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Abstract. The third problem for the Stokes system is studied on a bounded
domain in R3 with Ljapunov connected boundary. We construct a solution
of this problem in the form of appropriate potentials and determine unknown
source densities via integral equation systems on the boundary of the domain.
The solution is given explicitly in the form of a series. Then we study the
integral equation which we obtain using the direct integral equation method.
Again, we prove the applicability of the successive approximation method for
solving this integral equation.
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1 Introduction

One traditional way how to study boundary value problems for the Stokes sys-
tem is the integral equation method (see [20], [26], [1], [3], [14], [15], [16], [17],
[27]). The most papers and books study the Dirichlet problem (see for example
[33], [19], [5], [10], [24], [25],[22], [8], [12], [29]). Lately the Neumann problem
for the Stokes system has been also studied (see [13], [11], [2], [21], [18]).

In the present paper we study the third problem for the Stokes system

∇p−∆u = 0 in G, ∇ · u = 0 in G, (1)

T (u, p)nG + Au = g on ∂G (2)

using methods of hydrodynamical potential theory. Here G ⊂ R3 is a bounded
domain with connected boundary ∂G of class C1,α, 0 < α < 1, nG is the outward
unit normal vector of G, u = (u1, u2, u3) is a velocity field, p is a pressure and

T (u, p) ≡ [∇u + (∇u)T ]− pI

is the corresponding stress tensor. (Here I denotes the identity matrix.) The
matrix function A has all entries aij ∈ Cα(∂G,R3), A(x) is a symmetric matrix
of type 3 × 3 for each x. We suppose moreover that there are a nonnegative
continuous function c(x) and a constant C such that

c(x)|v|2 ≤ v ·A(x)v ≤ C|v|2 (3)
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for all v ∈ R3 and x ∈ ∂G. We shall suppose moreover that there is z ∈ ∂G
such that c(z) > 0. Remark that

∇p =
(

∂p

∂x1
,

∂p

∂x2
,

∂p

∂x3

)
, ∆u =

3∑
j=1

∂2u
∂x2

j

, ∇ · u =
3∑

j=1

∂uj

∂xj
.

We shall show that for each g ∈ Cα(∂G,R3) there is unique classical solution
of the problem (1), (2). We also show that for each g ∈ Ls(∂G,R3), 1 < s < ∞,
there is unique Ls-solution of the problem (1), (2), i.e. a solution of the Stokes
system (1) such that the nontangential maximal functions of p, u, ∇u are in
Ls(∂G,R1) and the condition (2) is fulfilled in the sense of the nontagential
limit (see § 2).

We prove the existence of a solution using the indirect integral equation
method. We look for a velocity u in the form of a hydrodynamical single layer
potential EGΨ with an unknown density Ψ and a pressure p in the form of the
corresponding pressure QGΨ. (For the definition of these potentials see §3.)
This method is an analogy of the method for studying of the Neumann problem
for the Laplace equation. If one looks for a solution of the Neumann problem for
the Laplace equation with the boundary condition f in the form of a harmonic
potential Sϕ with an unknown density ϕ then one obtains the integral equation
(1/2)ϕ + K ′

∆ϕ = f . It is a classical result that for G convex we can obtain a
solution of this integral equation using the successive approximation method.
In 2001 O. Steinbach and W. L. Wendland proved a charming result that this is
true also for a bounded domain G ⊂ R3 with connected Lipschitz boundary and
a boundary condition f from the Sobolev space H1/2(∂G) (see [31]). Later they
used this result in studying the Neumann problem for the Laplace equation by
the more popular direct integral equations method (see [30], [9]). This method
utilizes the representation of the solution in the form u = Sf + D∆u, where
D∆u is the harmonic double layer potential with density u. This leads to the
integral equation (1/2)u+K∆u = Sf . Since both integral equations are adjoint
they deduced that we can obtain a solution of the integral equation (1/2)u +
K∆u = Sf using the successive approximation method. The author studied
in [21] classical and Ls-solutions the Neumann problem for the Stokes system
on domains with boundary of class C1,α using the indirect integral equation
method. A solution has been looked for in the form of a hydrodynamical single
layer potential. For a bounded domain with connected boundary it was shown
that a solution of the corresponding integral equation (1/2)Ψ+K ′Ψ = g can be
obtained by the successive approximation method. In the present paper we look
for classical and Ls solutions of the Robin problem for the Stokes system in the
form of a hydrodynamical single layer potential EGΨ with an unknown density
Ψ. It is shown that the unique solution of the corresponding integral equation
(1/2)Ψ + K ′Ψ + AEGΨ = g can be obtained by the successive approximation
method. Then we turn to the direct integral equation method. This method
depends on the representation of the solution by u = EG[T (u, p)nG] + DGu =
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EG[g − Au] + DGu, p = QG[T (u, p)nG] + PGu = QG[g − Au] + PGu (for the
definitions of the corresponding potentials see § 3). This representation leads
to the integral equation (1/2)u + Ku + EGAu = EGg. We shall show that
the unique solution of this integral equation can be obtained by the successive
approximation method.

2 Formulation of the problem

Starting from now, throughout the paper G ⊂ R3 denotes a bounded domain
with connected boundary ∂G of class C1,α, 0 < α < 1, and Ge := R3 \ cl G
denotes its complement with ∂Ge = ∂G. Here clG denotes the closure of G and
∂G the boundary of G.

If K = Rn or K = Cn we denote by C0(H,K) the space of all continuous
functions from H to K. Similarly Cβ(H,K) denotes the space of all K-valued
β-Hölder functions on H for 0 < β < 1. If k ∈ N then Ck(H,K) denotes
the space of all functions the derivatives of which up to the order k are from
C0(H,K) and C∞(H,K) = ∩{Ck(H,K); k ∈ N}. If 1 ≤ q < ∞ then Lq(H,K)
denotes the space of all K-valued Borel measurable functions f for which |f |q is
integrable in H.

(u, p) is called a classical solution of the problem (1), (2) if p ∈ C1(G, R) ∩
C0(cl G, R), u ∈ C2(G, R3) ∩ C1(cl G, R3) satisfy (1), (2).

We shall also study some classes of strong solutions of the third problem for
the Stokes system with a boundary condition g ∈ Ls(∂G,R3).

If x ∈ ∂G, a > 0 denote the non-tangential approach regions of opening a
at the point x by

Γa(x) := {y ∈ G; |x− y| < (1 + a) dist(y, ∂G)}.

We fix a > 0 large enough such that x ∈ cl Γa(x) for every x ∈ ∂G. We shall
write Γ(x) = Γa(x). If now v is a vector function defined in G we denote the
non-tangential maximal function of v on ∂G by

v∗(x) := sup{|v(y)|;y ∈ Γ(x)}.

If x ∈ ∂G then
v(x) = lim

y → x
y ∈ Γ(x)

v(y)

is the non-tangential limit of v with respect to G at x.
If g ∈ Ls(∂G,R3), 1 < s < ∞, then we call u, p an Ls-solution of the prob-

lem (1), (2) if u ∈ C2(G), p ∈ C1(G) satisfy (1); u∗, (∇u)∗, p∗ ∈ Ls(∂G,R1);
for almost all x ∈ ∂G there exist the non-tangential limits of u, ∇u and p at x
and the condition (2) is fulfilled in the sense of the nontangential limit a.e. on
∂G.
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3 Hydrodynamical potentials

For x = [x1, x2, x3] ∈ R3and j, k = 1, 2, 3 define

Ej,k(x) =
1
8π

[
δjk

1
|x|

+
xjxk

|x|3

]
(4)

where δjk is the Kronecker delta. For Ψ = [Ψ1,Ψ2,Ψ3] ∈ L1(∂G,R3) define the
hydrodynamical single layer potential with density Ψ by

EGΨ(x) =
∫

∂G

E(x− y)Ψ(y) dy

and the corresponding pressure

QGΨ(x) =
∫

∂G

(x− y) ·Ψ(y)
4π|x− y|3

dy.

Then EGΨ ∈ C∞(R3 \∂G,R3), QGΨ ∈ C∞(R3 \∂G,R1). If we put u = EGΨ,
p = QGΨ then u, p solve the Stokes system (1). If Ψ ∈ C0(∂G,R3) then
EGΨ ∈ C0(R3, R3) and EGΨ ∈ Cα(∂G,R3). If, in addition, Ψ ∈ Cα(∂G,R3)
then ∇EGΨ and QGΨ can be continuously extended onto clG and onto clGe,
too (see [26]).

If Ψ ∈ Ls(∂G,R3), 1 < s < ∞, then the nontangential maximal operators
(EGΨ)∗, (∇EGΨ)∗, (QGΨ)∗ ∈ Ls(∂G,R1) and there is a constant M dependent
only on G and s such that

‖(EGΨ)∗ + (∇EGΨ)∗ + (QGΨ)∗‖Ls(∂G) ≤ M‖Ψ‖Ls(∂G). (5)

Moreover, there are the nontangential limits of EGΨ, ∇EGΨ and QGΨ a.e. on
∂G and EGΨ(x) is the nontangential limit of EGΨ for almost all x ∈ ∂G (see
[21] or [20]).

Remark that for the unit outward normal vector nG we have EGnG = 0 in
R3, QGnG = −1 in G, QGnG = 0 in Ge. (Compare [33].)

For p, u = (u1, u2, u3) define the stress tensor

T (u, p) = 2∇̂u− pI, (6)

where I denotes the identity matrix and

∇̂u =
1
2
[∇u + (∇u)T ]

is the strain tensor, with (∇u)T as the matrix transposed to ∇u = (∂juk),
(k, j = 1, 2, 3).
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If Ψ ∈ Ls(∂G,R3), 1 < s < ∞ denote

K ′Ψ(x) =
3
4π

lim
ε↘0

∫
∂G\B(x;ε)

[(y − x) · nG(x)][(x− y) ·Ψ(y)](x− y)
|x− y|5

dy

whenever this limit has a sense. (Here B(x; ε) denotes the open ball with the
center x and the radius ε.) Then K ′ is a compact linear operator in the spaces
Ls(∂G,R3), 1 < s < ∞, and Cα(∂G,R3) (see [20], [21] and [33]). If Ψ ∈
Cα(∂G,R3) then

T (EGΨ, QGΨ)nG =
(

1
2
I + K ′

)
Ψ, (7)

where I denotes the identity operator (see [26]). If Ψ ∈ Ls(∂G,R3) then (7)
holds true in the sense of the nontangential limit at almost all point of ∂G (see
[21], [20], or [4]).

For y ∈ ∂G and x ∈ R3 \ {y} denote

Dk,j(x,y) = − 3
4π

(xk − yk)(xj − yj)(x− y) · nG(y)
|x− y|5

(8)

for j, k = 1, 2, 3.
For Ψ = [Ψ1,Ψ2,Ψ3] ∈ L1(∂G,R3) define the hydrodynamical double layer

potential with density Ψ by

(DGΨ)(x) =
∫

∂G

D(x,y)Ψ(y) dy, x ∈ R3 \ ∂G (9)

and by

(PGΨ)(x) = − 1
2π

∫
∂G

{
3

(xj − yj)(x− y) · nG(y)
|x− y|5

−
nG

j (y)
|x− y|3

}
Ψ(y) dy (10)

the corresponding pressure. Then u = DGΨ ∈ C∞(R3 \ ∂G,R3), p = PGΨ ∈
C∞(R3 \ ∂G,R3) solve the Stokes system (1) in R3 \ ∂G.

If Ψ ∈ Ls(∂G,R3), 1 < s < ∞ denote

KΨ(x) = − lim
ε↘0

∫
∂G\B(x;ε)

D(x,y)Ψ(y) dy

whenever this limit has a sense. Then K is a compact linear operator in the
spaces Ls(∂G,R3), 1 < s < ∞, and Cα(∂G,R3) (see [20], [21] or [33]). Remark
that K and K ′ are adjoint operators. If Ψ ∈ Cα(∂G,R3) then

lim
z → x
z ∈ G

DGΨ(x) =
1
2
Ψ(z)−KΨ(z), lim

z → x
z ∈ Ge

DGΨ(x) = −1
2
Ψ(z)−KΨ(z).

(11)
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If Ψ ∈ Ls(∂G,R3), 1 < s < ∞ then (DGΨ)∗ ∈ Ls(∂G,R1) and the relation
(11) holds in the sense of the nontangential limit at almost all points of ∂G (see
[20] and [33]).

4 The integral representation

We shall prove the existence of a solution of the problem (1), (2) using the
indirect integral equation method, i.e. we shall look for a solution in the form

u = EGΨ, p = QGΨ (12)

with an unknown density Ψ. If we look for a classical solution for the boundary
condition g ∈ Cα(∂G,R3) we have Ψ ∈ Cα(∂G,R3). If we look for an Ls-
solution for g ∈ Ls(∂G,R3), 1 < s < ∞, we have Ψ ∈ Ls(∂G,R3). Using the
boundary properties of potentials we obtain that (u, p) is a solution of the of
the problem (1), (2) if and only if 1

2Ψ + K ′Ψ + AEGΨ = g.

Lemma 4.1. The operator K ′ + AEG is compact in Cα(∂G,R3) and in the
spaces Ls(∂G,R3), 1 < s < ∞.

Proof. Suppose that X = Cα(∂G,R3) or X = Ls(∂G,R3), 1 < s < ∞. The
operator K ′ is compact in X by [21], Lemma 9. The operator EG is compact
in Ls(∂G,R3), 1 < s < ∞, by [22], Lemma 4.4. The operator EG is a bounded
linear operator from C0(∂G,R3) to Cα(∂G,R3) by [26]. Since the J : Ψ 7→ Ψ is
a compact operator from Cα(∂G,R3) to C0(∂G,R3), the operator EG = EGJ
is a compact operator in Cα(∂G,R3) as a composition of a bounded operator
and a compact operator. Since Ψ 7→ AΨ is a bounded linear operator in X,
the operator AEG is a compact linear operator in X (see [28], Corollary 4.5 and
[28], Theorem 4.6). Therefore K ′ + AEG is a compact linear operator in X.

Lemma 4.2. Let (u, p) and (v, q) be two solutions of (1). Suppose moreover
that u,v ∈ C1(cl G, R3) and p, q ∈ C0(cl G, R1). Then∫

∂G

(u− iv) · {[T (u, p)nG + Au] + i[T (v, q)nG + Av]} dy

= 2
∫
G

[|∇̂u|2 + |∇̂v|2] dy +
∫

∂G

[u ·Au + v ·Av] dy ≥ 0.

If ∫
∂G

(u− iv) · {[T (u, p)nG + Au] + i[T (v, q)nG + Av]} dy = 0. (13)

then u ≡ 0, v ≡ 0.
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Proof. Green’s formula (compare [21], Lemma 3 or [32]), Fubini’s theorem
and the symmetry of matrix A give∫

∂G

(u− iv) · {[T (u, p)nG + Au] + i[T (v, q)nG + Av]} dy

= 2
∫
G

[|∇̂u|2 + |∇̂v|2] dy +
∫

∂G

[u ·Au + v ·Av] dy

≥ 2
∫
G

[|∇̂u|2 + ∇̂v|2] dy +
∫

∂G

c(y)[|u|2 + |v|2] dy ≥ 0.

Suppose that (13) holds true. Then ∇̂u = 0 in G, c(y)|u(y)|2 = 0 on ∂G. Since
∇̂u = 0 in G, the vector function u is a rigid body motions, i.e u(y) = By + b
with a vector b and a skew-symmetric matrix B = (bjk) (see [21], Lemma 6).
We have supposed that there is z ∈ ∂G such that c(z) > 0. According to the
continuity of c there is r > 0 such that c(y) > 0 for y ∈ B(z; r) ∩ ∂G. Since
c(y)|u(y)|2 = 0 on ∂G we infer that u(y) = 0 on B(z; r)∩∂G. Suppose first that
bjk 6= 0 for some j, k. Since B is a skew-symmetric matrix we have bkj = −bjk

and thus k 6= j. Put Lj = {y = [y1, y2, y3]; bj1y1 + bj2y2 + bj3y3 + bj = 0},
Lk = {y = [y1, y2, y3]; bk1y1 + bk2y2 + bk3y3 + bk = 0}. Since bjk = −bkj 6= 0,
bjj = bkk = 0, the hyperplanes Lj , Lk are different. Since uj(y) = bj1y1+bj2y2+
bj3y3 + bj , uk(y) = bk1y1 + bk2y2 + bk3y3 + bk and u(y) = 0 on B(z; r)∩ ∂G, we
infer that B(z; r) ∩ ∂G ⊂ Lj ∩ Lk. But B(z; r) ∩ ∂G cannot be a subset of the
line Lj ∩ Lk. This means that bjk = 0 for all j, k. Hence u is constant. Since
u(y) = 0 on B(x; r) ∩ ∂G we deduce that u ≡ 0. Similarly for v.

Theorem 4.3. The operator 1
2I + K ′ + AEG is continuously invertible in

Cα(∂G,R3) and in Ls(∂G,R3), 1 < s < ∞. Fix g ∈ Ls(∂G,R3), 1 < s <
∞. Then there is unique Ls-solution u, p of the problem (1), (2). Putting
Ψ = ( 1

2I + K ′ + AEG)−1g we have u = EGΨ, p = QGΨ. If g ∈ Cα(∂G,R3)
then Ψ ∈ Cα(∂G,R3) and u, p form a classical solution of the problem (1),
(2).

Proof. Suppose first that u, p form a classical solution of the problem (1),
(2) with g ≡ 0. Since ∫

∂G

u · [T (u, p)nG + Au] dy = 0

Lemma 4.2 gives that u ≡ 0. Since u, p solve (1) we have ∇p = ∆u = 0. So, p
is constant. From the boundary condition we get 0 = T (u, p)nG + Au = −p.

Let now Ψ ∈ Cα(∂G,R3) be such that (1
2I + K ′ + AEG)Ψ = 0. Then

u = EGΨ, p = QGΨ solve the problem (1), (2) with g ≡ 0. We have proved
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that u = 0, p = 0. Therefore

0 = T (u, p)nG + Au = T (u, p)nG =
1
2
Ψ + K ′Ψ.

According to [21], Lemma 11 we have Ψ = 0. Since K ′ + AEG is a compact
operator in Cα(∂G,R3) and in Ls(∂G,R3), the operator 1

2I +K ′+AEG has the
same kernel in both spaces by [23], Lemma 2.1. Since the operator 1

2I+K ′+AEG

is one-to-one in Cα(∂G,R3) and in Ls(∂G,R3), the Riesz-Schauder theorem
gives that 1

2I + K ′ + AEG is continuously invertible in Cα(∂G,R3) and in
Ls(∂G,R3) (see [34], Chapter X, §5, Theorem 1). If Ψ = (1

2I + K ′ + AEG)−1g
and u = EGΨ, p = QGΨ, then u, p solve the problem (1), (2).

We now show the uniqueness of an Ls-solution. If u, p form a solution of the
problem (1), (2) then u, p solve the Neumann problem for the Stokes system

∇p−∆u = 0 in G, ∇ · u = 0 in G,

T (u, p)nG = h on ∂G

where h = g−Au. According [21], Theorem 4 and [21], Theorem 5 there is Ψ ∈
Ls(∂G,R3) such that u = EGΨ, p = EGΨ. If g = 0 then ( 1

2I+K ′+AEG)Ψ = 0
and the invertibility of 1

2I + K ′ + AEG forces Ψ = 0. Therefore u = EGΨ = 0,
p = QGΨ = 0.

5 Solution of the integral equation

In this section we estimate the spectrum of the operator 1
2I + K ′ + AEG and

calculate a solution of the equation ( 1
2I +K ′+AEG)Ψ = g using the successive

approximation method. For this reason we shall rewrite this equation onto the
equation Ψ − [I − γ−1( 1

2I + K ′ + AEG)]Ψ = γ−1g and show that there is an
equivalent norm ‖ ‖ such that ‖I − γ−1( 1

2I + K ′ + AEG)‖ < 1.
We need the following Lemma 5.1, Lemma 5.2 proved in [22] and Lemma 5.3

proved in [7]. If c = c1 + ic2 is a complex number, denote by c = c1 − ic2 its
complex conjugate.

Lemma 5.1. Let Ψ ∈ Cα(∂G,C3). Then we have∫
∂G

Ψ · EGΨ dy = 2
∫

R3\∂G

|∇̂EGΨ|2 dx ≥ 0.

If ∫
∂G

Ψ · (EGΨ) dy = 0,

then QGΨ is constant on each component of R3 \ ∂G and EGΨ = 0 in R3.
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Lemma 5.2. If we denote

β0 := max
j=1,2,3

sup
x∈∂G

∫
∂G

3∑
k=1

|Ejk(x− y)| dy, (14)

then
‖EG‖L2(∂G) ≤ β0 < ∞. (15)

If Ψ ∈ L2(∂G,C3), then∫
∂G

|EGΨ|2 dy ≤ β0

∫
∂G

Ψ · (EGΨ) dy. (16)

If M is a positive constant with∫
{y∈∂G;|x−y|<r}

1 dy ≤ Mr2 (17)

for each x ∈ ∂G and 0 < r < diam ∂G, then

β0 ≤ M diam ∂G.

(Here diam ∂G = sup{|x− y|;x,y ∈ ∂G} is the diameter of ∂G.)

Lemma 5.3. Let X be a complex Banach space. Denote by N the set of all
norms on X equivalent to the original norm. If S is a bounded linear operator
in X denote by σ(S) the spectrum of S and

r(S) = sup{|λ|;λ ∈ σ(S)}

the spectral radius of S. Then

r(S) = inf
‖ ‖∈N

‖S‖.

Lemma 5.4. Let β0 be given by (14) and C is the constant from the inequality
(3). If Ψ ∈ Cα(∂G,R3) then

0 ≤
∫

∂G

(EGΨ) ·
(

1
2
I + K ′ + AEG

)
Ψ dy ≤ (1 + Cβ0)

∫
∂G

Ψ · EGΨ dy.

Proof. According to Lemma 4.2, Lemma 5.1 and Lemma 5.2 we have

0 ≤
∫

∂G

EGΨ·
(

1
2
I+K ′+AEG

)
Ψ dy = 2

∫
G

|∇̂EGΨ|2 dy+
∫

∂G

(EGΨ)·(AEGΨ) dy

9



≤ 2
∫

R3\∂G

|∇̂EGΨ|2 dy +
∫

∂G

C|EGΨ|2 dy ≤ (1 + Cβ0)
∫

∂G

Ψ · EGΨ dy.

Proposition 5.5. Let β0 be given by (14). Then σ( 1
2I + K ′ + AEG) ⊂ (0, 1 +

Cβ0〉 in Cα(∂G,C3) and in Ls(∂G,C3) for 1 < s < ∞.

Proof. Suppose that X = Cα(∂G,C3) or X = Ls(∂G,C3), 1 < s < ∞.
Let λ ∈ σ( 1

2I + K ′ + AEG) \ {1
2}. Since K ′ + AEG is a compact operator

in X by Lemma 4.1, Riesz-Schauder theorem gives that λ is an eigenvalue of
1
2I + K ′ + AEG in X (see [34], Chapter X, §5, Theorem 1). Since K ′ + AEG is
a compact operator in Cα(∂G,C3) and in Ls(∂G,C3), the kernel of 1

2I + K ′ +
AEG−λI is the same in both spaces (see [23], Lemma 2.1). It means that there
is Ψ ∈ Cα(∂G,C3) such that ( 1

2I + K ′ + AEG)Ψ = λΨ.
Suppose first that ∫

∂G

Ψ · EGΨ dy = 0.

Then EGΨ = 0 in R3 and QGΨ = a1 in G, QGΨ = a2 in Ge (see Lemma 5.1).
According to [21], Lemma 10 there is a constant d such that Ψ = dnG. Since
EGnG = 0, QGnG = −1 in G, we have ( 1

2I + K ′ + AEG)Ψ = dnG = Ψ and
λ = 1.

Let now ∫
∂G

Ψ · EGΨ dy 6= 0.

According to Lemma 4.2

λ

∫
∂G

Ψ · EGΨ dy =
∫

∂G

(EGΨ) ·
(

1
2
I + K ′ + AEG

)
Ψ dy

=
∫

∂G

(EGΨ) · [T (EGΨ, QGΨ)nG + AEGΨ] dy ≥ 0.

Since ∫
∂G

Ψ · (EGΨ) dy > 0

by Lemma 5.1, we obtain

λ =
∫

∂G

(EGΨ) ·
(

1
2
I + K ′ + AEG

)
Ψ dy

[∫
∂G

Ψ · (EGΨ) dy
]−1

≥ 0.

The invertibility of the operator 1
2I + K ′ + AEG (see Theorem 4.3) forces that

λ > 0. Since the eigenvalue λ is real we can suppose that Ψ ∈ Cα(∂G,R3).
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Lemma 5.4 gives

λ =
∫

∂G

(EGΨ) ·
(

1
2
I + K ′ + AEG

)
Ψ dy

[∫
∂G

Ψ · (EGΨ) dy
]−1

≤ (1 + Cβ0).

Theorem 5.6. Let X = Cα(∂G,R3) or X = Ls(∂G,R3), 1 < s < ∞, β0 be
given by (14). Fix γ > (1 + Cβ0)/2. Denote L = I − γ−1( 1

2I + K ′ + AEG).
Then there is an equivalent norm ‖ ‖ on X such that ‖L‖ < 1. Moreover,(

1
2
I + K ′ + AEG

)−1

= γ−1
∞∑

j=0

Lj

in X. Let now g ∈ X. Fix Ψ0 ∈ X. For nonnegative integer j put

Ψj+1 = LΨj + γ−1g. (18)

Then there is
Ψ = lim

j→∞
Ψj

in X, [(1/2)I + K ′ + AEG]Ψ = g and

‖Ψ−Ψj‖ ≤ Cqj [‖g‖+ ‖Ψ0‖] (19)

for arbitrary j. Here constants C > 0, 0 < q < 1 do not depend on g and Ψ0.

Proof. Put Y = Cα(∂G,C3) for X = Cα(∂G,R3), Y = Ls(∂G,C3) for
X = Ls(∂G,R3). According to Proposition 5.5 we have σ( 1

2I + K ′ + AEG) ⊂
(0, 1 + Cβ0〉 in Y and thus σ(L) ⊂ 〈1 − γ−1(1 + Cβ0), 1) ⊂ (−1, 1). Since
r(L) < 1, Lemma 5.3 gives that there is an equivalent norm ‖ ‖ such that
q = ‖L‖ < 1. It is a classical result that

(I − L)−1 =
∞∑

j=0

Lj

(see [6], Proposition 9.106), there is

Ψ = lim
j→∞

Ψj ,

(I −L)Ψ = γ−1g (see [6], Theorem 9.128). According to [6], Theorem 9.128 we
have

‖Ψ−Ψj‖ ≤
qj

1− q
‖Ψ1−Ψ0‖ =

qj

1− q
‖(L−I)Ψ0+γ−1g‖ ≤ qj q + 1 + γ−1

1− q
[‖g‖+‖Ψ0‖].

Since [(1/2)I +K ′+AEG] = γ(I−L) we obtain the proposition of the theorem.
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6 Direct boundary integral equation method

Let (u, p) be an Ls-solution the problem (1), (2), where 1 < s < ∞. Denote by
u the nontangential limit of u and by p the nontangential limit of p. Then

u = EG[T (u, p)nG] + DGu, p = QG[T (u, p)nG] + PGu in G,

1
2
u + Ku = EG[T (u, p)nG] on ∂G

(see [21], Proposition 1). According to the boundary condition (2) we get

u = EG(g −Au) + DGu in G, (20)

1
2
u + Ku + EGAu = EGg on ∂G. (21)

So, we must solve the equation (21). If g ∈ Cα(∂G,R3) then (u, p) is a clas-
sical solution of the problem (1), (2) and we can solve the equation (21) in
Cα(∂G,R3).

Theorem 6.1. Let X = Cα(∂G,R3) or X = Ls(∂G,R3), 1 < s < ∞, β0 be
given by (14). Fix γ > (1 + Cβ0)/2. Denote M = I − γ−1( 1

2I + K + EGA).
Then there is an equivalent norm ‖ ‖ on X such that ‖M‖ < 1. Moreover,(

1
2
I + K + EGA

)−1

= γ−1
∞∑

j=0

M j

in X. Let now f ∈ X. Fix Ψ0 ∈ X. For nonnegative integer j put

Ψj+1 = MΨj + γ−1f .

Then there is
Ψ = lim

j→∞
Ψj

in X, [(1/2)I + K + EGA]Ψ = f and

‖Ψ−Ψj‖ ≤ Cqj [‖f‖+ ‖Ψ0‖]

for arbitrary j. Here constants C > 0, 0 < q < 1 do not depend on f and Ψ0.

Proof. For X = Cα(∂G,R3) put Y = Cα(∂G,R3), for X = Ls(∂G,R3) put
Y = Ls(∂G,C3). According to Proposition 5.5 we have σ( 1

2I + K ′ + AEG) ⊂
(0, 1 + Cβ0〉 in Lt(∂G,C3) for each t ∈ (1,∞). Since ( 1

2I + K + EGA) is the
adjoint operator of (1

2I+K ′+AEG) we infer that σ( 1
2I+K+EGA) ⊂ (0, 1+Cβ0〉

in Ls(∂G,C3) for each s ∈ (1,∞). Since K + EGA is a compact operator in
Cα(∂G,C3), Riesz-Schauder theorem gives that every λ ∈ σ( 1

2I + K + EGA) \
{1/2} in Cα(∂G,C3) is an eigenvalue (see [34], Chapter X, §5, Theorem 1).
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Thus σ( 1
2I +K +EGA) ⊂ (0, 1+Cβ0〉 in Cα(∂G,C3). Since σ(M) ⊂ (−1, 1) in

Y there is an equivalent norm ‖ ‖ on Y such that q = ‖M‖ < 1 (see Lemma 5.3).
According to [6], Proposition 9.106)

(I −M)−1 =
∞∑

j=0

M j

Moreover, there is
Ψ = lim

j→∞
Ψj ,

(I −M)Ψ = γ−1g by [6], Theorem 9.128. According to [6], Theorem 9.128 we
have

‖Ψ−Ψj‖ ≤
qj

1− q
‖Ψ1−Ψ0‖ =

qj

1− q
‖(L−I)Ψ0+γ−1g‖ ≤ qj q + 1 + γ−1

1− q
[‖g‖+‖Ψ0‖].

Since [(1/2)I +K +EGA] = γ(I−M) we obtain the proposition of the theorem.
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