
POLYHEDRALITY IN ORLICZ SPACES

PETR HÁJEK AND MICHAL JOHANIS

Abstract. We present a construction of an Orlicz space admitting a C∞-smooth bump which depends locally on
finitely many coordinates, and which is not isomorphic to a subspace of any C(K), K scattered. In view of the related
results this space is possibly not isomorphic to a polyhedral space.

1. Introduction

In the present paper we investigate the properties of Orlicz sequence spaces admitting bump functions that depend
locally on finitely many coordinates (LFC).

The first use of the LFC notion for a function was the construction of C∞-smooth and LFC renorming of c0, due
to Kuiper, which appeared in [BF]. The LFC notion was explicitly introduced and investigated in the paper [PWZ] of
Pechanec, Whitfield and Zizler. In their work the authors have proved that every Banach space admitting a LFC bump
is saturated with copies of c0, providing in some sense a converse to Kuiper’s result. Not surprisingly, it turns out that
the LFC notion is closely related to the class of polyhedral spaces, introduced by Klee [K] and thoroughly investigated
by many authors (see [JL, Chapter 15] for results and references). (We note that polyhedrality is understood in the
isomorphic sense in this paper.) Indeed, prior to [PWZ], Fonf [F1] has proved that every polyhedral Banach space
is saturated with copies of c0. Later, it was independently proved in [F2] and [Haj1] that every separable polyhedral
Banach space admits an equivalent LFC norm. Using the last result Fonf’s result is a corollary of [PWZ]. The notion
of LFC has been exploited (at least implicitly) in a number of papers, in order to obtain very smooth bump functions,
norms and partitions of unity on non-separable Banach spaces, see e.g. [To], [Ta], [DGZ1], [GPWZ], [GTWZ], [FZ],
[Hay1], [Hay2], [Hay3], [S1], [S2], [Haj1], [Haj2], [Haj3], and the book [DGZ]. In fact, it seems to be the only general
approach to these problems. The reason is simple; it is relatively easy to check the (higher) differentiability properties
of functions of several variables, while for functions defined on a Banach space it is very hard.

For separable spaces, one of the main known results is that a separable Banach space is polyhedral if and only if
it admits a LFC renorming (resp. C∞-smooth and LFC renorming) ([Haj1]). This smoothing up result is however
obtained by using the boundary of a Banach space, rather than through some direct smoothing procedure. Another
recent result ([HJ1]) is that a separable Banach space with a (shrinking) Schauder basis has a C∞-smooth and LFC
bump function whenever it has a continuous LFC bump. This seems to be the first relatively general result in this
direction.

The main result of the paper, contained in Section 4, is a certain rather subtle construction of an Orlicz sequence
space having a C∞-smooth and LFC bump function, which we suspect to be non-polyhedral. Such an example is of
course needed to justify the whole theory, since in the polyhedral case the smoothing up (and structural) results are
well known and easier. In fact, our paper, and in particular the example was motivated by the beautiful theory of
polyhedrality for separable Banach spaces with Schauder basis, and especially Orlicz sequence spaces, developed by
Leung in [L1] and [L2]. The key result of these works is the following theorem.

Theorem ([L2]). The following statements are equivalent for every non-degenerate Orlicz function M :

(i) There exists a constant K > 0 such that lim
t→0+

M(Kt)
M(t) = ∞.

(ii) The Orlicz sequence space hM is isomorphic to a subspace of C(ωω).
(iii) The Orlicz sequence space hM is isomorphic to a subspace of C(K) for some scattered compact K.

All spaces satisfying (ii) are polyhedral, and Leung conjectured that conversely all polyhedral Orlicz sequence
spaces fall under this description. There is a strong evidence supporting this idea. First, Theorem 8, part of which
is also in Leung’s paper, shows that the naturally defined LFC renormings exist precisely for those spaces. Second,
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negating the condition in (i) we obtain the following formula

(∀K > 0)(∃{tn}∞n=1, tn ↘ 0) lim
n→∞

M(Ktn)
M(tn)

< ∞.

Reversing the order of the quantifiers we obtain the following stronger (less general) condition

(∃{tn}∞n=1, tn ↘ 0)(∀K > 0) lim
n→∞

M(Ktn)
M(tn)

< ∞.

Leung proved that Orlicz sequence spaces satisfying the last condition are not polyhedral (although they may be c0

saturated).
Thus Leung’s theorem above is a near characterisation of polyhedrality for Orlicz sequence spaces, the gap lying

in the exchange of quantifiers. Our example of an Orlicz sequence space with C∞-smooth and LFC bump lies strictly
in between the above conditions. Therefore, our space is either a non-polyhedral space admitting a LFC bump (we
are inclined to believe this alternative), or Leung’s polyhedral conjecture is false.

We refer to [FHHMPZ], [LT] and [JL] for background material and results.

2. Preliminaries

We use a standard Banach space notation. If {ei} is a Schauder basis of a Banach space, we denote by {e∗i } its
biorthogonal functionals. Pn are the canonical projections associated with the basis {ei}, P ∗n are the operators adjoint
to Pn, i.e. the canonical projections associated with the basis {e∗i }. Given a set A ⊂ N we denote by PA the projection
associated with the set A, i.e. PAx =

∑
i∈A e∗i (x)ei. By Rn we denote the projections Rn = I − Pn, where I is the

identity operator. For a finite set B, |B| denotes the number of elements of B. U(x, δ) is an open ball centered at x
with radius δ.

The notion of a function, defined on a Banach space with a Schauder basis, which is locally dependent on finitely
many coordinates was introduced in [PWZ]. The following definition is a slight generalisation which was used by many
authors.

Definition 1. Let X be a topological vector space, Ω ⊂ X an open subset, E be an arbitrary set, M ⊂ X∗ and
g : Ω → E. We say that g depends only on M on a set U ⊂ Ω if g(x) = g(y) whenever x, y ∈ U are such that
f(x) = f(y) for all f ∈ M . We say that g depends locally on finitely many coordinates from M (LFC-M for short)
if for each x ∈ Ω there are a neighbourhood U ⊂ Ω of x and a finite subset F ⊂ M such that g depends only on F on
U . We say that g depends locally on finitely many coordinates (LFC for short) if it is LFC-X∗.

We may equivalently say that g depends only on {f1, . . . , fn} ⊂ X∗ on U ⊂ Ω if there exist a mapping G : Rn → E
such that g(x) = G(f1(x), . . . , fn(x)) for all x ∈ U . Notice, that if g : Ω → E is LFC and h : E → F is any mapping,
then also h ◦ g is LFC.

The canonical example of a non-trivial LFC function is the sup norm on c0, which is LFC-{e∗i } away from the
origin. Indeed, take any x = (xi) ∈ c0, x 6= 0. Let n ∈ N be such that |xi| < ‖x‖∞ /2 for i > n. Then ‖·‖∞ depends
only on {e∗1, . . . , e∗n} on U(x, ‖x‖∞ /4).

A norm on a normed space is said to be LFC, if it is LFC away from the origin. Recall that a bump function (or
bump) on a topological vector space X is a function b : X → R with a bounded non-empty support.

Let X be a Banach lattice. We say that a function f : X → R is a lattice function if it satisfies either f(x) ≤ f(y)
whenever |x| ≤ |y|, or f(x) ≥ f(y) whenever |x| ≤ |y|. Recall that a Banach space X with an unconditional basis {ei}
has a natural lattice structure defined by

∑
aiei ≥ 0 if and only if ai ≥ 0 for all i ∈ N.

The word “coordinate” in the term LFC originates of course from spaces with bases, where LFC was first defined
using the coordinate functionals. In order to apply the LFC techniques to spaces without a Schauder basis, the
notion had to be obviously generalised using arbitrary functionals from the dual. However, as shown in [HJ1], the
generalisation does not substantially increase the supply of LFC functions on Banach spaces with a Schauder basis,
and we can always in addition assume that the given LFC function in fact depends on the coordinate functionals.
This fact is not only interesting in itself; it is the main tool for smoothing up LFC bumps on separable spaces with
basis.

The following results from [HJ1] will be needed in the sequel:

Lemma 2. Let X be a Banach space with a Schauder basis {ei} and E be an arbitrary set. Then f : X → E is
LFC-{e∗i } if and only if for each x ∈ X there is δ > 0 and n0 ∈ N such that f(y) = f(Pny) whenever ‖x− y‖ < δ
and n ≥ n0.

Theorem 3. Let E be a set, X be a Banach space with a shrinking Schauder basis {ei}, g : X → E be a LFC mapping
and ε > 0. Then there is a (shrinking) Schauder basis {xi} of X, (1 + ε)-equivalent to {ei}, such that g is LFC-{x∗i }.
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Theorem 4. Let X be a Banach space with an unconditional Schauder basis {ei}, which admits a continuous LFC
bump. Then X admits a C∞-smooth LFC-{e∗i } lattice bump.

3. Spaces with symmetric Schauder bases

Let X be a Banach space with a symmetric Schauder basis. In such spaces it is possible to define a notion of the
non-increasing reordering, which will be one of the main tools in the sequel. For any x ∈ X, x = (xi), let us denote
by x̂ a vector in X with its coordinates formed by the non-increasing reordering of the sequence (|xi|). Notice that
we can view X as a linear subspace of c0 through the natural “coordinate” embedding. In the following lemma we
gather some simple properties of this reordering which will be used later.

Lemma 5. Let X be a Banach space with a symmetric Schauder basis, x, y ∈ X be arbitrary.
(a) Let ‖·‖ be a symmetric lattice norm on X. Then

∣∣‖Pkx̂‖ − ‖Pkŷ‖
∣∣ ≤ ‖x− y‖ for any k ∈ N.

(b) R̂nx̂ ≤ R̂nx in the lattice sense for any n ∈ N.
(c) ‖x̂− ŷ‖∞ ≤ ‖x− y‖∞.
(d) Let ‖·‖ be a lattice norm on X such that the basis is normalised. Then the mapping x 7→ Pnx̂ is n-Lipschitz

for any n ∈ N.

Proof. (a): Consider a set A ⊂ N, |A| = k, such that P̂Ax = Pkx̂. Since ‖·‖ is symmetric and lattice, ‖Pkx̂‖ = ‖PAx‖
and ‖Pkŷ‖ ≥ ‖PAy‖. Therefore ‖Pkx̂‖ − ‖Pkŷ‖ ≤ ‖PAx‖ − ‖PAy‖ ≤ ‖PA(x− y)‖ ≤ ‖x− y‖.

(b): Let A ⊂ N, |A| ≤ n be such that R̂nx = ŵ, where w = x̂− PAx̂. We put z = Rnx̂. Then ẑi = x̂i+n for i ∈ N.
Let π : N → N be a one to one mapping such that ŵi = wπ(i). Then ŵi = x̂π(i) for i ∈ N. As i ≤ π(i) ≤ i + n, it
follows that ẑi = x̂i+n ≤ x̂π(i) = ŵi.

(c): Let π : N → N and σ : N → N be one to one mappings such that x̂i = |xπ(i)| and ŷi = |yσ(i)|. Pick any
n ∈ N. There is k ≤ n such that |yπ(k)| ≤ |yσ(n)|. (Otherwise there would be at least n coordinates of y for which their
absolute value is greater than |yσ(n)| which is impossible.) Consequently, x̂n− ŷn = |xπ(n)|−|yσ(n)| ≤ |xπ(k)|−|yπ(k)| ≤
|xπ(k) − yπ(k)| ≤ ‖x− y‖∞.

(d): Using the fact that the basis is normalised, then (c) and then the fact that ‖·‖ is lattice we obtain ‖Pnx̂− Pnŷ‖ =
‖Pn(x̂− ŷ)‖ ≤ ∑n

i=1 |(x̂− ŷ)i| ≤ n ‖x̂− ŷ‖∞ ≤ n ‖x− y‖∞ ≤ n ‖x− y‖.
ut

This is the key lemma:

Lemma 6. Let X be a Banach space with a symmetric Schauder basis {ei}, Φ: X → R be a continuous function
such that Φ(x) > 0 if x 6= 0 and {γn} ⊂ R be a sequence decreasing to 1. For any N ∈ N, define

ΨN (x) = max
1≤n≤N

γnΦ(Pnx̂).

Then each function ΨN is LFC-{e∗i } on X \ {0}.
Proof. Without loss of generality we may assume that ‖·‖ is symmetric and lattice. Let N ∈ N and x ∈ X\{0} be given.
We claim that there exist a neighbourhood V of x and N1 ∈ N such that x̂N1 > x̂N1+1 and ΨN (y) = Ψmin{N,N1}(y)
for all y ∈ U . If |supp x| ≥ N , then there exists N1 ≥ N such that x̂N1 > x̂N1+1 and the claim follows. Otherwise,
find N1 < N such that x̂N1 > x̂N1+1 = 0. Then choose 0 < δ < x̂N1/2 such that

|Φ(z)− Φ(x̂)| < γN1 − γN1+1

2γ1
Φ(x̂)

if ‖z − x̂‖ < (N1 + 1)δ. Denote B = supp x and notice that |B| = N1. If ‖x− y‖ < δ, i ∈ B and j /∈ B, then

|yi| ≥ |xi| − δ ≥ x̂N1 − δ > 2δ − δ = δ = |xj |+ δ ≥ |yj |
and hence

‖RN1 ŷ‖ =
∥∥PN\By

∥∥ =
∥∥PN\B(y − x)

∥∥ ≤ ‖y − x‖ < δ.

Thus, for any n ≥ N1,

‖Pnŷ − x̂‖ = ‖Pnŷ − PN1 x̂‖ ≤ ‖RN1 ŷ‖+ ‖PN1 ŷ − PN1 x̂‖ < δ + N1 ‖ŷ − x̂‖∞ ≤ δ + N1 ‖ŷ − x̂‖ < (N1 + 1)δ.

(For the last but one inequality use Lemma 5(c).) It follows from the choice of δ that for n > N1 we have

γnΦ(Pnŷ) < γn

(
1 +

γN1 − γN1+1

2γ1

)
Φ(x̂) ≤ γN1+1

(
1 +

γN1 − γN1+1

2γN1+1

)
Φ(x̂) =

γN1 + γN1+1

2
Φ(x̂).

On the other hand,

γN1Φ(PN1 ŷ) > γN1

(
1− γN1 − γN1+1

2γ1

)
Φ(x̂) ≥ γN1

(
1− γN1 − γN1+1

2γN1

)
Φ(x̂) =

γN1 + γN1+1

2
Φ(x̂).
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This means that ΨN (y) = max1≤n≤N1 γnΦ(Pnŷ) for ‖x− y‖ < δ, which proves the claim.
Using N1 and V from the claim, let ε = (x̂N1 − x̂N1+1)/2. Choose A ⊂ N, |A| = N1, such that PN1 x̂ = P̂Ax. If

‖x− y‖ < ε, then |yi| > |yj | whenever i ∈ A and j /∈ A. Hence for 1 ≤ n ≤ N1 the mappings y 7→ Pnŷ depend only
on {e∗i }i∈A on U(x, ε). By the choice of N1, it follows that ΨN depends only on {e∗i }i∈A on V ∩ U(x, ε).

ut

4. Orlicz Sequence Spaces

This section contains the main result of the paper, namely a construction of an Orlicz sequence space hM with a
C∞-smooth and LFC bump, which does not embed into any C(K) space, K scattered compact. As explained in the
introduction, our space is possibly non-polyhedral. If so, it would be the first separable example of a Banach space for
which the best smoothness (in the wider sense) of its bumps exceeds the best smoothness of its renormings. Indeed,
our space has C∞-smooth renormings, but, if non-polyhedral, it would have no LFC renormings. Up to now, the only
examples (due to Haydon [Hay3], see also [DGZ]) with a similar property are non-separable. Recall that Haydon’s
space has a C∞-smooth bump, but no equivalent Gâteaux smooth norm (and in fact using basically the same proof
one can conclude that it neither has an equivalent LFC renorming).

For the basic properties of Orlicz sequence spaces we refer e.g. to [LT].
Let M be a non-degenerate Orlicz function and hM be the respective Orlicz sequence space. We define a function

ν : hM → [0,∞) by ν(x) =
∑∞

i=1 M(|xi|). It is easily checked that this function is convex, symmetric and lattice,
ν(0) = 0, ν(x) > 0 for x 6= 0, and, by the definition of the norm in hM , ‖x‖ = 1 if and only if ν(x) = 1. It follows
from the convexity that ν(x) ≤ ‖x‖ for x ∈ BhM , while ν(x) ≥ ‖x‖ if ‖x‖ ≥ 1.

Lemma 7. The mapping µ : hM → `1 defined by µ(x) =
(
M(|xi|)

)
is continuous. Thus the function ν(x) = ‖µ(x)‖`1

is continuous.

Proof. Suppose x ∈ hM and 0 < ε < 1. Choose N ∈ N such that ‖RNx‖ < ε/2. Then, by the continuity of M , we
can choose 0 < δ < ε/2 such that ‖PN (µ(x)− µ(y))‖`1

=
∑N

i=1 |M(|xi|)−M(|yi|)| < ε if ‖x− y‖ < δ. Further, if
‖x− y‖ < δ, then ‖RNy‖ ≤ ‖RNx‖+ ‖RN (x− y)‖ ≤ ‖RNx‖+ ‖x− y‖ < ε and hence

‖µ(x)− µ(y)‖`1
≤ ‖PN (µ(x)− µ(y))‖`1

+ ‖RNµ(x)‖`1
+ ‖RNµ(y)‖`1

≤ ε + ν(RNx) + ν(RNy) ≤ ε + ‖RNx‖+ ‖RNy‖ < 3ε.

ut
Let M be a non-degenerate Orlicz function such that there is a K > 1 for which limt→0+ M(Kt)/M(t) = ∞. Leung

in [L1] constructs a sequence {ηk} of real numbers decreasing to 1 such that the norm on hM defined by |||x|||1 =
supk ηk ‖Pkx̂‖ has the property that for each x ∈ hM there is j ∈ N such that |||x|||1 = |||Pjx|||1 and the supremum is
attained at some n ∈ N. An immediate consequence of this is that the norm |||x||| = supk η2

k ‖Pkx̂‖ is LFC-{e∗i }. To see
this, fix x ∈ hM \{0} and let n ∈ N be such that ηn ‖Pnx̂‖ = supk ηk ‖Pkx̂‖. Let ε = ηn ‖Pnx̂‖ (ηn−ηn+1)/(η2

n +η2
n+1)

and take y ∈ hM satisfying ‖x− y‖ < ε. Then, by Lemma 5(a),
∣∣‖Pkx̂‖ − ‖Pkŷ‖∣∣ < ε for any k ∈ N. Thus, for k > n,

η2
n ‖Pnŷ‖ > η2

n ‖Pnx̂‖ − η2
nε = ηn+1ηn ‖Pnx̂‖+ η2

n+1ε ≥ ηkηn ‖Pnx̂‖+ η2
kε ≥ η2

k ‖Pkx̂‖+ η2
kε > η2

k ‖Pkŷ‖ ,

which implies that |||y||| = supk≤n η2
k ‖Pkŷ‖. Combining this with Lemma 6 we obtain that |||·||| is LFC-{e∗i }.

Theorem 8 (Leung). Let M be a non-degenerate Orlicz function. There is a sequence {ηk} of real numbers decreasing
to 1 such that the norm on hM defined by

|||x||| = sup
k

ηk ‖Pkx̂‖
is LFC-{e∗i } if and only if there is a K > 1 such that

lim
t→0+

M(Kt)
M(t)

= ∞. (1)

Proof. For the “if” part see the remark preceding the theorem. To show the “only if” part (which also appeared
in [L1], but not precisely formulated and without proof), suppose that (1) doesn’t hold and let {ηk} be any sequence
decreasing to 1. We will construct a vector x ∈ ShM

such that its coordinates form a positive non-increasing sequence
and ηk ‖Pkx‖ < 1 for each k ∈ N. Then obviously |||x||| = 1, but |||Pnx||| = maxk≤n ηk ‖Pkx‖ < 1 for any n ∈ N and
so |||·||| is not LFC-{e∗i } by Lemma 2.

Let {Kn} be an increasing sequence of real numbers, Kn > 1 and Kn →∞. For each n ∈ N let Cn > 2 and {tnk}∞k=1

be such that limk→∞ tnk = 0 and M(Kntnk ) < CnM(tnk ) for all k ∈ N. Let {εn} be a sequence of real numbers such
that 0 < εn < 1

2 and
∑∞

n=1 εnCn < ∞. Put m0 = 1 and find A > 0 such that M(1/A) = 1 (which means ‖ei‖ = A
for any i ∈ N).
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We choose t1 ∈ {t1k} this way: Define

m1 = min

{
k : ηk

∥∥∥∥∥
k∑

i=1

t1ei

∥∥∥∥∥ ≥ 1

}
,

and choose t1 ∈ {t1k} small enough such that

M(t1) < ε2 and (2)

ηm1 < 1 +
ε2

1− ε2

K1 − 1
C1 − 1

. (3)

By the convexity of M we have

M(ηm1t1) ≤
(

1− ηm1 − 1
K1 − 1

)
M(t1) +

ηm1 − 1
K1 − 1

M(K1t1) <

(
1− ηm1 − 1

K1 − 1

)
M(t1) +

ηm1 − 1
K1 − 1

C1M(t1)

=
(

1 + (ηm1 − 1)
C1 − 1
K1 − 1

)
M(t1) <

(
1 +

ε2

1− ε2

)
M(t1) =

1
1− ε2

M(t1),
(4)

where the last inequality follows from (3). By the definition of m1 we have m1M(ηm1t1) ≥ 1. Consequently, using this
inequality together with (4), m1M(t1) > m1(1− ε2)M(ηm1t1) ≥ 1− ε2. Hence, by (2),

(m1 − 1)M(t1) > 1− 2ε2.

We put x1 =
m1−1∑
i=1

t1ei. Notice that by the definition of m1 we have 1/ηm1−1 > ‖x1‖ ≥ 1/ηm1 −At1.

Let us continue by induction. Fix any j > 1. Suppose we have ti ∈ {tik}, mi ∈ N and xi ∈ hM already defined for
all i < j such that

∑i
k=1(mk −mk−1)M(tk) > 1− 2εi+1, 1/ηmi−1 > ‖xi‖ ≥ 1/ηmi −Ati and

xi =
i∑

l=1

ml−1∑

k=ml−1

tlek.

We choose tj ∈ {tjk} this way: Define

mj = min

{
k ≥ mj−1 : ηk

∥∥∥∥∥xj−1 +
k∑

i=mj−1

tjei

∥∥∥∥∥ ≥ 1

}
,

and choose tj ∈ {tjk} small enough such that

M(tj) < εj+1 and (5)

ηmj < 1 +
εj+1

1− εj+1
min

1≤i≤j

{
Ki − 1
Ci − 1

}
. (6)

Notice that this is possible since ‖xj−1‖ < 1/ηmj−1−1. Using again the convexity of M , the fact that ti ∈ {tik} and
(6), for any 1 ≤ i ≤ j we obtain

M(ηmj ti) ≤
(

1− ηmj − 1
Ki − 1

)
M(ti) +

ηmj − 1
Ki − 1

M(Kiti) <

(
1− ηmj − 1

Ki − 1

)
M(ti) +

ηmj − 1
Ki − 1

CiM(ti)

=
(

1 + (ηmj − 1)
Ci − 1
Ki − 1

)
M(ti) <

(
1 +

εj+1

1− εj+1

)
M(ti) =

1
1− εj+1

M(ti).

These estimates together with the definition of mj and xj−1 give

j−1∑

i=1

(mi −mi−1)M(ti) + (mj −mj−1 + 1)M(tj)

> (1− εj+1)

(
j−1∑

i=1

(mi −mi−1)M(ηmj ti) + (mj −mj−1 + 1)M(ηmj tj)

)
≥ 1− εj+1,

so the use of (5) yields
j∑

i=1

(mi −mi−1)M(ti) > 1− 2εj+1. (7)
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We put

xj =
j∑

i=1

mi−1∑

k=mi−1

tiek

and notice that, by the definition of mj ,

1/ηmj−1 > ‖xj‖ ≥ 1/ηmj
−Atj . (8)

We have inductively constructed a sequence {xj} ⊂ hM given by the formula above, such that ‖xj‖ < 1 and (7)
holds for any j ∈ N. Choose any j > 1. Since ‖xj‖ < 1, it follows that

∑j
i=1(mi −mi−1)M(ti) < 1 and comparing

this with (7) for j − 1 we obtain
(mj −mj−1)M(tj) < 2εj .

This implies that xj → x ∈ hM . Indeed, suppose K > 0. Let n ∈ N be such that Kn ≥ K. Then
∞∑

i=n

(mi −mi−1)M(Kti) ≤
∞∑

i=n

(mi −mi−1)M(Kiti) ≤
∞∑

i=n

(mi −mi−1)CiM(ti) < 2
∞∑

i=n

εiCi < ∞

and so by the basic properties of hM the vector x =
∑∞

i=1

∑mi−1
k=mi−1

tiek belongs to hM . This means also that tj → 0
and thus from (8) we can conclude that ‖x‖ = lim ‖xj‖ = 1. Moreover, the construction of xj (namely the choice of
mj) guarantees that ηk ‖Pkx‖ < 1 for each k ∈ N.

ut
The following theorem is a strengthening of a theorem from [L1]. Leung’s statement is that the Orlicz sequence

space hM does not admit a LFC norm if M satisfies the condition below.

Theorem 9. Let M be a non-degenerate Orlicz function for which there exists a sequence {tn} decreasing to 0 such
that

sup
n

M(Ktn)
M(tn)

< ∞ for all 0 < K < ∞.

Then the Orlicz sequence space hM does not admit any (even non-continuous) LFC bump function.

Proof. Suppose that hM admits some LFC bump b. Without loss of generality we may assume that b = χA for some
set 0 ∈ A ⊂ BX (by shifting, scaling and composing with a suitable function) and that b is LFC-{e∗i }. (Since hM is
c0-saturated by [J, Theorem 15] (see also [PWZ]), it does not contain `1. As {ei} is unconditional, it is shrinking by
James’s theorem. Now consider b ◦ T , where T : X → X is an equivalence isomorphism of the bases {xi} and {ei}
from Theorem 3.)

Notice, that the vectors with coordinates in the set {tn} ∪ {0} have the property of “boundedly completeness”: If∥∥∑k
i=1 tmiei

∥∥ ≤ 1 for all k ∈ N, where mi ∈ N ∪ {0} are not necessarily distinct (we put t0 = 0), then
∑∞

i=1 tmiei

converges in hM . Indeed, it follows that
∑k

i=1 M(tmi) ≤ 1 for all k ∈ N. For all 0 < K < ∞ and all k ∈ N,
k∑

i=1

M(Ktmi) ≤ sup
n

M(Ktn)
M(tn)

k∑

i=1

M(tmi) ≤ sup
n

M(Ktn)
M(tn)

.

Consequently,
∑∞

i=1 M(Ktmi) < ∞ for all 0 < K < ∞, and the sum
∑∞

i=1 tmiei converges in hM .
We construct a sequence {xk} ⊂ A by induction. Put x0 = 0 ∈ A and define natural numbers m0 = n0 = 1. If

mk−1 ∈ N, nk−1 ∈ N and xk−1 ∈ A are already defined, we put

Mk = {(m,n) ∈ N2; m ≥ mk−1, n > nk−1 and xk−1 + tmen ∈ A}.
As b depends only on some finite subset of {e∗i } on a neighbourhood of xk−1, and tm → 0, we can see that Mk 6= ∅.
Let (mk, nk) = min Mk in the lexicographic ordering of N2 and put xk = xk−1 + tmk

enk
.

Since {xk} ⊂ A ⊂ BX and xk =
∑k

i=1 tmieni , by the above argument xk → x ∈ hM . We can find δ > 0 and N ∈ N
so that b depends only on {e∗i }i<N on U(x, δ). Because xk converges, we have mk →∞ and so there is j ∈ N such that
xj ∈ U(x, δ/2), ‖tmj e1‖ < δ/2, mj < mj+1 and nj > N . Then xj + tmj enj+1 ∈ A and therefore (mj , nj + 1) ∈ Mj+1.
But (mj , nj + 1) < (mj+1, nj+1), which is a contradiction.

ut
In [L1], Leung constructed a c0-saturated Orlicz sequence space satisfying the condition in Theorem 9. Therefore,

we have the following corollary:

Corollary 10. Leung’s space is a separable c0-saturated Asplund space that does not admit any (even non-continuous)
LFC bump function.
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The main construction of this paper is contained in the next theorem.

Theorem 11. Let M be a non-degenerate Orlicz function for which there exist sequence Fk ⊂ (0, 1] such that
(i) limk→∞(supFk) = 0,
(ii) there is a sequence Kk > 1 such that

lim
t→0+
t/∈Fk

M(Kkt)
M(t)

= ∞,

(iii) there is a K > 1 and a sequence Ck →∞ such that M(Kt) ≥ CkM(t) for all t ∈ Fk.
Then there exists a C∞-smooth LFC-{e∗i } lattice bump function on the Orlicz sequence space hM .

Proof. Without loss of generality we may and do assume that M(1) = 1 (i.e. ‖e1‖ = 1) and Ck ≥ C1 > 0 for any
k ∈ N.

For each t ∈ Fk \ {0} choose εk
t > 0 such that M(s) < 2M(t) and t/2 < s < 2t if |s− t| < εk

t . Define Gk =⋃
t∈Fk\{0}(t − εk

t , t + εk
t ). Then each Gk is open, Gk ⊃ (Fk \ {0}) and sup Gk ≤ 2 sup Fk. Moreover, for any s ∈ Gk

the choice of an appropriate t ∈ Fk \ {0} from the definition of Gk yields M(2Ks) > M(Kt) ≥ CkM(t) > CkM(s)/2
(using (iii) and the continuity of M). So, if we multiply K by 2 and each Ck by 1

2 and denote these new constants K
and Ck again to avoid carrying unnecessary factors, we have

lim
k→∞

(sup Gk) = 0, (9)

M(Kt) ≥ CkM(t) for all t ∈ Gk. (10)

Let us define a sequence of continuous functions ϕk on [0, +∞) such that 0 ≤ ϕk(t) ≤ t, ϕk(t) = 0 for t ∈ Fk and
ϕk(t) = t for t /∈ Gk, and a mapping φk : hM → hM by φk(x) =

(
ϕk(|xi|)

)
for x = (xi) ∈ hM . (We can take for

example ϕk(t) = t dist(t, Fk)/
(
dist(t, Fk) + dist(t,R \Gk)

)
for t > 0 and ϕk(0) = 0.)

Fix k ∈ N.
First, observe that the mapping φk : hM → hM is continuous: Choose x ∈ hM and ε > 0 and find n ∈ N such that

‖Rnx‖ < ε
8 . As ϕk is continuous, there is δ > 0 such that

∣∣|xi| − |yi|
∣∣ < δ implies

∣∣ϕk(|xi|) − ϕk(|yi|)
∣∣ < ε

2n for all
1 ≤ i ≤ n. We have

∣∣|xi| − |yi|
∣∣ ≤ |xi − yi| = ‖(x− y)iei‖ ≤ ‖x− y‖. (The last inequality uses the fact that the norm

‖·‖ is a lattice norm.) Thus, whenever ‖x− y‖ < min{δ, ε
4},

‖φk(x)− φk(y)‖ ≤ ‖Pn(φk(x)− φk(y))‖+ ‖Rn(φk(x)− φk(y))‖

≤
n∑

i=1

∣∣ϕk(|xi|)− ϕk(|yi|)
∣∣ + ‖Rnφk(x)‖+ ‖Rnφk(y)‖ <

ε

2
+ ‖Rnx‖+ ‖Rny‖

≤ ε

2
+ ‖Rnx‖+ ‖Rnx‖+ ‖Rn(x− y)‖ <

ε

2
+

ε

8
+

ε

8
+

ε

4
= ε.

The third and the fifth inequalities follows again from the fact that the norm ‖·‖ is lattice.

Claim 1. There is a non-increasing sequence {ηk
n} ⊂ R satisfying ηk

n ≤ 2 and limn→∞ ηk
n = 1, such that for each

x ∈ hM for which φk(x) 6= 0 there is δ > 0 and n0 ∈ N such that for any y ∈ U(x, δ) we have

ηk
nν(Pnφ̂k(y)) > ν(φ̂k(y)) for all n ≥ n0.

We will construct the sequence ηk
n as follows: If (0, a) ⊂ Fk for some a > 0, then any non-increasing sequence

ηk
n → 1 such that 1 < ηk

n ≤ 2 for all n ∈ N will do. Indeed, then there is n0 ∈ N such that |xi| < a/2 for i ≥ n0 and
hence φ̂k(y) = Pn0 φ̂k(y) whenever ‖x− y‖ < a/2.

Otherwise, put bn = inf
{

M(Kkt)
M(t) ; 0 < t ≤

√
M−1( 1

n ), t /∈ Fk

}
. By our assumption, bn < ∞ for all n ∈ N. Notice,

that bn is non-decreasing and, by (ii), bn → ∞. Define ηk
n = min{2, (1 − b

−1/2
n )−1}. It is trivial to check that ηk

n is
non-increasing and ηk

n → 1.
Define a mapping Qk : hM → hM by Qk(x)i = |xi| if |xi| /∈ Fk, Qk(x)i = 0 otherwise.
Now choose x ∈ hM for which φk(x) 6= 0. By Lemma 7 there is 0 < δ < 1

2Kk
such that ν(φk(y)) > 1

2ν(φk(x)) if

‖x− y‖ < δ. Find n0 ∈ N such that ηk
n = (1−b

−1/2
n )−1, b

−1/2
n < 1

2ν(φk(x)), ‖Rnx‖ < 1
2Kk

and M−1( 1
n ) ≤ 1/(‖x‖+δ)2

for n ≥ n0. Fix n ≥ n0 and y ∈ hM such that ‖x− y‖ < δ. Using Lemma 5(b) and the fact that the canonical norm
on hM is a symmetric lattice norm, we have

∥∥∥RnQ̂k(y)
∥∥∥ ≤ ‖RnQk(y)‖ ≤ ‖Rny‖ ≤ ‖Rnx‖+ ‖Rn(x− y)‖ <

1
Kk

. (11)
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As
∑∞

i=1 M(Q̂k(y)i/ ‖y‖) ≤
∑∞

i=1 M(|yi| / ‖y‖) = ν(y/ ‖y‖) = 1 and the sequence Q̂k(y)i is non-increasing, it
follows that Q̂k(y)i/ ‖y‖ ≤ M−1( 1

i ) for any i ∈ N. From the definition of n0 we obtain Q̂k(y)i ≤ ‖y‖M−1( 1
i ) ≤

(‖x‖+ δ)M−1( 1
i ) ≤

√
M−1( 1

i ) for i ≥ n0. Notice further that Q̂k(y)i /∈ Fk for any i ∈ N, thus by the definition of bn

and (11) we have

1 > ν
(
KkRnQ̂k(y)

)
=

∑

i>n

M
(
KkQ̂k(y)i

)
≥

∑

i>n

biM
(
Q̂k(y)i

)
≥ bn

∑

i>n

M
(
Q̂k(y)i

)
,

which together with the easily checked inequality φ̂k(y)i ≤ Q̂k(y)i for any i ∈ N implies
∑

i>n

M
(
φ̂k(y)i

)
≤

∑

i>n

M
(
Q̂k(y)i

)
≤ 1

bn
.

Notice that by the definition of δ and n0 and by the symmetry of ν we have ν(φ̂k(y)) > b
−1/2
n and therefore (use this

fact for the second inequality)

ν(Pnφ̂k(y)) =
n∑

i=1

M(φ̂k(y)i) ≥
∞∑

i=1

M(φ̂k(y)i)−
1
bn

= ν(φ̂k(y))− 1
bn

> (1− b−1/2
n )ν(φ̂k(y)) =

1
ηk

n

ν(φ̂k(y)),

which proves the claim.

Choose and arbitrary sequence {γk} ⊂ R decreasing to 1. Let us define a sequence of functions gk : hM → R by

gk(x) =
1

Ck
+ sup

n
γk+nηk

nν(Pnφ̂k(x)).

Claim 2. Each gk is a LFC-{e∗i } function on {x ∈ hM , φk(x) 6= 0} and continuous on hM .

Indeed, for a fixed k ∈ N and x ∈ hM , φk(x) 6= 0, choose an appropriate δ and n0 from Claim 1. Let N ≥ n0 be
such that γk+nηk

n < γk+n0 whenever n > N . Then for y ∈ U(x, δ) and n > N we have

γk+n0η
k
n0

ν(Pn0 φ̂k(y)) > γk+nηk
nν(φ̂k(y)) ≥ γk+nηk

nν(Pnφ̂k(y))

and hence

gk(y) =
1

Ck
+ max

1≤n≤N
γk+nηk

nν(Pnφ̂k(y)). (12)

By Lemma 6 there is a neighbourhood V of φk(x) and a finite A ⊂ N such that the function max1≤n≤N γk+nηk
nν(Pnẑ)

depends only on {e∗i }i∈A on V . But since φk is continuous, there is a neighbourhood U of x, U ⊂ U(x, δ), such that
φk(U) ⊂ V . Further, as φk(y)i = φk(z)i whenever yi = zi for any i ∈ N, the function gk depends only on {e∗i }i∈A on
U .

Moreover, each gk is continuous on hM : Using the continuity of φk, Lemma 5(d) and (12) we can see that gk is
continuous on {x ∈ hM , φk(x) 6= 0}. On the other hand,

1
Ck

≤ gk(x) ≤ 1
Ck

+ γkηk
1ν(φk(x)),

and the continuity of gk at any x with φk(x) = 0 follows from the continuity of φk and the properties of ν.

Notice further that, since ν is lattice,

gk(x) ≤ 1
Ck

+ γkηk
1ν(x), (13)

and as gk(x) ≥ 1
Ck

+ γk+nηk
nν(PnΦ̂k(x)) for each n ∈ N, the continuity of ν implies

gk(x) ≥ 1
Ck

+ ν(φk(x)), (14)

for any x ∈ hM and any k ∈ N.

Claim 3. For each x ∈ hM there is δ > 0 and k0 ∈ N such that for any y ∈ U(x, δ) and k ≥ k0 we have

ν(y) <
1

Ck
+ ν(φk(y)).
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Indeed, choose x ∈ hM . Let n ∈ N be such that ‖Rnx‖ < 1
3K and 0 < δ < 1

3K such that moreover δ ≤
1
2 min{|xi| ; xi 6= 0, i ≤ n} if Pnx 6= 0. Pick any y ∈ hM for which ‖x− y‖ < δ. Notice that if |yi| < δ then either
xi = 0 or i > n. Let A1 = {i; xi = 0}, A2 = {i; i > n}. Then

‖PA1∪A2y‖ ≤ ‖PA1y‖+ ‖Rny‖ ≤ ‖PA1(y − x)‖+ ‖Rnx‖+ ‖Rn(x− y)‖ <
1
K

.

Therefore we have
∑

|yi|<δ

M
(
K |yi|

)
< 1. By (9) we can find k0 ∈ N such that Gk ⊂ (0, δ) for all k ≥ k0 and hence,

using (10), ∑

|yi|∈Gk

M
(|yi|

)
<

1
Ck

for all k ≥ k0.

It follows that, for any y ∈ U(x, δ) and k ≥ k0,

ν(y) =
∞∑

i=1

M(|yi|) =
∑

|yi|∈Gk

M(|yi|) +
∑

|yi|/∈Gk

M(|yi|)

=
∑

|yi|∈Gk

M(|yi|) +
∑

|yi|/∈Gk

M(φk(y)i) <
1

Ck
+

∞∑

i=1

M(φk(y)i) =
1

Ck
+ ν(φk(y)).

Finally let us define a function g : hM → R by

g(x) = sup
k

γkgk(x).

Choose 0 6= x ∈ hM and find δ and k0 from Claim 3. Since ν is continuous, we may also assume that ν(y) ≥ ν(x)/2
if ‖x− y‖ < δ. There is N ∈ N such that 2γk/(ν(x)Ck) + γ2

kηk
1 < γk0 for k > N . Then for any y ∈ U(x, δ) and k > N

we have (using first (13), then the definition of N , Claim 3 and finally (14))

γkgk(y) ≤ γk

Ck
+ γ2

kηk
1ν(y) < γk0ν(y) <

γk0

Ck0

+ γk0ν(φk0(y)) ≤ γk0gk0(y). (15)

This means that
g(y) = sup

k
γkgk(y) = max

k≤N
γkgk(y) (16)

for y ∈ U(x, δ). In particular, since each gk is continuous on hM , it follows that g is continuous on hM \ {0}. On the
other hand, for any y ∈ hM ,

γ1

C1
≤ γ1g1(y) ≤ g(y) ≤ γ1

C1
+ 2γ2

1ν(y),

(the last inequality follows from (13)) and the continuity of ν implies that g is continuous at 0 and hence on the whole
of hM .

Let us define a set D = {x ∈ hM , g(x) > γ1
C1
}. Choose any x ∈ D and find an appropriate N and δ for this x as

above. Let A = {k : 1 ≤ k ≤ N, φk(x) 6= 0}. If k ∈ {1, . . . , N} \A, then

γkgk(x) =
γk

Ck
≤ γ1

C1
< g(x).

By the continuity of all φk, gk and g, there is a neighbourhood U of x, U ⊂ U(x, δ), such that φk(y) 6= 0 for k ∈ A
and γkgk(y) < g(y) for k ∈ {1, . . . , N} \ A whenever y ∈ U . Thus, by (16), g(y) = maxk∈A γkgk(y) for y ∈ U . Since
each gk, k ∈ A, is LFC on U , so is g. Therefore g is LFC on D.

From the last two inequalities in (15) we can see that g(x) > ν(x) for any x ∈ hM . Therefore g(x) > ‖x‖ on
{x ∈ hM ; ‖x‖ ≥ 1} and we can compose g with a suitable real continuous function to obtain a desired continuous
LFC bump. To finish the proof, it remains to apply Theorem 4.

ut
Theorem 12. There is a non-degenerate Orlicz function M such that lim inft→0+

M(Kt)
M(t) < ∞ for any K > 1, yet

the corresponding Orlicz sequence space hM admits a C∞-smooth LFC-{e∗i } lattice bump.

Proof. Suppose we have a sequence bn ≥ 1, n ≥ 0. For n = 0, 1, 2, . . . , put an =
∏n

m=0 b−1
m and let M(t) be a piecewise

linear continuous function on [ 0,∞), such that M(0) = 0, M ′(t) = an for 2−(n+1) < t < 2−n and M ′(t) = 1 for t > 1.
Clearly, this is a non-degenerate Orlicz function and the constants bn determine the ratio of the slopes of M on the
two consecutive dyadic intervals. Suppose that j ∈ N ∪ {0} and 2−(n+1) ≤ t ≤ 2−n for some n ≥ j. Then

2j−n−2an−j+1 ≤ M(2j−n−1) ≤ M(2jt) ≤ M(2j−n) ≤ 2j−nan−j .
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Hence, for n ≥ j ≥ 2,

2j−2
n∏

m=n−j+2

bm ≤ M(2jt)
M(t)

≤ 2j+2
n+1∏

m=n−j+1

bm. (17)

If Fk is chosen to be
⋃

n∈Ik
[2−(n+1), 2−n) for some Ik ⊂ N, then for conditions (i) to (iii) in Theorem 11 to hold, it is

sufficient to require
(a) lim

k→∞
min Ik = ∞,

(b) For each k ∈ N, there exists jk ∈ N such that lim
n→∞
n/∈Ik

max{bn−jk
, . . . , bn} = ∞,

(c) lim
k→∞

min
n∈Ik

bn = ∞.

Indeed, (a) implies (i). If t ∈ (0, 1) \ Fk, then there is n /∈ Ik such that t ∈ [2−(n+1), 2−n) and thus (17) together with
(b) implies (ii) for Kk = 2jk+2. Finally, (17) together with (c) implies (iii) for K = 4 and Ck = minn∈Ik

bn. On the
other hand, condition

(d) lim inf
n→∞

max{bn−j , . . . , bn} < ∞ for all j ∈ N
with (17) ensures that lim inft→0+

M(Kt)
M(t) < ∞ for any K > 1.

Now we construct a sequence bn ≥ 1, n ≥ 0 and a sequence Ik ⊂ N satisfying conditions (a) to (d). Choose a
non-decreasing sequence {cn} ⊂ R such that cn ≥ 1 and cn →∞. For i = 0, 1, 2, . . . , j = 0, . . . , i and k = 0, . . . , j + 1,
let

n(i, j, k) =
i−1∑

l=0

l+1∑
m=1

(m + 1) +
j∑

m=1

(m + 1) + k

and define {bn}∞n=0 by bn(i,j,0) = ci and bn(i,j,k) = cj for k = 1, . . . , j + 1. The sequence {bn} fills a triangular table,
where the index n = n(i, j, k) is interpreted as follows: i counts the rows, by j we index groups of columns, where the
j-th group consists of j + 2 columns, and k is an index of a column in the j-th group. So we have the following table

b0 b1

b2 b3 b4 b5 b6

b7 b8 b9 b10 b11 b12 b13 b14 b15

b16 b17 b18 b19 b20 b21 b22 b23 b24 b25 b26 b27 b28 b29

. . . . . .
with the values

c0 c0

c1 c0 c1 c1 c1

c2 c0 c2 c1 c1 c2 c2 c2 c2

c3 c0 c3 c1 c1 c3 c2 c2 c2 c3 c3 c3 c3 c3

. . . . . .
For any j ∈ N we have max{bn(i,j,1), . . . , bn(i,j,j+1)} = cj for all i ≥ j and (d) is clearly satisfied.

Now let Ik =
∞⋃

m=k−1

∞⋃
i=m

{n(i,m, 1), . . . , n(i,m, m + 1)} for k ∈ N, i.e. Ik consists of all the columns in the table

starting with the (k − 1)-th group but without the first column in each group. Condition (a) obviously holds. If
n(i, j, l) /∈ Ik, then l ≤ j + 1 < k or l = 0 but in both cases max{bn(i,j,l)−k+1, . . . , bn(i,j,l)} ≥ bn(i,j,0) = ci and hence
(b) is satisfied. Finally, minn∈Ik

bn = ck−1 implies (c).
ut
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