs pending in GenFlag, let h the heaviest job and
e the dominant job with we ≥ αwh. Of course, i ∈ {e, h}. We start with several simple observations
used later in the analysis, sometimes without explicit reference. In the following, whenever we say
“a pending job” we mean a job which is pending for GenFlag, unless noted otherwise.

Fact 3.2 If k is a job pending at time t then (a) wk ≤ wh. Further, (b) if k dominates e then
wk < αwh.

5

Proof: Inequality (a) is trivial, by the definition of h. Part (b) follows from the fact that e dominates
all pending jobs with weight at least αwh. 2

Fact 3.3 Suppose that i receives a forward MF-charge from the job l scheduled at time t − 1 in
ADV. Then (a) l is not executed by GenFlag, (b) dl ≥ t + 1 (thus l is pending in GenFlag at
time t), and (c) this forward MF-charge is at most (1− β)wh.

Proof: Denote by f the heaviest pending job of GenFlag at time t − 1. By the definition of
MF-charges, l is not executed by GenFlag (justyfing (a)), l 6= f , f is executed at time t− 1 as an
H-job, df ≥ t + 1, and wl ≥ βwf . Therefore dl ≥ t + 1, since otherwise GenFlag would execute l
(or some other job) as a U-job at step t− 1, proving (b). Part (c) follows from Fact 3.2(a) and the
definition of MF-charges. 2

Fact 3.4 Suppose that i = e. Then (a) the upward charge to e is at most wh. Further, (b) if ADV
executes e after time t then the upward charge is at most αwh.

Proof: If j is scheduled by GenFlag before time t, then the upward charge is (1 − β)wh ≤ αwh

and both parts (a) and (b) hold.
So we can assume now that j is pending at time t. In that case, the upward charge is at most

wj ≤ wh, completing the proof of (a). To show (b), since ADV is canonical and it executes e after
j, job j must dominate e. By Fact 3.2(b), the upward charge is at most wj ≤ αwh, as claimed. 2

Fact 3.5 Suppose that i = h is executed after time t in ADV. Then the upward charge to h is at
most βwh.

Proof: In case (EB), the upward charge to h is at most (1 − β)wh ≤ βwh. In all other cases, j is
pending at time t, so wj ≤ wh. In cases (EF) and (MF), the charge is βwj ≤ βwh. In case (AN)
the charge is wj, but since (MF) did not apply, this case can occur only if wj ≤ βwh. 2

Lemma 3.6 Suppose that i = e. Then e is charged at most αwh + (2− β)we.

Proof: To prove the lemma, we distinguish several cases.

Case 1: e gets no backward EB-charge. Then, in the worst case, e gets an upward charge of wh, a
forward MF-charge of (1− β)wh, and a forward EF-charge of (1− β)we. Using (2− β)wh = 2αwh

and αwh ≤ we, the total charge is at most (2 − β)wh + (1− β)we ≤ αwh + (2− β)we as claimed.

Case 2: e gets a backward EB-charge. Then there is no forward EF-charge and the upward charge
is at most αwh by Fact 3.4(b). The backward EB-charge is at most we, and thus, if there is no
MF-charge, the total charge is at most αwh + we ≤ αwh + (2− β)we, as claimed.

So we can assume that e receives an MF-charge from the job l job scheduled at time t − 1 in
ADV. By Fact 3.3(a), l is not executed by GenFlag and in particular it is pending for GenFlag

at time t. We have two sub-cases.

Case 2.1: dl ≥ de. Then l is pending for GenFlag also at the time t′ when ADV schedules
e. Consequently, denoting by h′ the heaviest pending job at time t′, we obtain that e receives
at most a backward EB-charge we − (1 − β)wh′ ≤ we − (1 − β)wl, a forward MF-charge
(1 − β)wl, and an upward charge αwh. The total is at most αwh + we ≤ αwh + (2 − β)we,
as claimed.

6

Case 2.2: dl < de. In this case, l is pending at t, and l dominates e, so we must have
wl < αwh ≤ we, by Fact 3.2(b). So the forward MF-charge is at most (1−β)wl ≤ (1−β)we.
With the backward EB-charge of at most we and upward charge of at most αwh, the total
is at most αwh + (2− β)we, as claimed.

We have now examined all cases, and the proof of the lemma is complete. 2

This completes the proofs of all observations. Now we examine the charges to all job groups in
GenFlag’s schedule: single O-jobs, EH-pairs, and EU-pairs.

O-jobs. Let e = h be an O-job executed at time t. The forward MF-charge is at most (1− β)we.
We have two cases.

Suppose e gets a backward EB-charge. Then e gets no forward EF-charge and the upward
charge is at most αwe; thus the total charging ratio is at most 2 + α− β < R.

In the other case, e does not get a backward EB-charge. Then the forward EF-charge is at most
(1− β)we and the upward charge is at most we, so the charging ratio is at most 3− 2β < R.

EH-pairs. Let e be the E-job scheduled at time t, h the heaviest pending job at time t, and h ′

the H-job at time t + 1. By the algorithm, e 6= h and dh > t + 1 (since GenFlag did not execute
h as an O-job at time t.) Thus h is still pending after the E-step and wh′ ≥ wh.

We now estimate the charge to h′. There is no forward MF-charge, as the previous step is not
an H-step. If there is a backward EB-charge, the additional upward charge is at most βwh′ by Fact
3.5 and the total is at most (1 + β)wh′ . If there is no EB-charge, the sum of the upward charge
and a forward EF-charge is at most wh′ + (1− β)wh′ ≤ (1 + β)wh′ .

The charge to e is at most αwh + (2− β)we by Lemma 3.6. So the total charge of the EH-pair
is at most αwh + (2− β)we + (1 + β)wh′ , and the charging ratio is at most

2− β +
αwh + (2β − 1)wh′

we + wh′

≤ 2− β +
αwh + (2β − 1)wh′

αwh + wh′

≤ 2− β +
α + 2β − 1

α + 1
= R.

The first step follows from we ≥ αwh. As 2β − 1 < 1, the next expression is decreasing in wh′ ,
so the maximum is at wh′ = wh and it is equal to R, by the definitions of α and β.

EU-pairs. As in the previous case, let e and h denote the E-job scheduled at time t and the
heaviest pending job at time t. By g and h′ we denote the scheduled U-job and the heaviest
pending job at time t + 1. As in the case of EH-pairs, e 6= h and wh′ ≥ wh.

Job g gets no backward EB-charge, since it expires, and no forward MF-charge, since the
previous step is not an H-step. The upward charge is at most wh′ , the forward EF-charge is at
most (1− β)wg.

The charge to e is at most αwh +(2−β)we by Lemma 3.6. Thus the total charge of the EU-pair
is at most αwh + (2− β)we + wh′ + (1− β)wg, and the charging ratio is at most

7

2− β +
αwh + wh′ − wg

we + wg

≤ 2− β +
αwh + (1− β)wh′

αwh + βwh′

≤ 2− β +
α + 1− β

α + β
= R.

In the first step, we apply bounds we ≥ αwh and wg ≥ βwh′ . As 1−β < β, the next expression
is decreasing in wh′ , so the maximum is at wh′ = wh.

Summarizing, we now have proved that the charging ratio to all job groups is at most R, and
the R-competitiveness of GenFlag follows. 2

Similarly ordered jobs

As shown in the conference version of this paper [7], Algorithm GenFlag can be modified to obtain
the ratio of 5 −

√
10 ≈ 1.838 for similarly ordered instances. In this modified algorithm we use a

constant α =
√

10/5 ≈ 0.633. At each step we schedule either h or e (these jobs are defined as
before, except that the new value of α is used to choose e) according to the following procedure:

if E = 0 then

schedule e
if e 6= h ∧ de > t + 1 then E← 1

else

schedule h
E← 0

The analysis of this algorithm can be found in [7].

4 2-Uniform Instances

In this section we consider 2-uniform instances, where each job j satisfies dj = rj +2. Let Q ≈ 1.377
be the largest root of Q3 + Q2 − 4Q + 1 = 0. First, we prove that no online algorithm for this
problem can be better than Q-competitive. Next, we show that this lower bound is in fact tight.

4.1 Lower Bound

The proof is by constructing an appropriate adversary strategy. Given an online algorithm A, the
adversary releases a sequence of jobs on which the gain of A is less than Q times the optimal gain.

At each step t, we distinguish old pending jobs, that is, those that were released at time t−1 but
not executed, from the newly released jobs. We can always ignore all the old pending jobs except
for the heaviest one, as only one of the old pending jobs can be executed. To simplify notation,
we identify jobs by their weight. Thus “job x” means the job with weight x. Such a job is usually
uniquely defined by the context, possibly after specifying if it is an old pending job or a newly
released job.

For simplicity, we assume first that the additive constant in the definition of competitiveness is
0. We show later how this assumption can be eliminated.

8

Fix some 0 < ε < 2Q − 2. We define a sequence Ψi, i = 1, 2, . . . , as follows. For i = 1,
Ψ1 = Q− 1− ε. Inductively, for i ≥ 1, let

Ψi+1 =
(2−Q)Ψi − (Q− 1)2

2−Q−Ψi
.

Lemma 4.1 For all i, we have |Ψi| < Q− 1. Furthermore, the sequence {Ψi} converges to 1−Q.

Proof: Substituting zi = Ψi +Q−1, we get a recurrence zi+1 = (3−2Q)zi

1−zi

. Note that z1 = 2Q−2− ε
and that 0 < zi ≤ 2Q− 2− ε implies

0 < zi+1 ≤
3− 2Q

3− 2Q + ε
zi < zi.

Thus, by induction, 0 < zi ≤ 2Q − 2 − ε for all i and, furthermore, limi→∞ zi = 0. The lemma
follows immediately. 2

Theorem 4.2 There is no deterministic online algorithm for the 2-uniform case with competitive
ratio smaller than Q.

Proof: Let A be some online algorithm for the 2-uniform case. We develop an adversary strategy
that forces A’s ratio to be bigger than Q− ε.

Let Ψi be as defined before Lemma 4.1. For i ≥ 1 define

ai =
1−Ψi

Q− 1
and bi =

Q(2−Q−Ψi)

(Q− 1)2
.

By Lemma 4.1, for all i, bi > ai > 1 and, for large i, ai ≈ 3.653 and bi ≈ 9.688.
Our strategy proceeds in stages. It guarantees that at the beginning of stage i = 1, 2, ..., both

A and the adversary have one or two old pending job(s) of the same weight xi. Note that it is
irrelevant whether one or two old pending jobs are present, and also whether they are the same for
A and the adversary.

Each stage i ≥ 1 except last consists of three time steps. The last stage can consist of one, two,
or three steps. We will also have an initial stage numbered 0 that consists of one time step.

Initially, in stage 0, we issue two jobs of some arbitrary weight x1 > 0 at time 0. Both A and
the adversary execute one job x1, and at the beginning of stage 1 both have an old pending job
with weight x1.

At the beginning of stage i ≥ 1, A and the adversary start with an old pending job xi. The
adversary now follows this procedure:

issue one job aixi

(A) if A executes aixi then execute xi, aixi and halt
else (A executes xi)

at the next time step issue bixi

(B) if A executes bixi then execute xi, aixi, bixi, and halt
else (A executes aixi)

(C) at the next time step issue two jobs xi+1 = bixi

execute aixi, bixi, bixi

9

If A executes first xi and then aixi, then after step (C) it executes one job bixi, either the old
pending one or one of the two newly released jobs. After this, both A and the adversary have one
or two newly released jobs bixi pending, and the new stage starts with xi+1 = bixi.

A single complete stage of the adversary strategy is illustrated in Figure 2.

ax
x

������������

bx

ax

algorithm
executes

algorithm
executes

algorithm
executes

algorithm
executesx

algorithm
executes

������������

����������
������

	�	
�
 ���
���

�
�
�����x
ax

ax
bx

bx

x

ax

bx

x

bx

bx

ax

ax

ax

bx bx

x

Figure 2: The adversary strategy. We denote x = xi, a = ai, and b = bi. Line segments represent
jobs, dark rectangles represent slots when the job is executed by A, and lightly shaded rectangles
represent executions by the adversary.

If the game reaches stage i, then define gaini and adv i to be the total gain of A and the
adversary, respectively, in stages 0, 1, . . . , i− 1. By ρ we denote the sequence of all jobs released
by the adversary.

Claim A: For any i, either the game stops before stage i and the algorithm fails to be (Q − ε)-
competitive on the input sequence ρ, i.e., (Q− ε)gainA(ρ)− adv (ρ) < 0, or else at the beginning of
stage i we have

(Q− ε)gaini − adv i ≤ Ψixi. (1)

The proof of Claim A is by induction on the number of stages. For i = 1, (Q− ε)gain1−adv1 ≤
(Q− ε− 1)x1 = Ψ1x1, and the claim holds.

In the inductive step, suppose that stage i has been reached and is about to start. Thus now
A and the adversary have an old pending job with weight xi and (1) holds. If A executes aixi in
step (A), then, denoting by ρ the sequence of all released jobs (up to and including aixi), using the
inductive assumption, and substituting the formula for ai, we have

(Q− ε)gainA(ρ)− adv (ρ) = (Q− ε)gaini − adv i + (Q− ε)aixi − (xi + aixi)

≤ [Ψi − 1 + (Q− ε− 1)ai]xi = −εaixi < 0,

as claimed.
If A executes xi and then bixi in (B), then, again, denoting by ρ the sequence of all released

jobs, using the inductive assumption, and substituting the formulas for ai, bi, we have

(Q− ε)gainA(ρ)− adv (ρ) = (Q− ε)gaini − adv i + (Q− ε)(xi + bixi)− (xi + aixi + bixi)

≤ [Ψi + Q− ε− 1 + (Q− ε− 1)bi − ai]xi = −ε(1 + bi)xi < 0.

10

In the remaining case (C), A executes first xi, then aixi, and then bixi. Using the formulas for
ai, bi, Ψi+1, and the defining equation Q3 + Q2 − 4Q + 1 = 0, we have

(Q− ε)gaini+1 − adv i+1 ≤ (Q− ε)gaini − adv i + (Q− ε)(xi + aixi + bixi)− (aixi + 2bixi)

≤ [Ψi + Q + (Q− 1)ai − (2−Q)bi]xi = biΨi+1xi = xi+1Ψi+1.

This completes the proof of Claim A.
Lemma 4.1 and Claim A imply that, for i large enough, we have (Q− ε)gaini − adv i ≤ Ψixi <

(1 − Q + ε)xi. For this i, if the game has not stopped earlier, the adversary ends it after stage i.
Denoting by % the sequence of all jobs (including the pending jobs xi), we have

(Q− ε)gainA(%)− adv(%) = (Q− ε)gaini − adv i + (Q− ε)xi − xi

< (1−Q + ε)xi + (Q− ε)xi − xi = 0.

This completes the proof of the lemma, except that in the argument so far we assumed that the
additive constant is 0. This assumption is easy to eliminate: For any given additive constant B,
simply choose the initial job x1 � B. The remainder of the proof is a simple modification of the
presented argument. 2

4.2 Upper Bound

We now present our Q-competitive algorithm for the 2-uniform case. Given that the 2-uniform case
seems to be the most elementary case of unit job scheduling (without being trivial), our algorithm
(and its analysis) is surprisingly difficult. Recall, however, that, as shown in [3, 5], any algorithm for
this case with competitive ratio below

√
2 needs to use some information about the past. Further,

when the adversary uses the strategy from Theorem 4.2, any Q-competitive algorithm needs to
behave in an essentially unique way. Our algorithm was designed to match this optimal strategy,
and then extended (by interpolation) to other adversarial strategies. Thus we suspect that the
complexity of the algorithm is inherent in the problem and cannot be avoided.

We start with some intuitions. Let A be our online algorithm. Suppose that at time t we have
one old pending job z, and two new pending jobs b, c with b ≥ c. In some cases, the decision
which job to execute is easy. If c ≥ z, A can ignore z and execute b in the current step. If z ≥ b,
A can ignore c and execute z in the current step. If c < z < b, A faces a dilemma: it needs to
decide whether to execute z or b. For c = 0, the choice is based on the ratio z/b. If z/b exceeds a
certain threshold (possibly dependent on the past), we execute z, otherwise we execute b. Taking
those constraints into account, and interpolating for arbitrary values of c, we can handle all cases
by introducing a parameter η, 0 ≤ η ≤ 1, and making the decision according to the following
procedure:

Procedure Chooseη: If z ≥ ηb + (1− η)c schedule z, otherwise schedule b.

To derive an online algorithm, say A, we need to determine what values of η to use at each
step. To this end, we examine the adversary strategy in the lower bound proof. Consider the limit
case, when i→∞, and let a∗ = limi→∞ ai = Q/(Q− 1) and b∗ = limi→∞ bi = Q/(Q− 1)2.

Suppose that in the previous step two jobs z were issued. If the adversary now issues a single
job a, then A needs to do the following: if z ≥ a/a∗, execute z, and if z ≤ a/a∗, then execute a.
(The tie for z = a/a∗ can be broken either way.) Thus in this case we need to apply Chooseα with
the threshold α = 1/a∗ = (Q− 1)/Q.

11

Now, suppose that in the first step A executed z, so that in the next step a is pending. If the
adversary now issues a single job b, then (assuming in the previous step the optimal value of a ≈ a∗

was used) A must to do the following: if a ≥ b/b∗, execute a, and if a ≤ b/b∗, then execute b. Thus
in this case we need to apply Chooseβ with the threshold β = a∗/b∗ = Q− 1.

Suppose that we execute a. In the lower-bound strategy, the adversary would now issue two
jobs b in the next step, in which case we can use η = α. But what happens if he issues a single
job, say c? Calculations show that A, in order to be Q-competitive, needs to use yet another
parameter η in Chooseη. This parameter is not uniquely determined, but it must be at least
γ = (3 − 2Q)/(2 − Q) > Q − 1. Further, it turns out that the same value γ can be used on
subsequent single-job requests.

Our algorithm is derived from the above analysis: on a sequence of single-job requests in a row,
use Chooseη with parameter α in the first step, then β in the second step, and γ in all subsequent
steps. In general, of course, two jobs can be issued at each step (or more, but only the two heaviest
jobs need to be considered). We think of an algorithm as a function of several arguments. The
values of this function on the boundary are determined from the optimal adversary strategy, as
explained above. The remaining values are obtained through interpolation.

We now give a formal description of our algorithm. Let

α =
Q− 1

Q
≈ 0.27, β = Q− 1 ≈ 0.38, γ =

3− 2Q

2−Q
≈ 0.39,

λ(ξ) = min

{

1,
ξ − α

β − α

}

, δ(µ, ξ) = µα + (1− µ)[β + (γ − β)λ(ξ)],

where 0 ≤ µ ≤ 1 and α ≤ ξ ≤ γ. Note that the function λ(ξ) increases from 0 to 1 as ξ increases
from α to β, and is equal to 1 for β ≤ ξ ≤ γ. For parameters µ and ξ withing their ranges, the
function δ(µ, ξ) satisfies α ≤ δ(µ, ξ) ≤ γ. Further, we have δ(1, ξ) = α, δ(0, ξ) ≥ β for any ξ, and
δ(0, α) = β, δ(0, β) = δ(0, γ) = γ.

Algorithm Switch. Without loss of generality, we assume that at each step exactly two jobs are
released. If more jobs are released, consider only the two heaviest jobs. If fewer jobs are released,
create dummy jobs with weight 0.

Fix a time step t. Let b, c (where b ≥ c) be the two jobs released at time t, and u, v (where
u ≥ v) be the two jobs released at time t− 1. (Initially, at t = 0, let u = v = 0.)

We distinguish two cases. If u = v, or if u was scheduled at time t−1, then run the job selected
by Chooseα. (Note that this includes the case t = 0.) Otherwise, denoting by ξ the parameter of
Chooseξ executed at time t− 1, run the job selected by Chooseη, for η = δ(v/u, ξ).

Theorem 4.3 Algorithm Switch is Q-competitive for the 2-uniform case, where Q ≈ 1.377 is the
largest root of Q3 + Q2 − 4Q + 1 = 0.

The proof of the theorem is included in the appendix.

5 Conclusions

We established the first upper bound better than 2 on the competitiveness of deterministic schedul-
ing of unit jobs to maximize weighted throughput. There is still a wide gap between our upper

12

bound of ≈ 1.939 and the best known lower bound of φ ≈ 1.618. Closing or substantially reducing
this gap is a challenging open problem. We point out that our algorithm GenFlag is not memo-
ryless, as it uses one bit of information about the previous step. Whether it is possible to reduce
the ratio of 2 with a memoryless algorithm remains an open problem.

References

[1] N. Andelman, Y. Mansour, and A. Zhu. Competitive queueing policies in QoS switches. In
Proc. 14th Symp. on Discrete Algorithms (SODA), pages 761–770. ACM/SIAM, 2003.

[2] N. Bansal, L. Fleischer, T. Kimbrel, M. Mahdian, B. Schieber, and M. Sviridenko. Further
improvements in competitive guarantees for QoS buffering. In Proc. 31st International Col-
loquium on Automata, Languages, and Programming (ICALP), volume 3142 of Lecture Notes
in Comput. Sci., pages 196–207. Springer, 2004.

[3] Y. Bartal, F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W. Jawor, R. Lavi, J. Sgall, and T. Tichý.
Online competitive algorithms for maximizing weighted throughput of unit jobs. In Proc. 21st
Symp. on Theoretical Aspects of Computer Science (STACS), volume 2996 of Lecture Notes in
Comput. Sci., pages 187–198. Springer, 2004.

[4] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

[5] F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W. Jawor, J. Sgall, and T. Tichý. Online competitive
algorithms for maximizing weighted throughput of unit jobs. Journal of Discrete Algorithms,
4:255–276, 2006.

[6] F. Y. L. Chin and S. P. Y. Fung. Online scheduling for partial job values: Does timesharing
or randomization help? Algorithmica, 37:149–164, 2003.

[7] M. Chrobak, W. Jawor, J. Sgall, and T. Tichý. Improved online algorithms for buffer man-
agement in QoS switches. In Proc. 12th European Symp. on Algorithms (ESA), volume 3221
of Lecture Notes in Comput. Sci., pages 204–215. Springer, 2004.

[8] B. Hajek. On the competitiveness of online scheduling of unit-length packets with hard dead-
lines in slotted time. In Conference in Information Sciences and Systems, pages 434–438,
2001.

[9] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and M. Sviridenko. Buffer
overflow management in QoS switches. In Proc. 33rd Symp. Theory of Computing (STOC),
pages 520–529. ACM, 2001.

[10] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and M. Sviridenko. Buffer
overflow management in QoS switches. SIAM J. Comput., 33:563–583, 2004.

[11] A. Kesselman, Y. Mansour, and R. van Stee. Improved competitive guarantees for QoS buffer-
ing. In Proc. 11th European Symp. on Algorithms (ESA), volume 2832 of Lecture Notes in
Comput. Sci., pages 361–372. Springer, 2003.

13

[12] A. Kesselman, Y. Mansour, and R. van Stee. Improved competitive guarantees for QoS buffer-
ing. Algorithmica, 43:63–80, 2005.

[13] F. Li, J. Sethuraman, and C. Stein. An optimal online algorithm for packet scheduling with
agreeable deadlines. In Proc. 16th Symp. on Discrete Algorithms (SODA), pages 801–802,
2005.

14

A The proof of Theorem 4.3

In this section we prove Theorem 4.3. The analysis of the 2-uniform case is based on the potential
function argument. We define below a potential function Φ that maps all possible configurations
into real numbers, and we prove a bound on the amortized cost of the algorithm in each step.

We fix an adversary schedule to be a canonical optimal schedule. Thus if the adversary schedules
both jobs released at the same time, then the heavier one is scheduled first.

The configuration at time t is specified by the parameter ξ of Chooseξ used at time t − 1,
the jobs u ≥ v released at time t− 1, and the pending jobs x, y ∈ {u, v} of the algorithm and the
adversary, respectively, at time t. (For t = 0 we set u = v = x = y = 0 and ξ = α.) We denote the
potential at time t by Φxy(u, v, ξ), and define it as follows:

E = 2−Q2 = α(Q− 1) ≈ 0.104,

G = 2(Q− 1)− 1/Q ≈ 0.028,

Φvy(u, v, ξ) = y −Qv,

Φuu(u, v, ξ) = E · λ(ξ)(u + v),

Φuv(u, v, ξ) = (Q− 1)v − (G · λ(ξ) + 1/Q)u.

We now consider a single step at time t. Let b and c be the jobs released at time t, where
b ≥ c. Let η denote the parameter of Choose used at time t, and let x′, y′ ∈ {b, c} denote the
pending jobs of the algorithm and the adversary at t + 1, respectively. The potential at time t + 1
is Φx′y′(b, c, η); we refer to it as the ‘new potential’ as opposed to the ‘old potential’ Φxy(u, v, ξ) at
time t. The rest of this section is devoted to the proof of the following inequality:

Γ = Φxy(u, v, ξ) + Q ·∆gainSwitch −∆adv − Φx′y′(b, c, η) ≥ 0, (2)

where ∆gainSwitch and ∆adv are the gains of the algorithm and the adversary at time t. It is suffi-
cient to prove inequality (2), because the Q-competitiveness of the algorithm follows immediately
from (2) by summation over all times t and observing that Φxy(0, 0, ξ) = 0, i.e., the potential is
zero on configurations with no old pending jobs, which includes the initial and final configurations.

We are now ready to prove (2) by a case analysis. During the proof, we need to verify a number
of relations between the constants we have defined so far. In most cases a rough calculation based
on the numerical values given above is sufficient due to some slack; we explicitly mention the cases
when the relations are tight.

Case 1: Suppose that v is pending for Switch at time t. Thus the old potential is Φvy(u, v, ξ) =
y −Qv, and Switch applies Chooseα at time t. This also means that λ(η) = λ(α) = 0.

Case 1.1: If v < αb + (1− α)c then Switch schedules b and has x′ = c pending at time t + 1.
If the adversary schedules y, it has y ′ = b pending at time t+1, the new potential is Φcb(b, c, α) =

b−Qc, and we get

Γ = (y −Qv) + Qb− y − (b−Qc) = (Q− 1)b + Qc−Qv ≥ 0,

where the last inequality follows from the case condition, after substituting α = (Q− 1)/Q.

15

Otherwise, the adversary schedules b, it has y ′ = c pending at time t + 1, the new potential is
Φcc(b, c, α) = (1−Q)c, and using y ≥ v we get

Γ ≥ (v −Qv) + Qb− b− (1−Q)c = (Q− 1)(b + c)− (Q− 1)v ≥ 0,

where the last inequality follows from the case condition, after substituting α = (Q− 1)/Q.

Case 1.2: If v ≥ αb + (1− α)c then Chooseα schedules v and has x′ = b pending.
If the adversary schedules y, it has y ′ = b pending at time t+1, the new potential is Φbb(b, c, α) =

0, and we get
Γ = (y −Qv) + Qv − y = 0.

Otherwise, the adversary schedules b, it has y ′ = c pending at time t + 1, the new potential is
Φbc(b, c, α) = (Q− 1)c − b/Q, and using y ≥ v we get

Γ ≥ (v −Qv) + Qv − b− ((Q− 1)c− b/Q) = v − αb− (Q− 1)c ≥ 0,

where the last inequality follows from Q− 1 < 1− α and the case condition.

Case 2: In this case u > 0 is the pending job for Switch at time t, and at time t Switch applies
Chooseη, where η = δ(v/u, ξ). The old potential is Φuy(u, v, ξ). To reduce the number of subcases,
we first note that

Φuu(u, v, ξ) ≥ Φuv(u, v, ξ). (3)

Indeed, after substituting, this is equivalent to ((E + G)λ(ξ) + 1/Q)u ≥ (Q− 1−E · λ(ξ))v. Since
λ(ξ) ≥ 0 and u ≥ v, it is sufficient to verify that 1/Q > Q− 1, which is true.

Since Γ is a linear function of job weights and, when the job weights are rescaled, η as well as
other coefficients do not change, we may assume that u = 1. It is also convenient to define l = λ(ξ).
Recapitulating the definitions, we have

l = λ(ξ) = min{1, (ξ − α)/(β − α)},
η = η(v, l) = vα + (1− v)(β + (γ − β)l) = δ(v, ξ).

By the properties of the function λ(ξ), we have 0 ≤ l ≤ 1. The function η(v, l) is non-increasing
in v and non-decreasing in l in the whole domain of v and l. Furthermore, α ≤ η(v, l) ≤ γ,
η(1, l) = α, and η(0, l) ≥ β.

In each case of the analysis we need to minimize a linear function of b and c subject to 0 ≤ c ≤ b
and ηb + (1 − η)c = 1. Since the feasible domain is a line segment (see Figure 3), the minimum
must be attained at one of the endpoints which are (b, c) = (1, 1) and (b, c) = (1/η, 0). Thus the
minimum can be found by comparing these two values of the investigated linear function.

Case 2.1: 1 < ηb + (1− η)c and thus Switch schedules b.

Case 2.1.1: The adversary schedules y = u = 1. Using v ≥ 0, we bound the old potential as
Φuy(u, v, ξ) = Φuu(u, v, ξ) ≥ E · l. The new potential is Φcb(b, c, η) = b−Qc and we get

Γ ≥ E · l + Qb− 1− (b−Qc)

= E · l − 1 + (Q− 1)b + Qc (4)

≥ E · l − 1 + (Q− 1)/η (5)

16

1

1

c

b1/η

Figure 3: The domain of b, c in Case 2 (thick line).

The last inequality is justified as follows: expression (4) is a linear function of b, c, increasing in
both b and c. From the case condition and b ≥ c ≥ 0 it follows that (4) decreases when b and/or
c are decreased until ηb + (1 − η)c = 1, and under this constraint, (Q − 1)b + Qc is minimized for
b = 1/η, c = 0. At the other endpoint of the feasible region, i.e., at b = c = 1, the value is larger,
since 2Q− 1 > (Q− 1)/α ≥ (Q− 1)/η.

Now (5) is minimized for v = 0, because η = δ(v, ξ) is decreasing in v. We substitute v = 0 in
(5), multiply by η(0, l), and substitute the definition of η(0, l) to obtain

η(0, l) · Γ ≥ E · l(β + (γ − β)l)− β − (γ − β)l + Q− 1

≥ E · lβ − β − (γ − β)l + Q− 1

≥ 0.

The final inequality holds since β = Q− 1 and E · β > γ − β. This holds, since E · β > 0.037 and
γ−β < 0.02, including the rounding errors. Alternatively, substituting the definitions of E, β, and
γ, the inequality reduces to a degree-4 polynomial inequality in Q which, using the definition of
Q, can be reduced to degree-2 inequality 7Q2 − 6Q − 5 > 0, that can be verified using again the
definition of Q.

Case 2.1.2: The adversary schedules y = v. Using l ≤ 1 and the definition of G, the old potential
is bounded by Φuy(u, v, ξ) = Φuv(u, v, ξ) = (Q− 1)v−G · l− 1/Q ≥ (Q− 1)v − 2(Q− 1). The new
potential is Φcb(b, c, η) = b−Qc. We bound the linear function of b and c exactly as in the previous
case to obtain

Γ = (Q− 1)v − 2(Q− 1) + Qb− v − (b−Qc)

= −(2−Q)v − 2(Q− 1) + (Q− 1)b + Qc

≥ −(2−Q)v − 2(Q− 1) + (Q− 1)/η.

We now notice that η = η(v, l) is increasing with l, thus it is sufficient to substitute the value of η
for l = 1. In this case we get after multiplying by η(v, 1) and substituting its value

η(v, 1) · Γ ≥ −(αv + (1− v)γ)((2 −Q)v + 2(Q− 1)) + (Q− 1).

For v = 1, the right-hand side is equal to 0. To conclude that Γ ≥ 0, it is sufficient to show that
the right-hand side decreases for v ∈ [0, 1]. It is a convex quadratic function (as γ > α), thus it is

17

sufficient to verify that its derivative at v = 1 is at most 0. The derivative is (γ − α)((2 − Q)v +
2(Q− 1))− (αv + (1− v)γ)(2 −Q), which at v = 1 equals γQ− 2α < 0.

Case 2.1.3: The adversary schedules b. Using (3), v ≥ 0, l ≤ 1, and the definition of G the old
potential is bounded by Φuy(u, v, ξ) ≥ Φuv(u, v, ξ) ≥ −G − 1/Q = −2(Q − 1). The new potential
is Φcc(b, c, η) = (1−Q)c. We have

Γ ≥ −2(Q− 1) + Qb− b− (1−Q)c

= (Q− 1)(b + c− 2)

≥ 0.

To justify the last inequality, note that, given the case constraint, b + c is minimized at b = c = 1,
as the value at b = 1/η, c = 0 is larger, since 2 < 1/γ ≤ 1/η.

Case 2.2: Suppose that 1 ≥ ηb + (1− η)c. Then Switch executes u = 1.

Case 2.2.1: The adversary schedules y = u = 1. The old potential is bounded by Φuy(u, v, ξ) =
Φuu(u, v, ξ) ≥ 0 and the new potential is Φbb(b, c, η) = E · λ(η)(b + c). We get

Γ ≥ Q− 1−E · λ(η)(b + c)

≥ Q− 1−E · λ(η)/η.

The last inequality follows since b+c is maximized when ηb+(1−η)c = 1, using the case condition.
Under this restriction, it is maximized when b = 1/η, c = 0, as the value for b = c = 1 is smaller
because 1/η ≥ 1/γ > 2.

Using the definition of λ, the value of λ(η)/η is maximized for η = β, where λ(η)/η = 1/β.
Thus Γ ≥ Q− 1−E/β > 0.

Case 2.2.2: The adversary schedules y = v. Using l ≤ 1 and the definition of G, the old potential
is bounded by Φuy(u, v, ξ) = Φuv(u, v, ξ) = (Q− 1)v−G · l− 1/Q ≥ (Q− 1)v − 2(Q− 1). The new
potential is Φbb(b, c, η) = E · λ(η)(b + c). We bound the linear function of b and c exactly as in the
previous case to obtain

Γ ≥ (Q− 1)v − 2(Q− 1) + Q− v −Eλ(η)(b + c)

≥ (2−Q)(1− v)− E · λ(η)

η

≥ (2−Q)(1− v)− E(η − α)

α(β − α)
, (6)

where the last inequality follows from η ≥ α and the definition of λ. The right-hand side of (6)
is linear in v, since η = η(v, l) is a linear function of v. Thus it is sufficient to verify that (6) is
non-negative for v ∈ {0, 1}. For v = 1, it is equal to 0. For v = 0, we use η ≤ γ and the whole
expression is at least

2−Q− E(γ − α)

α(β − α)
> 0.

To verify the last inequality numerically, note that E/α = Q − 1 < 0.4, so it is sufficient to
check that (γ − α)/(β − α) < 1.5. Alternatively, the inequality can be verified by substituting the

18

definitions of the parameters in terms of Q and reducing it to 5Q2 − 12Q + 7 < 0, which holds by
the definition of Q.

Case 2.2.3: The adversary schedules b. Using inequality (3), the old potential is bounded by
Φuy(u, v, ξ) ≥ Φuv(u, v, ξ) = (Q − 1)v − G · l − 1/Q. The new potential is Φbc(b, c, η) = (Q −
1)c− (G · λ(η) + 1/Q)b. We have

Γ ≥ (Q− 1)v −G · l − 1/Q + Q− (1−G · λ(η) − 1/Q)b− (Q− 1)c.

The expression on the right-hand side is a linear function of b and c. We claim that it is minimized
at b = 1/η, c = 0. Indeed, subtracting its value at b = 1/η, c = 0, from the value at b = c = 1, we
get

(1−G · λ(η)− 1/Q)(1/η − 1)− (Q− 1) ≥ (1−G− 1/Q)(1/γ − 1)− (Q− 1) = 0,

where we use λ(η) ≤ 1 and η ≤ γ in the inequality, and the last equality follows from the definitions
of G and γ. Thus, after substituting b = 1/η and c = 0, and multiplying by η,

η · Γ ≥ η · ((Q− 1)v −G · l − 1/Q + Q)− 1 + G · λ(η) + 1/Q. (7)

We want to show that the right-hand side of (7) is non-negative.
If η ≥ β, then λ(η) = 1, and by the definitions of G and η, the right-hand side of (7) is equal to

[vα + (1− v)(β + (γ − β)l)]((Q − 1)v −G · l − 1/Q + Q)− (3− 2Q).

This is a concave quadratic function in v, so it is sufficient to verify that it is non-negative for
v ∈ {0, 1}. For v = 1, the function is decreasing with l, so it is minimized at l = 1 and the value is
α− (3− 2Q) > 0. For v = 0, the function is a concave quadratic function in l, so it is sufficient to
verify that it is non-negative for l ∈ {0, 1}. For l = 0 the value is β(−1/Q + Q)− (3− 2Q), and for
l = 1 it is γ(2−Q)− (3− 2Q). Both values are equal to 0, by the definitions of β, γ, and Q.

It remains to verify that (7) is non-negative when η ≤ β. In this case, the right-hand side of
(7) is equal to

η · ((Q− 1)v −G · l − 1/Q + Q)− 1 + 1/Q + G · (η − α)/(β − α). (8)

For each l, η(v, l) is continuous and decreasing in v from η(0, l) ≥ β to η(1, l) = α < β, so there
is unique v = vl for which η(v, l) = β. The expression (8) is again a concave quadratic function in
v, and we know that it is non-negative at v = vl from the analysis of the previous case. As in this
sub-case we have vl ≤ v ≤ 1, it remains to verify that (8) is non-negative for v = 1. In this case its
value is α(2Q − 1−G · l − 1/Q) − 1 + 1/Q ≥ 0, using l ≤ 1 and the definition of G.

We have now examined all cases, completing the proof of inequality (2), and thus also the proof
of Theorem 4.3.

19

