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POLYHEDRALITY IN ORLICZ SPACES

PETR HAJEK AND MICHAL JOHANIS

ABSTRACT. We present a construction of an Orlicz space admitting a C'°°-smooth bump which depends locally on
finitely many coordinates, and which is not isomorphic to a subspace of any C(K), K scattered. In view of the related
results this space is possibly not isomorphic to a polyhedral space.

1. INTRODUCTION

In the present paper we investigate the properties of Orlicz sequence spaces admitting bump functions that depend
locally on finitely many coordinates (LFC).

The first use of the LFC notion for a function was the construction of C°°-smooth and LFC renorming of ¢q, due
to Kuiper, which appeared in [BF]. The LFC notion was explicitly introduced and investigated in the paper [PWZ] of
Pechanec, Whitfield and Zizler. In their work the authors have proved that every Banach space admitting a LFC bump
is saturated with copies of ¢g, providing in some sense a converse to Kuiper’s result. Not surprisingly, it turns out that
the LFC notion is closely related to the class of polyhedral spaces, introduced by Klee [K] and thoroughly investigated
by many authors (see [JL, Chapter 15] for results and references). (We note that polyhedrality is understood in the
isomorphic sense in this paper.) Indeed, prior to [PWZ], Fonf [F1] has proved that every polyhedral Banach space
is saturated with copies of ¢y. Later, it was independently proved in [F2] and [Hajl] that every separable polyhedral
Banach space admits an equivalent LFC norm. Using the last result Font’s result is a corollary of [PWZ]. The notion
of LFC has been exploited (at least implicitly) in a number of papers, in order to obtain very smooth bump functions,
norms and partitions of unity on non-separable Banach spaces, see e.g. [To|, [Ta], [DGZ1], [GPWZ], [GTWZ], [FZ],
[Hayl], [Hay2|, [Hay3], [S1], [S2], [Hajl], [Haj2], [Haj3], and the book [DGZ]. In fact, it seems to be the only general
approach to these problems. The reason is simple; it is relatively easy to check the (higher) differentiability properties
of functions of several variables, while for functions defined on a Banach space it is very hard.

For separable spaces, one of the main known results is that a separable Banach space is polyhedral if and only if
it admits a LFC renorming (resp. C*°-smooth and LFC renorming) ([Hajl]). This smoothing up result is however
obtained by using the boundary of a Banach space, rather than through some direct smoothing procedure. Another
recent result ([HJ1]) is that a separable Banach space with a (shrinking) Schauder basis has a C°°-smooth and LFC
bump function whenever it has a continuous LFC bump. This seems to be the first relatively general result in this
direction.

The main result of the paper, contained in Section 4, is a certain rather subtle construction of an Orlicz sequence
space having a C*°-smooth and LFC bump function, which we suspect to be non-polyhedral. Such an example is of
course needed to justify the whole theory, since in the polyhedral case the smoothing up (and structural) results are
well known and easier. In fact, our paper, and in particular the example was motivated by the beautiful theory of
polyhedrality for separable Banach spaces with Schauder basis, and especially Orlicz sequence spaces, developed by
Leung in [L1] and [L2]. The key result of these works is the following theorem.

Theorem ([L2]). The following statements are equivalent for every non-degenerate Orlicz function M :

(i) There exists a constant K > 0 such that t£r51+ % = 00.

(i) The Orlicz sequence space hyy is isomorphic to a subspace of C'(w®).
(i) The Orlicz sequence space hyy is isomorphic to a subspace of C(K) for some scattered compact K.

All spaces satisfying (ii) are polyhedral, and Leung conjectured that conversely all polyhedral Orlicz sequence
spaces fall under this description. There is a strong evidence supporting this idea. First, Theorem 8, part of which
is also in Leung’s paper, shows that the naturally defined LFC renormings exist precisely for those spaces. Second,
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negating the condition in (i) we obtain the following formula

M(Kt,
(9K > 0)3()70: 00\ 0) Jim ) <o

Reversing the order of the quantifiers we obtain the following stronger (less general) condition

FHtn oy, tn W O)(VK > 0) lim M < 00.
5 M t,)
Leung proved that Orlicz sequence spaces satisfying the last condition are not polyhedral (although they may be ¢q
saturated).

Thus Leung’s theorem above is a near characterisation of polyhedrality for Orlicz sequence spaces, the gap lying
in the exchange of quantifiers. Our example of an Orlicz sequence space with C*°-smooth and LFC bump lies strictly
in between the above conditions. Therefore, our space is either a non-polyhedral space admitting a LFC bump (we
are inclined to believe this alternative), or Leung’s polyhedral conjecture is false.

We refer to [FHHMPZ], [LT] and [JL] for background material and results.

2. PRELIMINARIES

We use a standard Banach space notation. If {e;} is a Schauder basis of a Banach space, we denote by {ef} its
biorthogonal functionals. P, are the canonical projections associated with the basis {e;}, P are the operators adjoint
to P,, i.e. the canonical projections associated with the basis {e}}. Given a set A C N we denote by P4 the projection
associated with the set A, i.e. Paz = ), 4 ef(x)e;. By R, we denote the projections R, = I — P,, where [ is the
identity operator. For a finite set B, |B| denotes the number of elements of B. U(x, ) is an open ball centered at x
with radius 6.

The notion of a function, defined on a Banach space with a Schauder basis, which is locally dependent on finitely
many coordinates was introduced in [PWZ]. The following definition is a slight generalisation which was used by many
authors.

Definition 1. Let X be a topological vector space, & C X an open subset, E be an arbitrary set, M C X* and
g: Q — E. We say that g depends only on M on a set U C Q if g(x) = g(y) whenever z,y € U are such that
f(@) = f(y) for all f € M. We say that g depends locally on finitely many coordinates from M (LFC-M for short)
if for each x € Q there are a neighbourhood U C Q of x and a finite subset F' C M such that g depends only on F' on
U. We say that g depends locally on finitely many coordinates (LFC for short) if it is LFC-X*.

We may equivalently say that g depends only on {fi,..., fn} C X* on U C Q if there exist a mapping G: R” — F
such that g(z) = G(f1(z),..., fo(z)) for all z € U. Notice, that if g: @ — E is LFC and h: E — F is any mapping,
then also h o g is LFC.

The canonical example of a non-trivial LFC function is the sup norm on c¢p, which is LFC-{e} away from the
origin. Indeed, take any « = (x;) € co,  # 0. Let n € N be such that |z;| < ||z||, /2 for ¢ > n. Then |-||,, depends
only on {e},...,ex} on Uz, ||z], /4).

A norm on a normed space is said to be LFC, if it is LFC away from the origin. Recall that a bump function (or
bump) on a topological vector space X is a function b: X — R with a bounded non-empty support.

Let X be a Banach lattice. We say that a function f: X — R is a lattice function if it satisfies either f(z) < f(y)
whenever |z| < |y|, or f(x) > f(y) whenever |z| < |y|. Recall that a Banach space X with an unconditional basis {e;}
has a natural lattice structure defined by 3 a;e; > 0 if and only if a; > 0 for all ¢ € N.

The word “coordinate” in the term LFC originates of course from spaces with bases, where LFC was first defined
using the coordinate functionals. In order to apply the LFC techniques to spaces without a Schauder basis, the
notion had to be obviously generalised using arbitrary functionals from the dual. However, as shown in [HJ1], the
generalisation does not substantially increase the supply of LFC functions on Banach spaces with a Schauder basis,
and we can always in addition assume that the given LFC function in fact depends on the coordinate functionals.
This fact is not only interesting in itself; it is the main tool for smoothing up LFC bumps on separable spaces with
basis.

The following results from [HJ1] will be needed in the sequel:

Lemma 2. Let X be a Banach space with a Schauder basis {e;} and E be an arbitrary set. Then f: X — FE is
LFC-{ef} if and only if for each x € X there is 6 > 0 and ng € N such that f(y) = f(Pny) whenever ||z —y| < §
and n > ng.

Theorem 3. Let E be a set, X be a Banach space with a shrinking Schauder basis {e;}, g: X — E be a LFC mapping
and € > 0. Then there is a (shrinking) Schauder basis {x;} of X, (14 ¢€)-equivalent to {e;}, such that g is LFC-{x}}.
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Theorem 4. Let X be a Banach space with an unconditional Schauder basis {e;}, which admits a continuous LFC
bump. Then X admits a C*°-smooth LFC-{e}} lattice bump.

3. SPACES WITH SYMMETRIC SCHAUDER BASES

Let X be a Banach space with a symmetric Schauder basis. In such spaces it is possible to define a notion of the
non-increasing reordering, which will be one of the main tools in the sequel. For any x € X, x = (x;), let us denote
by T a vector in X with its coordinates formed by the non-increasing reordering of the sequence (|z;|). Notice that
we can view X as a linear subspace of ¢y through the natural “coordinate” embedding. In the following lemma we
gather some simple properties of this reordering which will be used later.

Lemma 5. Let X be a Banach space with a symmetric Schauder basis, x,y € X be arbitrary.
(a) Let ||-|| be a symmetric lattice norm on X. Then ‘HP;JEH - HPka < |l —y|| for any k € N.
(b) Rnz < Rpz in the lattice sense for any n € N.
() 17 =Tl < llz = yllo-
(d) Let ||-|| be a lattice norm on X such that the basis is normalised. Then the mapping x — P,T is n-Lipschitz
for any n € N.

Proof. (a): Consider a set A C N, |A| = k, such that Pax = P,Z. Since I]| is symmetric and lattice, ||PZ|| = ||Pax||
and || Pyl = ||Payl|- Therefore || Ppz]| — || Byl < [[Paz|| — [[Payll < [[Pa(z —y)ll < [z = yll.

(b): Let A C N, |A| < n be such that R,z = w, where w = Z — P4Z. We put z = R,,z. Then z; = Z;4,, for ¢ € N.
Let m: N — N be a one to one mapping such that @W; = wr(;). Then @; = Zr;) fori € N. As i < w(i) <i+n, it
follows that z; = T yn < Ty = W;.

(c): Let 7: N — N and 0: N — N be one to one mappings such that z; = |z,¢;| and ¥; = |ys(;)| Pick any
n € N. There is & < n such that |y x)| < [Yo(n)|- (Otherwise there would be at least n coordinates of y for which their
absolute value is greater than |y, ()| which is impossible.) Consequently, Zn, —Jn = [T (n)| = Yo ()| < [Ty | = Yr@)] <

(d): Using the fact that the basis is normalised, then (c) and then the fact that ||-|| is lattice we obtain || P,Z — P3| =

1Pa@ =9 < 2 1@ =il < nlZ =Tl Snllz =yl < nllz -yl
O

This is the key lemma:

Lemma 6. Let X be a Banach space with a symmetric Schauder basis {e;}, ®: X — R be a continuous function
such that ®(z) > 0 if £ #0 and {v,} C R be a sequence decreasing to 1. For any N € N, define

Un(z) = max Y@ (P, T).

Then each function ¥y is LEC-{ef} on X \ {0}.

Proof. Without loss of generality we may assume that ||-|| is symmetric and lattice. Let N € Nand z € X\ {0} be given.
We claim that there exist a neighbourhood V' of x and Ny € N such that Zn, > Zn, 11 and Y (y) = Yiingn,n, 1 ()
for all y € U. If |suppx| > N, then there exists Ny > N such that Zn, > Tn,+1 and the claim follows. Otherwise,
find N7 < N such that Zn, > ZTn,+1 = 0. Then choose 0 < § < Zn, /2 such that

1B(2) — B < 22— TNt g7
2m
if ||z — Z|| < (N1 + 1)d. Denote B = supp = and notice that |B| = N;. If |z — y|| < 6, i € B and j ¢ B, then
and hence
|Bn, Gl = || Posy|| = ||[Pos(y — 2)|| < |ly — =] <.
Thus, for any n > Ny,
1Pny = 2l = [[Poy — P, Z|| < [|Bw, ¥l + ([P35 = Py, Tl <6+ N[y = 2l oo <04+ No [y — 2 < (N1 +1)0.
(For the last but one inequality use Lemma 5(c).) It follows from the choice of ¢ that for n > Ny we have
m®(Pof) < (1 + 7N17N1+1) B(F) < Yy, 41 <1 + W) B(7) = wq)@).
21 29Ny +1 2
On the other hand,

T @(Pd) >, (1= ) (3) 2 oy, (12 I ) () - I E It g
271 2vn, 2
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This means that ¥ n(y) = maxi<p<n, 1nP(P,y) for ||z — y|| < J, which proves the claim.

Using Ny and V' from the claim, let ¢ = (Zn, — Zn,+1)/2. Choose A C N, |A| = Ny, such that Py, T = Pax. If
|z — y|| < e, then |y;| > |y;| whenever i € A and j ¢ A. Hence for 1 < n < N; the mappings y — P,y depend only
on {ef}ica on U(z,e). By the choice of Ny, it follows that ¥ depends only on {e}};ca on VN U(z,¢).

O

4. ORLICZ SEQUENCE SPACES

This section contains the main result of the paper, namely a construction of an Orlicz sequence space hy; with a
C*°-smooth and LFC bump, which does not embed into any C(K) space, K scattered compact. As explained in the
introduction, our space is possibly non-polyhedral. If so, it would be the first separable example of a Banach space for
which the best smoothness (in the wider sense) of its bumps exceeds the best smoothness of its renormings. Indeed,
our space has C°°-smooth renormings, but, if non-polyhedral, it would have no LFC renormings. Up to now, the only
examples (due to Haydon [Hay3], see also [DGZ]) with a similar property are non-separable. Recall that Haydon’s
space has a C*°-smooth bump, but no equivalent Gateaux smooth norm (and in fact using basically the same proof
one can conclude that it neither has an equivalent LFC renorming).

For the basic properties of Orlicz sequence spaces we refer e.g. to [LT].

Let M be a non-degenerate Orlicz function and hj,; be the respective Orlicz sequence space. We define a function
v:hy — [0,00) by v(z) = >0 M(|z;]). It is easily checked that this function is convex, symmetric and lattice,
v(0) =0, v(z) > 0 for x # 0, and, by the definition of the norm in hyy, ||z|| = 1 if and only if v(z) = 1. It follows
from the convexity that v(x) < ||z| for x € By,,,, while v(z) > ||z|| if ||z] > 1.

Lemma 7. The mapping pu: har — 41 defined by pu(x) = (M(|a;|)) is continuous. Thus the function v(z) = 1()1l,
18 continuous.
Proof. Suppose = € hy; and 0 < € < 1. Choose N € N such that ||Ryz| < €/2. Then, by the continuity of M, we
can choose 0 < ¢ < €/2 such that ||Py(u(z) — p(y)ll,, = Ef\il M (|z;]) — M(Jyi])| < e if ||l —y|| < . Further, if
[z =yl <9, then |Ryy| < [[Bnz| + |Rn(z — y)|| < [Bnvz| + ||z — y[| <& and hence
(@) = w@)lly, < [1Px (@) = w@)lle, + [Byp(@)ll,, + 1By p)ll,
<e+v(Ryz)+v(Byy) <e+ | Byz| +[[Ryyl < 3e.
O

Let M be a non-degenerate Orlicz function such that there is a K > 1 for which lim;_.o+ M (Kt)/M (t) = co. Leung
in [L1] constructs a sequence {n;} of real numbers decreasing to 1 such that the norm on hps defined by |||z|||, =
supy, Mk || PrZ|| has the property that for each x € hys there is j € N such that [|z|||, = || P;z||; and the supremum is
attained at some n € N. An immediate consequence of this is that the norm |||z||| = supj, n || PxZ|| is LFC-{e} }. To see
this, fix € has \ {0} and let n € N be such that n,, | P,Z|| = supy, nx | PZ]|. Let & = ny, (| PaZ]| (7n — ng1)/ (M2 +1241)
and take y € hyy satisfying ||z — y|| < e. Then, by Lemma 5(a), ||| PxZ]| — || P7]|| < € for any k € N. Thus, for k > n,

Mo | Pudll > 0 1PaZ ] = time = thasrtn [|PaZ + 17 418 = e [ PaZl| + mice > i [ PR + e > i | Pl
which implies that [[|y|| = supy.<,, 77 || Py Combining this with Lemma 6 we obtain that [||-[|| is LFC-{e]}.

Theorem 8 (Leung). Let M be a non-degenerate Orlicz function. There is a sequence {n} of real numbers decreasing
to 1 such that the norm on hy; defined by

llzlll = SU 7 | Bzl
is LEC-{e}} if and only if there is a K > 1 such that

MK
ot M) e

Proof. For the “if” part see the remark preceding the theorem. To show the “only if” part (which also appeared
in [L1], but not precisely formulated and without proof), suppose that (1) doesn’t hold and let {n;} be any sequence
decreasing to 1. We will construct a vector x € Sp,, such that its coordinates form a positive non-increasing sequence
and 7y, | Pyx|| < 1 for each k € N. Then obviously |||z|| = 1, but |||P,z||| = maxk<n m || Pex| < 1 for any n € N and
so |||-|Il is not LFC-{e}} by Lemma 2.

Let {K,} be an increasing sequence of real numbers, K,, > 1 and K,, — co. For each n € Nlet C,, > 2 and {t}}32,
be such that limy ot} = 0 and M(K,t}) < C,M(t}) for all k € N. Let {e,} be a sequence of real numbers such
that 0 < e, < 2 and Y °° , £,C,, < co. Put mg = 1 and find A > 0 such that M(1/A) = 1 (which means [le;[| = A
for any ¢ € N).
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We choose t; € {t;} this way: Define

k
mlzmin{k‘:nk Ztlei 21},
i=1
and choose t; € {t}.} small enough such that
M(t1) <eg and (2)
135} K1,1
my < 1 . 3
hma +1—8201—1 ()
By the convexity of M we have
777711_1 77m1_1 77m1_1 ﬂml—l
My, t1) < (1 — —/—— | M(t M(Kt 1— —— | M{(t M(t
(it) < (1= B Y drten) + G =P ar(an) < (1= B ) drte) + G o)
=1+ 1)01*1 M) < 1+ —=2 M(t)—LM(t) (4)
- T = R =1 ! 1—c, VEo

where the last inequality follows from (3). By the definition of m; we have mq M (n,,,t1) > 1. Consequently, using this
inequality together with (4), mi M (t1) > m1(1 — e2) M (9, t1) > 1 — 2. Hence, by (2),
(m1 — 1)M(t1) > 1 — 2e5.
m1—1

We put x1 = tie;. Notice that by the definition of m; we have 1/ny, -1 > ||z1|| > 1/09m, — Aty.
=1

1=

Let us continue by induction. Fix any j > 1. Suppose we have t; € {tL}, m; € N and z; € hys already defined for
all ¢ < j such that >, _, (my — mp—1)M (tg) > 1 — 2&,41, 1/0m,—1 > |J@i]] > 1/nm, — At; and

7 mlfl

xizz Z tlek.

=1 /C:m171

We choose t; € {ti} this way: Define

k
mj = min{k > mj_1: M||Tj-1 + Z tie;|| > 1},
iZMj71
and choose t; € {t]} small enough such that
M(tj) <ejy1 and (5)
Ej+1 . Kz -1
m, < 14— . 6
77] +1—8j+11r£i12j{ci—1} ()

Notice that this is possible since |[2;_1]| < 1/9m,_,—1. Using again the convexity of M, the fact that ¢; € {t}} and
(6), for any 1 < i < j we obtain

e — 1 e — 1 e — 1 e — 1
M (1, t3) < (1 Tm, )M(ti)+” LMK < (1 [Tm, >M(ti)+n PO M()

K;—1 K,—1 K;,—1 K;,—1
Ci -1 Ej+1 1
=1 =1 M) < [1+—L"—— | Mt;)= —M(t
(1t D= ) M0 < (1 T2 ) ) = =)
These estimates together with the definition of m; and x;_; give

j—1

D (s —mi )M () + (my —my 1 + 1) M (1))
i=1

j—1
> (1 —¢j41) (Z(mi = mi—1) M (N, ti) + (my —mj—1 + 1)M(77mjtj)> >1—¢jq1,

i=1
so the use of (5) yields
J
Z(mz - mi—l)M(ti) >1- 2€j+1~ (7)

i=1
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We put

i omi—1
Z Z t;ex
i=1 k=m;_;
and notice that, by the definition of m;,
Vtim;—1 > sl = 1/1m; — At (®)
We have inductively constructed a sequence {x;} C hps given by the formula above, such that ||z;|| < 1 and (7)
holds for any j € N. Choose any j > 1. Since ||z;|| < 1, it follows that Z{Zl(mi —m;—1)M(t;) < 1 and comparing
this with (7) for j — 1 we obtain
(mj —mj—1)M(t;) < 2¢;.
This implies that ; — x € hys. Indeed, suppose K > 0. Let n € N be such that K,, > K. Then
o
Z( —my—1)M(Kt;) <Z —my—1) M (K;t;) <Z —my—1)C; M(t; <225,C’<oo

and so by the basic properties of hys the vector = > -2, Z;n:;l

and thus from (8) we can conclude that ||z|| = lim ||z;|| = 1. Moreover, the construction of z; (namely the choice of
m;) guarantees that 7y, || Pyz| < 1 for each k € N.

_, tiek belongs to hjps. This means also that t; — 0

a

The following theorem is a strengthening of a theorem from [L1]. Leung’s statement is that the Orlicz sequence
space hps does not admit a LFC norm if M satisfies the condition below.

Theorem 9. Let M be a non-degenerate Orlicz function for which there exists a sequence {t,} decreasing to 0 such
that
M(Kt,)
sup ————=
w Mt

Then the Orlicz sequence space hyr does not admit any (even non-continuous) LFC bump function.

<oo forall0< K < oo.

Proof. Suppose that hj; admits some LFC bump b. Without loss of generality we may assume that b = y 4 for some
set 0 € A C Bx (by shifting, scaling and composing with a suitable function) and that b is LFC-{e}}. (Since h,s is
co-saturated by [J, Theorem 15] (see also [PWZ]), it does not contain £;. As {e;} is unconditional, it is shrinking by
James’s theorem. Now consider b o T', where T: X — X is an equivalence isomorphism of the bases {z;} and {e;}
from Theorem 3.)

Notice, that the vectors with coordinates in the set {¢,,} U {0} have the property of “boundedly completeness”: If
[S5F, timses]| < 1 for all k € N, where m; € NU {0} are not necessarily distinct (we put to = 0), then 372 t,n,¢;
converges in hjs. Indeed, it follows that Zf_l M(tm,;) <lforall ke N. Forall 0 < K <ocoandall k€N,

Kt M(Kt
Z M (Ktp,) bup Z M (tm,) bup M

Consequently, Y > M(Kt,,,) < oo for all 0 < K < 0o, and the sum Y ;2| t,,,e; converges in hyy.
We construct a sequence {z;} C A by induction. Put zp = 0 € A and define natural numbers my = ng = 1. If
mgp_1 € N, ny_1 € Nand zp_1 € A are already defined, we put

My, = {(m,n) € N*, m >my_1,n >ng_1 and x_1 + tme, € A}

As b depends only on some finite subset of {e}} on a neighbourhood of z;_1, and t,, — 0, we can see that My # 0.
Let (my,nx) = min My, in the lexicographic ordering of N? and put 2 = o_1 + tm, €n,,-

Since {zx} C A C Bx and z}, = Ele tim,€n,;, Dy the above argument xy, — = € hp;. We can find § >0 and N € N
so that b depends only on {ef}i«n on U(z,d). Because xj, converges, we have mj — oo and so there is j € N such that
x; € U(x,6/2), [[tm,e1| <0/2, mj <mjy1 and ny > N. Then x; +t,, ,€n,41 € A and therefore (mj,n; +1) € M.
But (mj,n; +1) < (mj41,n;41), which is a contradiction.

O

In [L1], Leung constructed a cg-saturated Orlicz sequence space satisfying the condition in Theorem 9. Therefore,
we have the following corollary:

Corollary 10. Leung’s space is a separable co-saturated Asplund space that does not admit any (even non-continuous)
LFC bump function.
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The main construction of this paper is contained in the next theorem.

Theorem 11. Let M be a non-degenerate Orlicz function for which there exist sequence Fy, C (0,1] such that

(1) limg_, o0 (sup Fy) = 0,
(i) there is a sequence Kj > 1 such that

M(Kyt)

R VIT M
t¢ Fy,

(iii) there is a K > 1 and a sequence Cy — oo such that M(Kt) > CpM(t) for all t € F.

Then there exists a C*°-smooth LFC-{e}} lattice bump function on the Orlicz sequence space hpy.

Proof. Without loss of generality we may and do assume that M (1) = 1 (i.e. |le1]] = 1) and C) > C1 > 0 for any
keN.

For each t € F}, \ {0} choose ¥ > 0 such that M(s) < 2M(t) and t/2 < s < 2t if [s—t] < e, Define Gy, =
Useroy oy (t — ek t 4+ eF). Then each Gy is open, Gy, D (F}, \ {0}) and sup G} < 2sup Fy. Moreover, for any s € G,
the choice of an appropriate ¢ € F \ {0} from the definition of Gy, yields M(2Ks) > M(Kt) > CyM(t) > CiM(s)/2
(using (iii) and the continuity of M). So, if we multiply K by 2 and each Cj by % and denote these new constants K
and C, again to avoid carrying unnecessary factors, we have

klim (supGg) =0, 9)
M(Kt) > CpM(t) forall t € G. (10)

Let us define a sequence of continuous functions ¢y on [0, +00) such that 0 < () <t, pr(t) =0 for t € Fj, and
¢i(t) =t for t ¢ Gy, and a mapping ¢i: har — has by dr(z) = (@r(|zi])) for = (2;) € har. (We can take for
example ¢y (t) = tdist(t, Fy,)/(dist(¢, Fi) + dist(t, R \ Gi,)) for t > 0 and ¢;(0) = 0.)

Fix k e N.

First, observe that the mapping ¢y : hys — hjps is continuous: Choose = € hj; and € > 0 and find n € N such that
|Rnz| < §. As ¢y is continuous, there is 6 > 0 such that ‘|xl| - |yz|‘ < 4 implies ’gpk(|xl|) - gpk(|yz|)| < 5. for all
1 <i < n. We have ||z — |y1H < |z — il = [(x — y)ies]] < ||z — yl|- (The last inequality uses the fact that the norm
|||l is a lattice norm.) Thus, whenever ||z — y|| < min{d, £},

l6x(@) = Br )| < 1Pu(n(x) — o) + | B (@1 (@) — ()]
- €
<> lewllail) = eullyiD] + [ Radi (@)l + | Rudr(y)]| < 5 H IRz + || Ruy]
i=1
€ € € € €
<5 R, R, R, - = = = - = €.
< & 4 IRl + Rzl + [ Bae =)l < S+ 54 5+ 5 =e
The third and the fifth inequalities follows again from the fact that the norm ||| is lattice.
Claim 1. There is a non-increasing sequence {n*} C R satisfying n® < 2 and lim, oo ¥ = 1, such that for each

x € hpy for which ¢r(x) # 0 there is § > 0 and ng € N such that for any y € U(x, ) we have

—

v (Pudi(y)) > v(ék(y))  for all n > no.
We will construct the sequence n* as follows: If (0,a) C Fy for some a > 0, then any non-increasing sequence
nk — 1 such that 1 < n* < 2 for all n € N will do. Indeed, then there is ng € N such that |z;| < a/2 for i > ng and
hence ¢ (y) = Pp,¢r(y) whenever ||z — y|| < a/2.

Otherwise, put b,, = inf { M]V(Il(i"‘)t); 0<t< 1/]\4_1(%)7 té¢ Fk} By our assumption, b,, < oo for all n € N. Notice,

that b, is non-decreasing and, by (ii), b, — oo. Define n¥ = min{2, (1 — b;1/2)’1}. It is trivial to check that n¥ is
non-increasing and 7* — 1.

Define a mapping Qx: har — har by Qr(z); = |z;i| if |zi| ¢ Fk, Qr(z); = 0 otherwise.

Now choose € hys for which ¢ (z) # 0. By Lemma 7 there is 0 < 6 < ﬁ such that v(¢y(y)) > tv(de(x)) if

|z — y|| < 4. Find ng € N such that n* = (1—b;1/2)_1, b2 < 1v(dr(2)), || Raz| < ﬁ and M~1(1) < 1/(||z[|+06)?
for n > ng. Fix n > ng and y € hys such that ||z — y|| < §. Using Lemma 5(b) and the fact that the canonical norm
on hjs is a symmetric lattice norm, we have

| B )| < 1B Q) < I Buyll < 1Bl + 1B — ) (1)

< =
<%
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—

As 307 1M(Qk( )il lyll) < 3232 M(Jyil /llyll) = v(y/llyll) = 1 and the sequence Qx(y); is non-increasing, it
follows that Qk( )i/ lyll < M~1(3) for any i € N. From the definition of ny we obtain Qx(y);, < [ly[| M~1(}) <

(lz]] + )M (1) < y/M~1(3) for i > ng. Notice further that Cmi ¢ Fy, for any i € N, thus by the definition of b,
and (11) we have

1> v (KpRaQu(y)) = 30 M (Kx@Qily),) = Do 0iM (Quly);) = b0 > M (Qulv);)

i>n >n >n

which together with the easily checked inequality gb/k(\) < Q/kﬁ for any ¢ € N implies

> () = 0 (@) = -

i>n i>n

Notice that by the definition of § and ny and by the symmetry of v we have V(m) > by /2

fact for the second inequality)

and therefore (use this

(Pur@) ZM o)) 2 M )= = V@) — 5 > (=B ) = (@il

n n n

which proves the claim.
Choose and arbitrary sequence {v;} C R decreasing to 1. Let us define a sequence of functions gy : hpy — R by

1 —
gr(x) = o +Sup%+nnn v(Ppor(x)).

Claim 2. Each gy is a LFC-{e}} function on {x € hpr, ¢r(x) # 0} and continuous on hyy.

Indeed, for a fixed k € N and x € hyy, ¢r(z) # 0, choose an appropriate 6 and ng from Claim 1. Let N > ng be
such that Y4 nn* < Y41n, whenever n > N. Then for y € U(x,§) and n > N we have

—

VetnoTE V(Pro @k (1)) > Vet (G (1)) > Vernnv (Pudoi ()

and hence
gr(y) = R 7k+n77n v(Pnor(y))- (12)
k

By Lemma 6 there is a neighbourhood V' of ¢x(x) and a finite A C N such that the function maxj<,<n Ve+nnv(P,2)
depends only on {e};c4 on V. But since ¢y, is continuous, there is a neighbourhood U of , U C U(x, ), such that
¢r(U) C V. Further, as ¢x(y); = ¢x(2); whenever y; = z; for any ¢ € N, the function g; depends only on {e}};c4 on

Moreover, each g is continuous on hjs: Using the continuity of ¢y, Lemma 5(d) and (12) we can see that gy is
continuous on {z € hys, ¢r(x) # 0}. On the other hand,

o S0 < o F vl ),

and the continuity of g at any x with ¢y (x) = 0 follows from the continuity of ¢ and the properties of v.

Notice further that, since v is lattice,

1
gr(z) < Ion + Vk:n]fV(x% (13)
k
and as gi(z) > & + VirnnFv (PHQD/k(Q(;\)) for each n € N, the continuity of v implies
1
(@) 2 &+ v(dw(@)), (14)
k

for any = € hy; and any k£ € N.

Claim 3. For each x € hpy there is § > 0 and ko € N such that for any y € U(z,d) and k > ko we have

v(y) < Cik T u(ny))-
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Indeed, choose © € has. Let n € N be such that ||R,z|| < 3k and 0 < § < 3 such that moreover § <
2 min{|z;|; z; # 0,4 < n} if P,z # 0. Pick any y € hy for which |z — y|| < 6. Notice that if |y;| < § then either

x; =0o0ri>n.Let Ay = {i; z; =0}, Ag = {i; ¢ > n}. Then
1
1Pasuazyll < [1Payyll + 1Ryl < [1Pay (y = @)l + | Bul| + [ Ba(z = y)]| < 4

Therefore we have > M (K |y;|) < 1. By (9) we can find ko € N such that Gj, C (0,6) for all k > ko and hence,
lyil <é

using (10),

1

> M(lyil) < = forall k > k.
Ck
lyil €EGr

It follows that, for any y € U(x,d) and k > ko,

lyi|€G lyi|¢Gr

v(y)

1 | 1
Z M (Jy:]) + Z M(¢r(y)i) < = + ZM(%(?J%) = — +v(dk(y)).
Cr -« Ck
lyil G lyil¢Gr i=1
Finally let us define a function g: hy; — R by
g9(x) = S%P%gk(x)-
Choose 0 # z € hys and find § and ko from Claim 3. Since v is continuous, we may also assume that v(y) > v(x)/2

if || — y|| < 6. There is N € N such that 27y /(v(2)Ck) + vin} < Yk, for k > N. Then for any y € U(z,§) and k > N
we have (using first (13), then the definition of N, Claim 3 and finally (14))

5 5
Mgk (y) < Cf’; +7emv(y) < or(y) < C’: + Yo (Pho () < Vo Gko (9)- (15)
0
This means that
9(y) = sup gk (y) = max Vg (y) (16)

for y € U(x, ). In particular, since each gy is continuous on hyy, it follows that g is continuous on hps \ {0}. On the

other hand, for any y € hy,

2! 71

= <mai(y) < 9y) < = + 2ivly),

Cl Cl
(the last inequality follows from (13)) and the continuity of v implies that g is continuous at 0 and hence on the whole
of h]y].

Let us define a set D = {x € hy, g(x) > g—ll} Choose any x € D and find an appropriate N and ¢ for this = as

above. Let A={k:1<k<N, ¢p(z) #0}. If k€ {1,...,N} \ 4, then
Yk 71
= —< =< .
Vi gk () C. = O 9(x)
By the continuity of all ¢y, gr and g, there is a neighbourhood U of z, U C U(x,d), such that ¢r(y) # 0 for k € A
and vrgr(y) < g(y) for k € {1,..., N} \ A whenever y € U. Thus, by (16), ¢g(y) = maxgea vegx(y) for y € U. Since
each gi, k € A, is LFC on U, so is g. Therefore g is LFC on D.

From the last two inequalities in (15) we can see that g(z) > v(x) for any = € hys. Therefore g(z) > ||z| on
{z € hys; ||z|| > 1} and we can compose g with a suitable real continuous function to obtain a desired continuous
LFC bump. To finish the proof, it remains to apply Theorem 4.

O

Theorem 12. There is a non-degenerate Orlicz function M such that liminf,_ o4 % < oo for any K > 1, yet

the corresponding Orlicz sequence space hpy admits a C*-smooth LEC-{e}} lattice bump.
Proof. Suppose we have a sequence b, >1,n > 0. Forn=0,1,2,..., put a, = [ _,b;,! and let M (t) be a piecewise
linear continuous function on [0, c0), such that M(0) = 0, M'(t) = a,, for 2=V <t < 27" and M’(t) = 1 for t > 1.

Clearly, this is a non-degenerate Orlicz function and the constants b,, determine the ratio of the slopes of M on the
two consecutive dyadic intervals. Suppose that j € NU {0} and 2-(n+1) < ¢ < 27" for some n > j. Then

207" 2q, ;. < M(27"TY) < M(278) < M(217") < 27",
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Hence, for n > 5 > 2,

2t) o n+1
H bom M() <22 [ bm (17)

m=n—j+2 m=n—j+1
If F}, is chosen to be |J [2-(+1) 277 for some I, C N, then for conditions (i) to (iii) in Theorem 11 to hold, it is

sufficient to require

nely

(a) klim min [, = oo,
(b) For each k € N, there exists j; € N such that nanéo max{b,—j,,...,bp} = 00,
’I’L¢1k

li in b,, = co.
(©) Bg, Jah P =0

Indeed, (a) implies (i). If t € (0,1) \ Fy, then there is n ¢ I, such that ¢ € [2=("*1) 2-") and thus (17) together with
(b) implies (ii) for Ky = 27*T2, Finally, (17) together with (c) implies (iii) for K = 4 and C} = min,ey, b,. On the
other hand, condition

(d) liminfmax{bn_j, c.ybp<ooforall jeN

with (17) ensures that liminf, ,o4 ]\;\I/}( )) < oo for any K > 1.
Now we construct a sequence b, > 1, n > 0 and a sequence I, C N satisfying conditions (a) to (d). Choose a
non-decreasing sequence {c,} C R such that ¢, > 1 and ¢;, » 0. Fori=0,1,2,...,5=0,...,iand k=0,...,j+1,

let
i—1 I+1

j
n(i, j, k ZZW—FI +Zm+1
=0 m=1 m=1
and define {b,}72q by by, j,0) = ¢ and by jx) = ¢; for k= 1,...,5 + 1. The sequence {b,} fills a triangular table,
where the index n = n(i, j, k) is interpreted as follows: ¢ counts the rows, by j we index groups of columns, where the
j-th group consists of j + 2 columns, and k is an index of a column in the j-th group. So we have the following table

bo b1

by b3 by b5 bs

bz bs by bio bn bi2 biz bia bis

big b7 bis b bao ba1  baa oz boy bas  bag bar bag  bag

with the values

€o €o
C1 Co ci C1 C1
C2 €o C2 €1 Ca C2 C2 C2
C3 Co c3 €1 C1 C3 C3 Co C2 C3 €3 C3 C3 C3
For any j € N we have max{by; j 1), ---,bn(ijj+1)} = ¢; for all i > j and (d) is clearly satisfied.

Now let I, = U U {n(i,m,1),...,n(i,m,m + 1)} for k € N, i.e. I} consists of all the columns in the table
m=k—1 i=m
starting with the (k — 1)-th group but without the first column in each group. Condition (a) obviously holds. If
n(i, j,1) ¢ Iy, then I < j+1 <k or I = 0 but in both cases max{by(; j.1)—k+1,- - On(i,j1)} = bn(i,jo) = ¢i and hence
(b) is satisfied. Finally, ming,ej, b, = cx—1 implies (c).

O
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