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Abstract. We consider a reaction-diffusion system exhibiting diffusion driven instability

if supplemented by Dirichlet-Neumann boundary conditions. We impose unilateral condi-

tions given by inclusions on this system and prove that global bifurcation of spatially non-

homogeneous stationary solutions occurs in the domain of parameters where bifurcation is

excluded for the original mixed boundary value problem. Inclusions can be considered in

one of the equations itself as well as in boundary conditions. The proof is based on the

degree theory for multivalued mappings (jump of the degree implies bifurcation). We show

how the degree for a class of multivalued maps including those corresponding to a weak

formulation of our problem can be calculated.

1. Introduction

Let Ω ⊆ R
N be a bounded domain with a Lipschitz boundary, and let measurable (possi-

bly empty) subsets Ω0 ⊆ Ω and Γ0, Γ ⊆ ∂Ω be fixed with mes(Γ0 ∩ Γ) = 0. We will always

assume that

mes Γ0 > 0,

mes Ω0 > 0 or mes Γ > 0 (or both) and Ω0 ∩ Γ = ∅.

We are interested in stationary solutions of the reaction-diffusion system

ut = d1∆u + b11u + b12v + f1(d1, d2, x, u, v,∇u,∇v) on Ω,

vt ∈ d2∆v + b21u + b22v + f2(d1, d2, x, u, v,∇u,∇v) +

{
{0} on Ω \ Ω0,

ω0(d1, d2, x, u, v,∇u,∇v) on Ω0,

(1.1)

with the boundary conditions




u = v = 0 on Γ0,
∂u
∂n

= f3(d1, d2, x, u, v) on ∂Ω \ Γ0,
∂v
∂n

= f4(d1, d2, x, u, v) on ∂Ω \ (Γ0 ∪ Γ),
∂v
∂n

∈ f4(d1, d2, x, u, v) + ω1(d1, d2, x, u, v) on Γ.

(1.2)

Here d1, d2 > 0 are bifurcation parameters, the nonlinearities fi are small at (u, v) = 0, and

ωi are multivalued functions specified later. They can desribe a certain unilateral regulation
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in Ω0 and Γ. The coefficients bij are assumed to satisfy

b11 > 0, b12 < 0, b21 > 0, b22 < 0,

b11 + b22 < 0, det := b11b22 − b12b21 > 0.
(1.3)

The first line in (1.3) means that the system (1.1) is of an activator-inhibitor type. The

second line in (1.3) ensures that if we understand (1.1) for d1 = d2 = 0 (no diffusion)

and ω0 ≡ 0 as an ODE system, then 0 is a stable solution. Furthermore, under suitable

assumptions about fi, the conditions (1.3) guarantee Turing’s effect [23] of “diffusion driven

instability” for the corresponding classical system

ut = d1∆u + b11u + b12v + f1(d1, d2, x, u, v,∇u,∇v)

vt = d2∆v + b21u + b22v + f2(d1, d2, x, u, v,∇u,∇v)
on Ω (1.4)

with classical boundary conditions
{

u = v = 0 on Γ0,
∂u
∂n

= ∂v
∂n

= 0 on ∂Ω \ Γ0.
(1.5)

That means that the trivial solution of (1.4), (1.5) is stable only for (d1, d2) from a certain

subdomain DS of R
2
+ (domain of stability) and unstable for (d1, d2) ∈ R

2
+ \ DS (domain

of instability). Bifurcation of stationary spatially nonhomogeneous solutions of (1.4), (1.5)

(spatial patterns) occurs at the border between the domain of stability and instability under

certain assumptions (see e.g. [18]).

Our goal is to prove the existence of a global bifurcation of stationary nontrivial solutions

of the multivalued problem (1.1), (1.2) in DS, where bifurcation is excluded for the classical

problem (1.4), (1.5). Clearly, all nontrivial solutions are spatially non-constant, i.e. we get

bifurcation of spatial patterns. In fact, we will consider diffusion coefficients changing along

a curve σ(s), s being a real bifurcation parameter, which can describe the size of the domain

Ω for particular curves.

The proof will be based on the degree theory for multivalued mappings. In Section 2 we

show how the degree for a class of multivalued maps including those corresponding to the

weak formulation of our problem can be calculated. This can be understood as the second

main result of this paper. A jump of the degree will be proved which implies a global

bifurcation. We note that a similar technique concerning the degree for multivalued maps

was employed in [9] for a single equation, but in contrast to [9], we are now treating the

case of nonsymmetric operators. Moreover, we introduce some new ideas which apply even

in the symmetric case and strengthen the results in [9].

Let us now describe the domain DS in detail and formulate a particular case of our

bifurcation theorem which will be given in whole generality in Section 3.3 (Theorem 3.2).

1.1. Description of the Domain of Stability for (1.4), (1.5). Let κn, n = 1, 2, . . . ,

denote the eigenvalues of −∆ with (1.5), 0 < κ1 ≤ κ2 ≤ · · · . With each κn we associate

the hyperbola

Cn :=

{
(d1, d2) ∈ R

2
+ : d2 =

b12b21/κ
2
n

d1 − b11/κn

+
b22

κn

}
, (1.6)
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see Figure 1. In Figure 1, one can also see the vertical asymptotes d1 ≡ b11
κn

of the hyperbolas

Cn and the line passing through 0 with the slope

S :=
−b12b21 + det +2

√
−b12b21 det

b2
11

> 1 (1.7)

which is tangent to these hyperbolas.

d1

d2 C4 C3 C2 C1

DS

Figure 1. Hyperbolas (1.6) determining DS, their vertical asymptotes, and
the common tangential line with slope (1.7)

It is known (and we will re-prove it in Section 3.2) that these hyperbolas consist exactly

of those points (d1, d2) for which nontrivial solutions of the linearized classical system

d1∆u + b11u + b12v = 0

d2∆v + b21u + b22v = 0
on Ω (1.8)

with (1.5) exist. Set

DS :=
⋂

n

{
(d1, d2) ∈ R

2
+ : d1 >

b12b21/κ
2
n

d2 − b22/κn
+

b11

κn

}
,

i.e. DS is the set of all (d1, d2) ∈ R
2
+ lying to the right from the envelope of all hyperbolas Cn.

For (d1, d2) ∈ DS, all eigenvalues of the corresponding eigenvalue problem deciding about

the stability of the trivial solution of the classical problem (1.4), (1.5) have negative real

parts, for (d1, d2) lying to the left from the n-th hyperbola Cn, the n-th eigenvalue of this

eigenvalue problem is positive. Hence, the trivial solution of (1.4), (1.5) is linearly stable

for (d1, d2) ∈ DS and linearly unstable for (d1, d2) ∈ R
+
2 \ DS. See e.g. [22, Chapter 11].

1.2. Formulation of a Particular Case of our Bifurcation Result. We will consider

the stationary system corresponding to (1.1), i.e.

d1∆u + b11u + b12v + f1(d1, d2, x, u, v,∇u,∇v) = 0 on Ω,

d2∆v + b21u + b22v + f2(d1, d2, x, u, v,∇u,∇v) ∈
{
{0} on Ω \ Ω0,

−ω0(d1, d2, x, u, v,∇u,∇v) on Ω0,

(1.9)
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v

∂v
∂n

v

∂v
∂n

Figure 2. Typical graphs for ωi (and mi of Section 3)

with d1, d2 changing along a continuous curve σ = (σ1, σ2) : I → R
2
+ with some closed

interval I, i.e. we will deal with the system

σ1(s)∆u + b11u + b12v + f1(σ(s), x, u, v,∇u,∇v) = 0 on Ω,

σ2(s)∆v + b21u + b22v + f2(σ(s), x, u, v,∇u,∇v) ∈
{
{0} on Ω \ Ω0,

−ω0(σ(s), x, u, v,∇u,∇v) on Ω0,

(1.10)

with the real bifurcation parameter s ∈ I.

Let us note that if d1, d2 are fixed and σ1(s) = d1s
2, σ2(s) = d2s

2 then a simple substitu-

tion x′ = s−1x yields that the problem (1.10)/(1.2) in Ω for a given s > 0 is equivalent to

the problem (1.9)/(1.2) but on the domain s−1 ·Ω of the same shape but “of the size s−1”.

Hence, the decrease of the parameter s can describe the growth of the domain, which has

a natural interpretation in models in biology.

Let us assume that f1, f2 satisfy standard growth conditions such that weak solutions

can be introduced and that f1, f2 are small perturbations at 0 (see Section 3, the assump-

tions (3.6) e.g. with Λ0 = R
2
+). Furthermore, we need to impose certain unilateral conditions

about ω0, ω1, e.g. we can assume that they depend only on v (not on d1, d2, x, u, ∇u, and

∇v) and their graphs look like in Figure 2. See Section 3.1, assumptions (3.8) and (3.9) for

the general case. Set

H :=
{
(u, v) ∈ W 1,2(Ω, R2) : (u, v) = 0 on Γ0 in the sense of traces

}
.

The following theorem states that in the situation just described along each curve σ in R
2
+

intersecting the asymptote d1 = b11
κ1

to the first hyperbola C1 and passing in DS closely

enough to some point d ∈ ∂DS ∩
⋃

n Cn satisfying certain assumptions, a global bifurcation

branch of nontrivial solutions must occur.

Theorem 1.1. Let in the above situation d ∈ ∂DS ∩⋃n Cn be such that there is a linear

combination e of eigenfunctions ej corresponding to eigenvalues κj of −∆ with (1.5) for

which d ∈ Cj satisfying

e ≥ ε in Ω0 ∪ Γ with some ε > 0. (1.11)

Then there exists a neighborhood W0 of d with the following property. For any curve σ =

(σ1, σ2) : I → R
2
+ with some closed interval I, satisfying σ(s0) ∈ W0 ∩ DS for some s0 ∈ I

and σ1(s1) > b11
κ1

for some s1 ∈ I (i.e. intersecting the asymptote to C1), there exists a

bifurcation point sB ∈ (s0, s1) of (1.10)/ (1.2) with σ1(sB) ≤ b11
κ1

(see Figure 3).

More precisely, there is a connected set B ⊂ I × (H \ {0}) of nontrivial solutions

of (1.10)/ (1.2) with (sB, 0, 0) ∈ B satisfying at least one of the following conditions:



GLOBAL BIFURCATION FOR REACTION-DIFFUSION SYSTEM 5

(1) B is unbounded or reaches the end of σ, i.e., it contains a point from ∂I × H.

(2) B contains a point of the type (s2, 0, 0), s2 /∈ [s0, s1], σ1(s2) ≤ b11
κ1

.

In addition, using the result of [15], we will see that if Ω0 = ∅ and Γ is a smooth manifold

with boundary in ∂Ω then the condition (1.11) can be replaced by

e > 0 on Γ. (1.12)

d1

d2 C4 C3 C2 C1

W0
bσ(s0)

b

σ(sB) b

σ(s1)
DS

Figure 3. Illustration of Theorem 1.1 when each d ∈ C2 satisfies the hypothesis

The first very particular result guaranteeing local bifurcation in DS for the system (1.10)

with ω0 ≡ 0 and with unilateral boundary conditions described by variational inequalities

was given in [6]. However, only a one-dimensional domain, fi depending only on u and v,

and a particular curve d2 = const with the bifurcation parameter d1 was considered. The

method of the proof was based on a nonstandard use of a penalty technique combined with

global bifurcation results known for equations. For a similar particular case of variational

inequalities but in N -dimensional domains, such a result was proved in [20] by direct use of

degree theory (jump of the degree implies bifurcation). This latter method was used also for

the generalization to boundary conditions described by quasi-variational inequalities in [16]

for a general curve σ.

However, although such a problem with variational inequalities might be considered in

some sense as a sort of “linearization” of our problem (at least if Ω0 = ∅), these known

results about the degree cannot be applied in our situation, since in the abstract formulation

of the problem, we will have to calculate the degree for multivalued maps which, moreover,

have the property that their “linearization” is not of a class for which a degree theory is

available (the degrees calculated in the above mentioned references [16], [20] are for single-

valued maps which stem from a different reformulation of the problem in case of inequalities;

such type of reformulation appears impossible in our case).

In our case of boundary conditions given by inclusions so far only the above mentioned

penalty technique was applied. For general curves σ, see e.g. [14]; for a brief survey, see [8].

However, that method gives only local bifurcation without any information about the con-

nectedness of the bifurcating branch. Hence, the result of the present paper is an essential

generalization of previous results. We obtain the existence of a global connected bifurcat-

ing branch, we consider more general fi and the conditions given by inclusions are imposed
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also in the interior of Ω, not only in the boundary conditions. Moreover, we weaken the

assumption (1.11) to (1.12) (cf. [15]) and formulate it in a completely abstract form.

2. Calculation of Degrees in Hilbert space

In this abstract section, let H be a real Hilbert space and Λ a metric space. We are

interested in the inclusion problem

λ ∈ Λ, u ∈ H, u − A(λ)u ∈ G(λ, u) + M(λ, u) (2.1)

under the following general hypotheses:

(A) A : Λ × H → H is continuous and compact, and A(λ) := A(λ, · ) : H → H is linear

for each λ ∈ Λ.

(B) The multivalued maps G, M : Λ × H ⊸ H have nonempty compact convex values,

are upper semicontinuous and compact.

The main motivation for the following results is the case A(λ) = λA0 with some nondegen-

erate interval Λ ⊆ R (although we will later have Λ ⊆ R
2).

We use the notation

Br := {u ∈ H : ‖u‖ < r} .

In particular, under our hypotheses, if (2.1) has no solution on the boundary of Br, we have

a natural definition of a degree

deg(id − A(λ) − G(λ, · ) − M(λ, · ), Br, 0)

for the multivalued mapping id −A(λ)−G(λ, · )−M(λ, · ) on Br with respect to 0. Since

all definitions of a multivalued degree coincide in the convex-valued case, it is not important

which particular definition of the degree we choose. We understand the degree e.g. in the

sense of Ma [17] (for other definitions, see also [1], [3]–[5], [10]).

Let now CA be the set of all λ ∈ Λ such that A(λ) has an eigenvalue 1, and for λ ∈ CA,

let EA(λ) denote the corresponding eigenspace

EA(λ) := {u ∈ H : A(λ)u = u} .

In the case A(λ) = λA0, CA is the set of characteristic values of A0, and EA(λ) is the

corresponding eigenspace.

The general idea in the sequel is that λ is “close” to a particular value λ0 ∈ CA, and

that for λ → λ0 we have a “linearization” to (2.1) which is a variational inequality with a

certain cone K ⊆ H.

More precisely, we assume that there is a closed cone K ⊆ H with its vertex at the origin,

i.e. K is convex and closed and 0 ∈ K +K ⊆ K, with the following property (where Λ0 ⊆ Λ

and λ̃ ∈ Λ will be specified later in particular situations):
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

If Λ0 ∋ λn → λ̃ and un, yn ∈ H with 0 < ‖un‖ → 0 are such that

wn := un/ ‖un‖⇀w, yn → y and

wn − yn ∈ M(λn, un)

‖un‖
,

then wn → w, and w is a solution of the variational inequality

w ∈ K, 〈w − y, v − w〉 ≥ 0 for all v ∈ K.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.2)
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Concerning the (possibly multivalued) nonlinearity G, we consider a uniform linearization

type hypothesis where Λ0 ⊆ Λ will be specified later:

lim
‖u‖→0

sup
λ∈Λ0

sup {‖y‖ : y ∈ G(λ, u)}
‖u‖ = 0. (2.3)

Occasionally, pointwise convergence will be sufficient:

lim
‖u‖→0

sup {‖y‖ : y ∈ G(λ, u)}
‖u‖ = 0 for each λ ∈ Λ0. (2.4)

The main hypothesis for λ0 is related to the variational inequality

u ∈ K, 〈u − A(λ0)u, v − u〉 ≥ 0 for all v ∈ K. (2.5)

It will be convenient to denote the set of solutions of this inequality by EA,K(λ0). Similarly

to all former papers concerning bifurcation for some unilateral problems in DS (variational

inequalities or inclusions) the condition

EA,K(λ0) = EA(λ0) ∩ K (2.6)

will play a basic role. In the past, this condition was always verified by using the assumption

that λ0 is an “interior value”, which means in our situation that EA(λ0) contains an element

from the interior (or pseudo-interior) of K. This notion was introduced in [12] (for interior)

and in [21] (for pseudo-interior).

In fact, we could directly consider points λ0 satisfying (2.6), but we will give here a

definition of (K, A)-interior values which is a certain generalization of “pseudo-interior val-

ues” [21] but is simultaneously equivalent to the condition (2.6). Condition (2.6) will be

verified by proving that λ0 is a (K, A)-interior value.

Let A∗ denote the family of adjoint operators, i.e. A∗(λ) := A(λ)∗.

Definition 2.1. A point λ0 ∈ CA is (K, A)-interior if there is v∗ ∈ EA∗(λ0) such that the

closure of the subspace

DK(v∗) := {w ∈ H : there is ε > 0 with v∗ ± εw ∈ K}
satisfies

DK(v∗) ⊇ {u − A(λ0)u : u ∈ EA,K(λ0)} .

Lemma 2.1. A point λ0 ∈ CA is (K, A)-interior if and only if (2.6) holds.

Proof. If (2.6) holds, then one may choose v∗ = 0, and for each u ∈ EA,K(λ0) the hypothesis

implies u − A(λ0)u = 0 ∈ DK(v∗) ⊆ DK(v∗).

Conversely, let λ0 ∈ CA be (K, A)-interior, and let u ∈ EA,K(λ0). We have to show

that z := u − A(λ0)u vanishes. Since by hypothesis z ∈ DK(v∗), it suffices to show that

z ∈ (DK(v∗))⊥ = DK(v∗)⊥. Thus, let w ∈ DK(v∗). Using (2.5) with v := u + (v∗ ± εw) ∈
K + K ⊆ K, we find

0 ≤ 〈u − A(λ0)u, v∗ ± εw〉 = 〈u, (id − A(λ0)
∗)v∗〉 ± ε 〈z, w〉 = ±ε 〈z, w〉 ,

and so 〈z, w〉 = 0, i.e. z ∈ DK(v∗)⊥, as required. �

Some notes are in order. If v∗ is an interior point of K, then even DK(v∗) = H. In

particular, if there is v∗ ∈ EA∗(λ0) in the interior of K, then λ0 is (K, A)-interior. A

hypothesis of this type was introduced in [12] to obtain results for variational inequalities,
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cf. also [13]. For cones K with empty interior (as in our application), the hypothesis that v∗

is an interior point of K was relaxed to DK(v∗) = H (i.e. that there is v∗ ∈ EA∗(λ0) which

belongs to the so-called pseudo-interior of K) in [21] for variational inequalities.

Definition 2.2. Let K0 ⊆ H be a cone satisfying K0 ⊆ K. We say that λ0 ∈ CA satisfies

the (K, A, K0)-sign-condition on Λ0 ⊆ Λ, λ0 ∈ Λ0, if for each u ∈ EA(λ0)∩K with ‖u‖ = 1

there is some u∗ ∈ K0 such that, for some δ > 0,

〈(id − A(λ))u, u∗〉 ≤ −δ ‖(id − A(λ)∗)u∗‖ < 0 for all λ ∈ Λ0 \ {λ0} close to λ0. (2.7)

In the sequel, the choice of Λ0 ⊆ Λ will depend on λ0. For instance, in the case of a scalar

parameter set, a typical choice of Λ0 would be an interval to the right or to the left from

λ0, or in the case of a two-dimensional parameter set a certain portion of the plane which

is bordered by some curve passing through λ0 (the portion being essentially determined by

the requirement (2.7)).

We will see that Definition 2.2 with general K0 is natural for the calculation of the degree.

However, in our applications, we will always choose K0 = EA∗(λ0)∩K. In particular, this is

the case in the natural situation when A(λ) = λA0. In this case, the above hypothesis (2.7)

becomes essentially the sign condition which is also imposed in [21]:

Proposition 2.1. Suppose that A(λ) = λA0 with a compact operator A0, and that λ0 ∈
CA is a real number. Then the (K, A, K0)-sign-condition holds with K0 = EA∗(λ0) ∩ K

(and (2.7) holds even for all λ ∈ Λ0 \ {λ0}) if one of the following conditions is true.

(1) λ0 ≥ 0, Λ0 ⊆ [λ0,∞), and for each u ∈ EA(λ0)∩K \ {0} there is u∗ ∈ EA∗(λ0)∩K

such that 〈u, u∗〉 > 0.

(2) λ0 ≥ 0, Λ0 ⊆ (−∞, λ0], and for each u ∈ EA(λ0)∩K \{0} there is u∗ ∈ EA∗(λ0)∩K

such that 〈u, u∗〉 < 0.

(3) λ0 ≤ 0, Λ0 ⊆ [λ0,∞), and for each u ∈ EA(λ0)∩K \ {0} there is u∗ ∈ EA∗(λ0)∩K

such that 〈u, u∗〉 < 0.

(4) λ0 ≤ 0, Λ0 ⊆ (−∞, λ0], and for each u ∈ EA(λ0)∩K \{0} there is u∗ ∈ EA∗(λ0)∩K

such that 〈u, u∗〉 > 0.

Proof. If u ∈ EA(λ0)∩K \ {0}, then λ0A0u = u 6= 0, and so λ0 6= 0. If u∗ ∈ EA∗(λ0)∩K is

the corresponding point from (2.7) then u∗ 6= 0, u∗ = A(λ0)
∗u∗ = λ0A

∗
0u

∗, and so we have

for each λ ∈ Λ0 \ {λ0} that

(id − A(λ)∗)u∗ = u∗ − λA∗
0u

∗ = u∗ − λλ−1
0 u∗ = cλu

∗ 6= 0

because cλ := λ−1
0 (λ0 − λ) 6= 0. For λ ∈ Λ0 \ {λ0} this implies ‖(id − A(λ)∗)u∗‖ 6= 0 and

〈(id − A(λ))u, u∗〉 = 〈u, (id − A(λ)∗)u∗〉 = cλ 〈u, u∗〉 = 〈u, u∗〉 ‖(id − A(λ)∗)u∗‖
‖u∗‖ sgn cλ.

Hence (2.7) holds with δ := ‖u∗‖−1 〈u, u∗〉 sgn(−cλ) = ‖u∗‖−1 |〈u, u∗〉| > 0 in all the above

cases (1)–(4). �

Lemma 2.2. Let (A) hold and let λ0 ∈ CA be (K, A)-interior and satisfy the (K, A, K0)-

sign condition on Λ0 ⊆ Λ. Then for each u ∈ EA(λ0)∩K \{0} there are u∗ ∈ K0 and δ > 0

such that all λ ∈ Λ0 \ {λ0} close to λ0 and all w ∈ H with ‖w − u‖ < δ are subject to the

strict inequality

〈w − A(λ)w, u∗〉 < 0.
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Remark 2.1. We note for later use that u∗, δ and the closeness in Lemma 2.2 are in fact

those from Definition 2.2 (and depend on u).

Proof. Choosing u∗ and δ corresponding to u according to (2.7), we obtain

〈w − A(λ)w, u∗〉 = 〈w, (id − A(λ)∗)u∗〉
= 〈u, (id − A(λ)∗)u∗〉 + 〈w − u, (id − A(λ)∗)u∗〉
≤ 〈(id − A(λ))u, u∗〉 + ‖w − u‖ ‖(id − A(λ)∗)u∗‖
≤ (‖w − u‖ − δ) ‖(id − A(λ)∗)u∗‖ .

The last term is strictly negative for ‖w − u‖ < δ. �

Lemma 2.3. Let (A) hold and let λ0 ∈ CA be (K, A)-interior and satisfy the (K, A, K0)-

sign-condition on Λ0. Then for all λ ∈ Λ0 \ {λ0} which are sufficiently close to λ0, the

variational inequality

u ∈ K, 〈u − A(λ)u, v − u〉 ≥ 0 for all v ∈ K (2.8)

has only the trivial solution u = 0. The closeness depends only on δ and on the closeness

in (2.7) if those are independent of u ∈ EA(λ0) ∩ K.

Let us note that in view of Proposition 2.1, Lemma 2.3 contains the first assertion of [21,

Theorem 2(i)].

Proof. Assume by contradiction that there are λn → λ0 with λn 6= λ0 such that for each n

there are solutions un of

un ∈ K, 〈un − A(λn)un, v − un〉 ≥ 0 for all v ∈ K (2.9)

with ‖un‖ = 1. Then un = PKA(λn)un where PK denotes the canonical projection onto the

cone K (see e.g. [11, Section 1.2]). In particular, the sequence un is contained in a compact

set and thus has a convergent subsequence. Passing to this subsequence, we may assume

un → u. Hence ‖u‖ = 1, and passing to the limit in (2.9) we obtain that u is a solution

of (2.5). Thus Lemma 2.1 implies u ∈ EA(λ0) ∩ K \ {0}. Choose u∗ ∈ K0 according to

Lemma 2.2. Putting v := un + u∗ ∈ K + K in (2.9), we find

0 ≤ 〈un − A(λn)un, u
∗〉 .

This is not possible for all n by our choice of u∗ (according to Lemma 2.2). The statement

about the closeness follows in view of Remark 2.1. �

For the case that A(λ) = λA0 with a symmetric A0 and we can verify the hypothesis

in Proposition 2.1 with u∗ = u, the following Theorem 2.1 reduces to a special case of [9,

Theorem 2.1]. However, now we have the nonsymmetric case with a multi-dimensional

parameter set, which is important for reaction-diffusion systems.

Theorem 2.1. Let (A) and (B) hold and let Λ1 ⊂ Λ be such that the variational inequal-

ity (2.8) has only the trivial solution for all λ ∈ Λ1. Assume that (2.3) holds with some Λ0.

Then for each λ̃ ∈ Λ0 ∩ Λ1 satisfying (2.2) there are r = r(λ̃, Λ0) > 0 and a neighborhood

Λ2(λ̃) of λ̃ such that

deg(id − A(λ) − G(λ, · ) − M(λ, · ), Bρ, 0) = deg(id − A(λ) − M(λ, · ), Bρ, 0) (2.10)
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for all ρ ∈ (0, r) and λ ∈ Λ0 ∩ Λ1 ∩ Λ2(λ̃). In particular, the degrees in (2.10) are defined

and independent of ρ ∈ (0, r). Furthermore, if Λ̃ ⊂ Λ0 ∩ Λ1 is connected then the degree

in (2.10) is independent of λ ∈ Λ̃, ρ ∈ (0, r(λ)), with some r(λ) > 0 dependent on λ (i.e.

the index is independent of λ ∈ Λ̃).

Note that Λ0 is usually not a neighborhood of λ0. In our applications, the (K, A, K0)-

sign-condition restricts Λ0 to a certain “sector” (which depends on λ0). Thus, Λ0 will be a

neighborhood of λ0 within such a sector. (See Figures 5 and 6.)

Remark 2.2. If λ0 ∈ CA is (K, A)-interior and satisfies the (K, A, K0)-sign-condition on

some Λ0 then the set Λ1 of all λ ∈ Λ0 \ {λ0} sufficiently close to λ0 satisfies the assumption

from Theorem 2.1 by virtue of Lemma 2.3.

Corollary 2.1. If Λ0 ∩ Λ1 in Theorem 2.1 is an open set and (2.2) is satisfied for all

λ̃ ∈ Λ0 ∩ Λ1 then this set contains no bifurcation point of the inclusion (2.1).

Indeed, if λ̃ ∈ Λ0∩Λ1 then we can take Λ2(λ̃) ⊆ (Λ0∩Λ1) and (2.1) has no nontrivial solu-

tion (λ, u) ∈ Λ2(λ̃)×Br(eλ,Λ0)
, because the degrees (2.10) are defined for all ρ ∈ (0, r(λ̃, Λ0)).

Proof of Theorem 2.1. In view of the homotopy invariance and the excision property of the

degree, it suffices to show that there is r > 0 such that for all λ ∈ Λ0 which are sufficiently

close to λ̃ the multivalued homotopy

Hλ(t, u) := u − A(λ, u) − tG(λ, u) − M(λ, u)

contains no zero on [0, 1] × (Br \ {0}).
Thus, assume by contradiction that there is a sequence (λn, tn, un) ∈ Λ0 × [0, 1]×H with

λn → λ̃, 0 < ‖un‖ → 0 and 0 ∈ Hλn
(tn, un). Dividing this inclusion by ‖un‖ and setting

wn := un/ ‖un‖, we obtain that

wn − A(λn)wn ∈ tn
G(λn, un)

‖un‖
+

M(λn, un)

‖un‖
,

i.e. there are

yn ∈ A(λn)wn + tn
G(λn, un)

‖un‖
with

wn − yn ∈ M(λn, un)

‖un‖
.

Passing to a subsequence, we may assume that wn ⇀w for some w ∈ H. In view of (A)

and (2.3) we have yn → A(λ̃)w. Hence, the hypothesis (2.2) implies that wn → w, w is a

nontrivial solution of (2.8), contradicting the hypothesis that λ is chosen such that (2.8)

contains only the trivial solution.

Now, let Λ̃ ⊆ Λ0 ∩Λ1 be connected. The homotopy invariance of the degree implies that

for each λ̃ ∈ Λ̃ the degree (2.10) is independent of λ ∈ Λ̃ ∩ Λ2(λ̃), ρ ∈ (0, r(λ̃, Λ0)) and the

last assertion of Theorem 2.1 easily follows. �

Now we can prove that the degree is defined and equals zero on a small ball around 0

under certain assumptions. The first result of this type (for a variational inequality under

the hypothesis of the existence of an eigenvector in the interior of the cone) was established

in [19].
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Theorem 2.2. Let (A) and (B) hold, and let λ0 ∈ CA be (K, A)-interior. Let Λ0 ⊆ Λ\{λ0}
be such that λ0 ∈ Λ0, λ0 satisfies the (K, A, K0)-sign-condition on Λ0, (2.4) holds, and (2.2)

holds with λ̃ = λ0 and with all values λ̃ ∈ Λ0 which are sufficiently close to λ0. Suppose

that there are u∗
0 ∈ K ∩ EA∗(λ0) and u0 ∈ H with 〈u0, u

∗
0〉 > 0 and

〈u0, u
∗〉 ≥ 0 for all u∗ ∈ K0. (2.11)

Suppose that M satisfies the sign condition

〈z, u∗〉 ≥ 0 for all z ∈ M(Λ0 × Br) and all u∗ ∈ K0 ∪ {u∗
0} (2.12)

for some r > 0. Then for each λ ∈ Λ0 sufficiently close to λ0 there is r = r(λ) > 0 such

that

deg(id − A(λ) − G(λ, · ) − M(λ, · ), Bρ, 0) = 0 for all ρ ∈ (0, r).

In particular, the degree is defined.

Remark 2.3. If K0 = K ∩ EA∗(λ0) and K0 6= −K0, the existence of u0 and u∗
0 satisfying

〈u0, u
∗
0〉 > 0 and (2.11) is automatic (and one can choose u0 ∈ K0). Indeed, since K0 is a

cone which is not a subspace, this follows from [21, Lemma 2] (in [21, Lemma 2] it is only

claimed that there is u0 ∈ K with (2.11) and u0 6= 0, but actually the relation 〈u0, u
∗
0〉 > 0

for an appropriate u∗
0 ∈ K0 is shown in the proof of that result).

Remark 2.4. In view of Remark 2.3, Theorem 2.2 is stronger than [9, Theorem 2.2], even in

the case A(λ) = λA0 with a symmetric operator A0 and K0 := K ∩EA∗(λ0) = K ∩EA(λ0).

In fact, Theorem 2.2 shows essentially that, in contrast to [9, Theorem 2.2], one does not

have to require strict inequality in (2.11) (and so the existence of u0 is even automatic in

view of Remark 2.3). This means that in the main results of [9] (i.e. in Theorems 4.1 and 4.2

there) the hypothesis (2.6) in [9] is actually superfluous.

Proof of Theorem 2.2. Applying Remark 2.2 and Theorem 2.1 (only for this moment with

λ̃ := λ and Λ0 := {λ} in order to have (2.3) by (2.4)) we find that for all λ ∈ Λ0 (now

Λ0 from the assumptions of Theorem 2.2) sufficiently close to λ0 the degree is defined and

has the same value as when G = 0. Hence, we may assume without loss of generality that

G = 0. Put

Fλ(u) := u − A(λ)u − M(λ, u), H(t, u) := Fλ(u) − tu0.

We will show that

tu0 /∈ Fλ(Br) for all λ ∈ Λ0 close to λ0, r small enough, t ∈ (0, 1]. (2.13)

In particular, it will follow that deg(H(1, · ), Bρ, 0) = 0 for all ρ ∈ (0, r), and because

we know that 0 /∈ Fλ(Br \ {0}) (the degree in Theorem 2.1 is defined), we will have

0 /∈ H(t, Br \ {0}) for all t ∈ [0, 1]. The assertion of Theorem 2.2 will then follow by using

the homotopy invariance of the degree.

Assume by contradiction that (2.13) is not true. Then we find sequences (λn, un, tn) ∈
Λ0 × H × (0, 1] and z̃n ∈ M(λn, un), such that λn → λ0, un → 0, and

un − A(λn)un = t̃nu0 + z̃n.

In particular, putting α := 〈u0, u
∗
0〉 > 0, we have by (2.12) that

〈un − A(λn)un, u
∗
0〉 = 〈t̃nu0 + z̃n, u

∗
0〉 = αt̃n + 〈z̃n, u

∗
0〉 ≥ αt̃n > 0,
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and so un 6= 0. Consequently, we may define wn := un/ ‖un‖, tn := t̃n/ ‖un‖, and zn :=

z̃n/ ‖un‖. We obtain

wn − A(λn)wn = tnu0 + zn. (2.14)

The left-hand sides remain bounded, hence also tnu0 + zn are bounded. In view of

〈tnu0 + zn, u
∗
0〉 = αtn + 〈zn, u

∗
0〉 ≥ αtn ≥ 0,

we conclude that also tn are bounded. Hence, passing to a subsequence, we may assume

that tn → t ∈ [0,∞) and wn ⇀w. Putting

yn := A(λn)wn + tnu0,

we thus have yn → A(λ0)w + tu0. We conclude from the hypothesis (2.2) (with λ̃ = λ0) in

view of (2.14) that wn → w (in particular, w 6= 0) and

w ∈ K, 〈w − A(λ0)w − tu0, v − w〉 ≥ 0 for all v ∈ K. (2.15)

Applying this estimate with v := w + u∗
0 ∈ K + K ⊆ K, we obtain

0 ≤ 〈w − A(λ0)w − tu0, u
∗
0〉 = 〈w, (id − A(λ0)

∗)u∗
0〉 − αt = −αt.

Hence t = 0 and so (2.15) implies that w is a solution of the variational inequality (2.5).

By Lemma 2.1, we have w ∈ EA(λ0) ∩ K. Choose a corresponding w∗ ∈ K0 according to

Lemma 2.2. Then (2.14), (2.11) and (2.12) imply

〈wn − A(λn)wn, w
∗〉 = 〈tnu0 + zn, w∗〉 = tn 〈u0, w

∗〉 + 〈zn, w
∗〉 ≥ 0.

This is not possible for all n by our choice of w∗ (according to Lemma 2.2). �

3. Application to Reaction-Diffusion Systems

3.1. Weak Formulation. We are now going to describe the weak formulation of (1.9) with

boundary conditions (1.2). Since we will need to work with mappings of type “id−compact”,

it will be convenient to multiply the first and second equation of (1.9) by d−1
1 and d−1

2 ,

respectively, and to consider the system dependent on the parameters λi = d−1
i . This will

simplify many technical considerations. To this end, we assume that the given functions

in (1.9)/(1.2) depend on λ = (λ1, λ2). We need not assume that the functions are defined

for all λ ∈ R
2
+ but only for λ ∈ P where P ⊆ R

2
+. Actually, we could even allow P ⊆ R

2

without any change in our main results. However, in order to compare our hypotheses with

the situation decribed in Section 1, we introduce the transformation T (d1, d2) := (d−1
1 , d−1

2 )

which transforms d = (d1, d2) into λ = (λ1, λ2) (and vice versa) and define functions

gi(λ, x, u, v, w, z) := λifi(λ
−1
1 , λ−1

2 , x, u, v, w, z), i = 1, 2,

gi(λ, x, u, v) := fi(λ
−1
1 , λ−1

2 , x, u, v), i = 3, 4,

m0(λ, x, u, v, w, z) := λ2ω0(λ
−1
1 , λ−1

2 , x, u, v, w, z) for x ∈ Ω0,

m0(λ, x, u, v, w, z) := {0} for x ∈ Ω \ Ω0,

m1(λ, x, u, v) := ω1(λ
−1
1 , λ−1

2 , x, u, v) for x ∈ Γ,

m1(λ, x, u, v) := {0} for x ∈ ∂Ω \ (Γ ∪ Γ0).

(3.1)
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Then (1.9)/(1.2) is equivalent to the system

∆u + λ1b11u + λ1b12v = −g1(λ, x, u, v,∇u,∇v)

∆v + λ2b21u + λ2b22v ∈ −g2(λ, x, u, v,∇u,∇v)− m0(λ, x, u, v,∇u,∇v)
on Ω (3.2)

with boundary conditions




u = v = 0 on Γ0,
∂u
∂n

= g3(λ, x, u, v) on ∂Ω \ Γ0,
∂v
∂n

∈ g4(λ, x, u, v) + m1(λ, x, u, v) on ∂Ω \ Γ0.

(3.3)

Concerning mi, we assume the particular structure

m0(λ, x, u, v, w, z) := [c0(λ)m0(x, u, v, w, z), c0(λ)m0(x, u, v, w, z)]

and

m1(λ, x, u, v) := [c1(λ)m1(λ, x, u, v), c1(λ)m1(λ, x, u, v)]

where ci, mi, ci, and mi are singlevalued functions. Due to this agreement, we have auto-

matically included the trivial Neumann boundary conditions in (1.2) and similarly the case

of the trivial source in the interior of Ω in (1.9).

For i = 0, 1, we fix exponents pi, qi and q∗i according to the restrictions
{

pi ∈ [1/2,∞), 1 ≤ q∗i < qi < ∞ arbitrary if N ≤ 2,

p0 := N
N−2

, p1 := N−1
N−2

, ∞ > q0 > q∗0 := 2N
N+2

, ∞ > q1 > q∗1 := 2N−2
N

if N > 2.

(If we doubled the value of pi, these choices would correspond to the exponents in [24] in

the Hilbert space case; since the factor 2 will in all estimates cancel with the exponent of

the underlying space W 1,2(Ω, R2), our above choice will be more convenient in the sequel.)

Throughout, we introduce the following general requirements.

(i) ci, ci are continuous, and for all respective arguments the inequalities cimi ≤ cimi

are true.

(ii) For each λ ∈ P the following holds: The functions gi(λ, · , u, v, w, z) (i = 1, 2)

are measurable and gi(λ, x, · , · , · , · ) are continuous for almost all x. Moreover, gi

satisfy the growth estimate

|gi(λ, x, u, v, w, z)| ≤
a0,λ(x) + b0,λ · ((|u| + |v|)p0 + ‖w‖ + ‖z‖)2/q0 (i = 1, 2),

where the numbers ‖a0,λ‖Lq0
(Ω) and b0,λ ∈ [0,∞) are locally bounded with respect

to λ.

(iii) For each λ0 ∈ P there is an estimate of the form

|gi(λ, x, u, v, w, z)− gi(λ0, x, u, v, w, z)| ≤

c0,λ0
(λ)
(
a0,λ0,λ(x) + ((|u| + |v|)p0 + ‖w‖ + ‖z‖)2/q∗

0

)
(i = 1, 2)

where ‖a0,λ0,λ‖Lq∗
0
(Ω) ≤ 1 and c0,λ0

(λ) → 0 as λ → λ0.

(iv) For each λ ∈ P the following holds: The functions gi(λ, · , u, v) (i = 3, 4) are

measurable and gi(λ, x, · , · ) are continuous for almost all x. Moreover, gi satisfy
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the growth estimate

|gi(λ, x, u, v)| ≤ a1,λ(x) + b1,λ · (|u| + |v|)2p1/q1 (i = 3, 4), (3.4)

where the numbers ‖a1,λ‖Lq1
(∂Ω\Γ0) and b1,λ ∈ [0,∞) are locally bounded with respect

to λ.

(v) For each λ0 ∈ P there is an estimate of the form

|gi(λ, x, u, v, w, z)− gi(λ0, x, u, v, w, z)| ≤

c1,λ0
(λ)
(
a1,λ0,λ(x) + (|u| + |v|)2p0/q∗

0

)
(i = 3, 4)

where ‖a1,λ0,λ‖Lq∗
0
(∂Ω\Γ0) ≤ 1 and cλ0

(λ) → 0 as λ → λ0.

(vi) The functions m0( · , u, v, w, z) and m0( · , u, v, w, z) are measurable, m0(x, · , · , · , · )
is lower semicontinuous, m0(x, · , · , · , · ) is upper semicontinuous, and the corre-

sponding superposition operators

M 0(u, v, w, z)(x) := m0(x, u(x), v(x), w(x), z(x))

and

M 0(u, v, w, z)(x) := m0(x, u(x), v(x), w(x), z(x))

send continuous (and thus measurable) functions to measurable functions (this prop-

erty is discussed in [2, Chapter 1]; it is satisfied e.g. if mi are so-called Shragin

functions, i.e. measurable with respect to a certain product measure). Moreover, we

require for some a0 ∈ Lq0
(Ω) and b0 < ∞ the growth estimates

max {|m0(x, u, v, w, z)| , |m0(x, u, v, w, z)|} ≤
a0(x) + b0 · ((|u| + |v|)p0 + ‖w‖ + ‖z‖)2/q0 .

(vii) The functions m1( · , u, v) and m1( · , u, v) are measurable, m1(x, · , · ) is lower semi-

continuous, m1(x, · , · ) is upper semicontinuous, and the corresponding superposi-

tion operators

M 1(u, v)(x) := m1(x, u(x), v(x))

and

M 1(u, v)(x) := m1(x, u(x), v(x))

send continuous (and thus measurable) functions to measurable functions. Moreover,

we require the following growth estimates for some a1 ∈ Lq1
(Γ) and b1 < ∞:

max {|m1(x, u, v)| , |m1(x, u, v)|} ≤ a1(x) + b1 · (|u| + |v|)2p1/q1 .

Let H0 denote the subspace of all functions from W 1,2(Ω) which vanish on Γ0, and let

H = H0 × H0 be the corresponding space of functions with values in R
2. Since we assume

mes Γ0 > 0, we can equip H (and similarly H0) with the scalar product

〈U, V 〉 :=

∫

Ω

〈∇U(x),∇V (x)〉 dx

which is equivalent to the usual scalar product inherited from W := W 1,2(Ω, R2), see e.g. [26,

Theorem 4.8.1]. We consider the cone

K := {U = (u1, u2) ∈ H : u2|Ω0
≥ 0 and u2|Γ ≥ 0}
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and define operators A(λ), G(λ, · ) : H → H by

〈A(λ)U, V 〉 :=

∫

Ω

〈(
λ1b11 λ1b12

λ2b21 λ2b22

)
U(x), V (x)

〉
dx,

〈G(λ, U), V 〉 :=

∫

Ω

〈(
g1(λ, U(x),∇U(x))

g2(λ, U(x),∇U(x))

)
, V (x)

〉
dx

+

∫

∂Ω\Γ0

〈(
g3(λ, U(x))

g4(λ, U(x))

)
, V (x)

〉
dx,

and M(λ, · ) : H ⊸ H by

M(λ, U) :=
⋂

V ∈K

{
Z ∈ H : 〈Z, V 〉 ∈

∫

Ω0

〈(
0

m0(λ, x, U(x),∇U(x))

)
, V (x)

〉
dx+

∫

Γ

〈(
0

m1(λ, x, U(x))

)
, V (x)

〉
dx
}

:=

⋂

V =(ev,v)∈K

{
Z =

(
0

z

)
∈ H :

∫

Ω0

c0(λ)m0(x, U(x),∇U(x))v(x) dx +

∫

Γ

c1(λ)m1(x, U(x))v(x) dx ≤

〈Z, V 〉 ≤
∫

Ω0

c0(λ)m0(x, U(x),∇U(x))v(x) dx +

∫

Γ

c1(λ)m1(x, U(x))v(x) dx
}

.

Standard considerations (Green’s formula, choice of suitable test functions, etc.) imply that

it is natural to define weak solutions of the problem (3.2)/(3.3) as solutions of the inclusion

U − A(λ)U ∈ G(λ, U) + M(λ, U). (3.5)

We assumed for simplicity that the nonlinearities gi (and thus the map G) are single-

valued. However, this was only to simplify the formulations of the hypotheses concerning

gi. Essentially, all results in this paper hold also for those multivalued gi for which the

following Proposition 3.1 can be proved.

Proposition 3.1. If Λ ⊆ P is compact, then the hypotheses (A) and (B) of Section 2 are

satisfied.

Proof. The main result of [24] states that M is upper semicontinuous and compact with

nonempty convex values (an analogous result – for functions with values in R instead of

R
2 – has also been proved in [9]). The same result contains as a special case the continuity

and compactness of G and thus, as a further special case, the continuity and compactness

of A. �

Remark 3.1. Note in particular that the main result of [24] contains sufficient conditions

for Proposition 3.1 also when gi is multivalued and gi(λ, x, · ) are only upper semicontinuous.

Roughly speaking, for multivalued gi, one has to assume that the values of gi are nonempty

and compact (and in the case N = 1 where ∂Ω has atoms one has to assume that the

values of g3 and g4 are intervals), and one has to replace the continuity and measurability

hypotheses by the upper semicontinuity and a certain multivalued measurability hypotheses.

Moreover, the dependence on λ should occur in a special form; for details, we refer to [24].
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Occasionally, we will also require (for almost all x ∈ Ω and almost all x ∈ ∂Ω \ Γ0)

sup
w,z∈RN

sup
λ∈Λ0

|gi(λ, x, u, v, w, z)| ≤ cΛ0
max

{
(|u| + |v|)2p0/q0 , |u| + |v|

}
(i = 1, 2),

lim
(u,v,w,z)→0

sup
λ∈Λ0

|gi(λ, x, u, v, w, z)|
|u| + |v| + ‖w‖ + ‖z‖ = 0 (i = 1, 2),

sup
λ∈Λ0

|gi(λ, x, u, v)| ≤ cΛ0
max

{
(|u| + |v|)2p1/q1, |u| + |v|

}
(i = 3, 4),

lim
(u,v)→0

sup
λ∈Λ0

|gi(λ, x, u, v)|
|u| + |v| = 0 (i = 3, 4),

(3.6)

or the corresponding pointwise estimate

sup
w,z∈RN

|gi(λ, x, u, v, w, z)| ≤ cλ max
{
(|u| + |v|)2p0/q0, |u| + |v|

}
(i = 1, 2),

lim
(u,v,w,z)→0

gi(λ, x, u, v, w, z)

|u| + |v| + ‖w‖ + ‖z‖ = 0 (i = 1, 2),

|gi(λ, x, u, v)| ≤ cλ max
{
(|u| + |v|)2p1/q1 , |u| + |v|

}
(i = 3, 4),

lim
(u,v)→0

gi(λ, x, u, v)

|u| + |v| = 0 (i = 3, 4) for each λ ∈ Λ0,

(3.7)

where Λ0 ⊆ P will be specified later. (For multivalued gi, the above assumption has to be

understood uniformly for all values). Analogously to [9], we obtain:

Lemma 3.1. The hypothesis (3.6) or (3.7) for the functions gi implies the corresponding

hypothesis (2.3) or (2.4), respectively, for the operator G.

Later, we will also require unilateral hypotheses (for all u, v, w, z, λ, x)

0 = c0(λ)m0(x, u, v, w, z) = c0(λ)m0(x, u, v, w, z) if v > 0,

0 = c0(λ)m0(x, u, 0, w, z) ≤ c0(λ)m0(x, u, 0, w, z),

0 ≤ c0(λ)m0(x, u, v, w, z) ≤ c0(λ)m0(x, u, v, w, z) if v < 0,

0 = c1(λ)m1(x, u, v) = c1(λ)m1(x, u, v) if v > 0,

0 = c1(λ)m1(x, u, 0) ≤ c1(λ)m1(x, u, 0),

0 ≤ c1(λ)m1(x, u, v) ≤ c1(λ)m1(x, u, v) if v < 0.

(3.8)

We will also assume that at the critical level v = 0 we have at least a “jump in the v-

derivative of the lower bounds” in the sense that

lim
(u,v,w,z)→0

v<0

|m0(x, u, v, w, z)|
v

= −∞ for almost all x ∈ Ω0,

lim
(u,v)→0

v<0

|m1(x, u, v)|
v

= −∞ for almost all x ∈ Γ

(3.9)

(see Figure 2). In order to avoid trivialities, we will usually supplement the previous hy-

pothesis with the assumption

mes Ω0 > 0 or mes Γ > 0 (or both). (3.10)

The following result is analogous to [9, Lemmas 4.1 and 4.2]. It is somewhat curious that

for this result, the assumption (3.10) is not necessary.
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Lemma 3.2. If (3.8) holds, then

〈Z, V 〉 ≥ 0 whenever V ∈ K and Z ∈ M(λ, U), (3.11)

and

〈Z, U〉 ≤ 0 whenever Z ∈ M(λ, U). (3.12)

If in addition (3.9) holds, then for each λ = (λ1, λ2) ∈ P with c0(λ) 6= 0 6= c1(λ) the

statement (2.2) is true with λ̃ = λ and each Λ0 ⊆ P .

Proof. The inequality (3.11) follows immediately from the fact that the integrals occurring

in the definition of M are nonnegative. For U = (ũ, u) ∈ H we put U± := (ũ, u±) (with

the usual notation for the positive and negative parts of a function). Note that U± ∈ K.

Choosing V = U+ in the definition of M , we obtain in particular for each Z ∈ M(λ, U)

〈Z, U+〉 ≤
∫

Ω0

c0(λ)m0(x, ũ(x), u(x),∇U(x))u+(x) dx +

∫

Γ

c1(λ)m1(x, ũ(x), u(x))u+(x) dx.

Assumptions (3.8) imply that the integrands vanish, which in view of (3.11) shows 〈Z, U+〉 =

0. Hence, in view of (3.11) we obtain that

〈Z, U〉 = 〈Z, U+ − U−〉 = −〈Z, U−〉 ≤ 0,

which proves (3.12).

For the last claim, let λn ∈ P , Un = (ũn, un), Yn = (ỹn, yn) ∈ H satisfy λn → λ,

0 < ‖Un‖ → 0, Yn → Y = (ỹ, y) and Wn = (w̃n, wn) := Un/ ‖Un‖⇀W = (w̃, w), where

Wn − Yn ∈ M(λn, Un)/ ‖Un‖ . (3.13)

The first component of all functions in M(λn, Un) vanishes so that (3.13) implies that

‖w̃n − ỹ‖W 1,2(Ω) → 0. It follows from (3.13) that
∫

Ω0

c0(λn)m0(x, Un(x),∇Un(x))

‖Un‖
v(x) dx +

∫

Γ

c1(λn)m1(x, Un(x))

‖Un‖
v(x) dx ≤

〈Wn − Yn, V 〉 ≤
∫

Ω0

c0(λn)m0(x, Un(x),∇Un(x))

‖Un‖
v(x) dx +

∫

Γ

c1(λn)m1(x, Un(x))

‖Un‖
v(x) dx

(3.14)

for all n and all V = (ṽ, v) ∈ K. Note that the hypothesis (3.8) implies that the right-hand

side of (3.14) vanishes for v = w+
n . Using (3.14) with V = W±

n = (w̃n, w
±
n ), we thus obtain

1 = 〈Wn, Wn〉 = 〈Wn − Yn, W
+
n 〉 − 〈Wn − Yn, W−

n 〉 + 〈Yn, Wn〉 ≤

0 −
∫

Ω0

c0(λn)m0(x, Un(x),∇Un(x))

‖Un‖
w−

n (x) dx

−
∫

Γ

c1(λn)m1(x, Un(x))

‖Un‖
w−

n (x) dx + 〈Yn, Wn〉 .

(3.15)

Since in view of (3.8) both integrands are nonnegative, we obtain 〈Yn, Wn〉 ≥ 1 for all n.

Moreover, since 〈Yn, Wn〉 is bounded, also the integrals are uniformly bounded.

We claim that this implies W ∈ K. Indeed, if this is false, then either w−|Ω0
or w−|Γ is

not almost everywhere 0. We will show that this contradicts the boundedness of the first or

second of the above integrals, respectively. Since the arguments are similar, we assume by

contradiction without loss of generality that w− 6= 0 on a set E ⊆ Ω0 of positive measure.

Note that Un → 0 in H implies in particular that (Un,∇Un) converges to 0 in L2; hence, a
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subsequence converges to 0 almost everywhere. Passing to this subsequence, we thus find

in view of (3.9) that the function sequence

hn(x) :=
un(x)

m0(x, Un(x),∇Un(x))

converges to 0 almost everywhere. Shrinking E if necessary, we may assume by Egorov’s

theorem that the convergence is uniform on E, i.e. for each k > 0 there is nk such that

m0(x, Un(x),∇Un(x)) ≥ k |un(x)|
holds almost everywhere on E for all n ≥ nk, and so we can estimate the first integral

in (3.15) from below by

c0(λn)

∫

E

k |un(x)|
‖Un‖

w−
n (x) dx = c0(λn)

∫

E

k |wn(x)|w−
n (x) dx ≥ kc0(λn)

∫

E

w−
n (x)2 dx

for all n ≥ nk. Note now that the compactness of the Sobolev embedding implies in

particular wn → w in L2, and so in view of w−|E 6= 0, the last integral converges to a

positive number. Since c0(λn) → c0(λ) 6= 0 and k is arbitrarily large, we find that the first

integral in (3.15) is unbounded, which is the required contradiction.

As announced before, we thus have shown W ∈ K. Hence, we can apply (3.14) with

V = W and obtain in view of the nonnegativity of the integrals that 〈Wn − Yn, W 〉 ≥ 0,

i.e. 〈Yn, W 〉 ≤ 〈Wn, W 〉 → 〈W, W 〉 = ‖W‖2, and so

‖W‖2 ≥ 〈Y, W 〉 = 〈Yn, Wn〉 + 〈Y − Yn, Wn〉 − 〈Y, Wn − W 〉 .

Since we have already shown that 〈Yn, Wn〉 ≥ 1 and since the other two terms tend to 0, we

conclude ‖W‖2 ≥ 〈Y, W 〉 ≥ 1 = ‖Wn‖2 which together with Wn ⇀ W implies Wn → W .

As a by-result, 1 = ‖W‖2 ≥ 〈Y, W 〉 ≥ 1 implies that 〈Y − W, W 〉 = 〈Y, W 〉 − ‖W‖2 = 0.

In particular, for each V ∈ K we have that 〈W − Y, V − W 〉 = 〈W − Y, V 〉 ≥ 0 in view

of (3.14) and the nonnegativity of the first two integrals given by (3.8). Thus, W indeed

satisfies the required variational inequality. �

3.2. (K, A)-interior values and the (K, A, K0)-sign-condition. Our aim is now to dis-

cuss which values λ0 = λ = T (d) have the properties of Definitions 2.1 and 2.2 for our

particular situation. Let (µn, en) ∈ (0,∞) × H0 be a complete orthonormal system of

eigenvalues and the corresponding eigenfunctions of the operator A0 : H0 → H0 defined by

〈A0u, v〉 =

∫

Ω

u(x)v(x) dx.

Since A0 is the operator associated in the weak formulation with the harmonic equation, we

can assume by an appropriate numbering that µn = 1/κn where κn is as in Section 1.1. Each

U = (u1, u2) ∈ H has a unique representation as a series ui =
∑∞

n=1 〈ui, en〉 en (i = 1, 2). In

particular, if λ = (λ1, λ2) ∈ P then U − A(λ)U = 0 (i.e. U ∈ EA(λ), which means (u1, u2)

is a weak solution to (1.8)/(1.5) with (d1, d2) = T (λ)) is equivalent to the infinite system

(1 − λ1µnb11) 〈u1, en〉 − λ1µnb12 〈u2, en〉 = 0,

−λ2µnb21 〈u1, en〉 + (1 − λ2µnb12) 〈u2, en〉 = 0.

This has a nontrivial solution (u1, u2) for some n if and only if, for that n, the determinant

Dn := (1 − λ1µnb11)(1 − λ2µnb12) − λ1µnb12λ2µnb21
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vanishes, i.e. if T (λ) lies on the hyperbola (1.6).

Now, let us calculate the solutions of U −A(λ)U = 0 in such a case. Let us assume for a

moment that d = T (λ) lies on only one of the hyperbolas Cn = · · · = Cn+k−1, and so Dj = 0

only for j = n, . . . , n + k − 1, where k is the multiplicity of κn, i.e. µn = · · · = µn+k−1 =: µ.

In this case, each solution of U = A(λ)U , i.e. each U ∈ EA(λ), is given by

U =

(
α

1

)
e,

where e ∈ H0 satisfies A0e = µe with µ = µn and α is a solution of the (necessarily linearly

dependent) system (
1 − λ1µb11 −λ1µb12

−λ2µb21 1 − λ2µb22

)(
α

1

)
= 0. (3.16)

Similarly, for the choice

U∗ =

(
α∗

1

)
e, (3.17)

where α∗ is a solution of the “adjoint” equation
(

1 − λ1µb11 −λ2µb21

−λ1µb12 1 − λ2µb22

)(
α∗

1

)
= 0, (3.18)

a straightforward calculation shows U∗ − A(λ)∗U∗ = 0, i.e. U∗ is an eigenvector of the

adjoint operator A(λ)∗ which has the same second component as U .

Now let d = T (λ) be an intersection point of two different hyperbolas Cn and Cm, that

means Dj = 0 only for j = n, . . . , n + k − 1 and j = m, . . . , m + ℓ − 1, where k and ℓ

are the multiplicities of κn and κm, respectively. We have κn 6= κm, Cn = · · · = Cn+k−1 6=
Cm = · · · = Cm+ℓ−1, µn = · · · = µn+k−1 6= µm = · · · = µm+ℓ−1. In this case, all solutions of

A(λ)U = U have the form

U = ξ̄

(
αn

1

)
ē + ξ̃

(
αm

1

)
ẽ, (3.19)

where ξ̄, ξ̃ ∈ R, A0ē = µnē, A0ẽ = µmẽ, and where αn and αm are the solutions α of (3.16)

when µ := µn or µ := µm, respectively. Note that, since A0 is selfadjoint, the eigenfunctions

ē and ẽ are automatically orthogonal to each other (in the space H0). With a function U

as above we associate

U∗ = ξ̄

(
α∗

n

1

)
ē + ξ̃

(
α∗

m

1

)
ẽ, (3.20)

where α∗
n, α∗

m are the solutions α∗ of (3.18) when µ := µn or µ := µm, respectively.

Then U∗ has the same second component as U , and similarly to the above, one calculates

A(λ)∗U∗ = U∗,

Summarizing, we have seen that the solutions U ∈ EA(λ) and their associated functions

U∗ ∈ EA∗(λ) are uniquely determined by their second component. Moreover, a function e

occurs as the second component of some (unique) U ∈ EA(λ) if and only if it is a linear

combination of (one or two) eigenfunctions of A0 to eigenvalues from {µn : T (λ) ∈ Cn)}, i.e.

of eigenfunctions of −∆ with (1.5) to eigenvalues from {κn : T (λ) ∈ Cn}.
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Further, we will consider points d ∈ ⋃n Cn such that
∣∣∣∣∣∣∣∣

a suitable linear combination e of eigenfunctions of −∆ with (1.5) to the

eigenvalues from {κj : d ∈ Cj} satisfies either

(a) e ≥ ε > 0 in Ω0 and on Γ, or

(b) e > 0 on Γ.

∣∣∣∣∣∣∣∣
(3.21)

Let us note that if d lies only on one hyperbola (i.e. d ∈ Cn, d /∈ Cm for all Cm 6= Cn – cf.

the considerations above) and (3.21) holds then it is fulfilled for all d̃ ∈ Cn. If d ∈ Cn ∩Cm,

Cn 6= Cm, then it can happen that d is the only point from Cn ∪ Cm satisfying (3.21).

Proposition 3.2. If d = T (λ) satisfies (3.21)(a), then λ is a (K, A)-interior value.

Proof. Let e be the linear combination satisfying (3.21)(a), and let U be the corresponding

(unique) function pair of EA(λ) whose second component is e. Then the associated function

v∗ := U∗, defined by (3.17) or (3.20) as explained above, belongs to the pseudo-interior of

K, i.e. DK(v∗) = H. Indeed, since the second component e of v∗ = U∗ satisfies (3.21)(a), the

set DK(v∗) contains all smooth functions from H. Cf. also the notes after Lemma 2.1. �

Proposition 3.3. Let Ω0 = ∅ and Γ be a smooth manifold with boundary. If d = T (λ)

satisfies (3.21)(b), then λ is a (K, A)-interior value.

Proof. In [15], the property (2.6) was verified in this case. Hence, the assertion follows from

Lemma 2.1. �

Remark 3.2. Probably it is true that under suitable conditions on Ω0, Proposition 3.3

extends also to the case Ω0 6= ∅, i.e. if only e > 0 on Γ and on Ω0, then λ is (K, A)-interior.

However, such statements depend on delicate extension results which we will not discuss

here any further.

Now we will consider a fixed λ0 = (λ1, λ2) with T (λ0) lying on some hyperbola Cn

from (1.6) and derive conditions for Λ0 guaranteeing that λ0 satisfies the (K, A, K0)-sign-

condition.

First, let T (λ0) lie only on one hyperbola and let U =

(
α

1

)
e ∈ EA(λ0)∩K be given (see

considerations above). Denote by U∗ ∈ EA(λ0)∩K the corresponding function from (3.17).

For each point λ̃ = (λ̃1, λ̃2) ∈ R
2 for which T (λ̃) does not lie on any hyperbola (1.6) we have

that 1 is not an eigenvalue of A(λ̃), and thus also 1 is not an eigenvalue of A(λ̃)∗. Hence,

0 6= ‖(id − A(λ̃)∗)U∗‖ = ‖(A(λ0)
∗ − A(λ̃)∗)U∗‖

=

∥∥∥∥∥

(
(λ1 − λ̃1)µb11 (λ2 − λ̃2)µb21

(λ1 − λ̃1)µb12 (λ2 − λ̃2)µb22

)(
α∗

1

)∥∥∥∥∥ ≤ C ‖λ0 − λ̃‖
(3.22)

for some constant C which is independent of λ̃. Moreover, we calculate

〈(id − A(λ̃))U, U∗〉 = 〈U, U∗〉 − 〈A(λ̃)U, U∗〉

=

〈(
α

1

)
,

(
α∗

1

)〉
−
〈

µ

(
λ̃1b11 λ̃1b12

λ̃2b21 λ̃2b22

)(
α

1

)
,

(
α∗

1

)〉
;
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observing that (3.16) means λ1µ(b11α + b12) = α and λ2µ(b21α + b22) = 1, we thus obtain

〈(id − A(λ̃))U, U∗〉 = (1 + αα∗) − (λ−1
1 λ̃1αα∗ + λ−1

2 λ̃2)

= (1 − λ−1
1 λ̃1)αα∗ + (1 − λ−1

2 λ̃2).

This expression is negative if λ̃ lies above the line L passing through λ0 with the slope

−λ−1
1 λ2αα∗ and

〈(id − A(λ̃))U, U∗〉 < −C̃ ‖λ0 − λ̃‖
with some constant C̃ > 0 independent of λ̃ for all λ̃ from a circular sector as sketched in

Figure 4 with positive angles of its two arms with L. This together with (3.22) imply that

the hypothesis (2.7) is satisfied with K0 := EA∗(λ0) ∩ K, δ := C̃C−1 and with any Λ0 ⊆ P

whose intersection with some neighborhood of λ0 is contained in such a circular sector. This

means that λ0 satisfies the (K, A, K0)-sign-condition.

λ1

λ2

L
b

λ0

Figure 4. Line L and the circular sector in the (λ1, λ2)-plane

The line L is the graph of the function

L(x) := λ2 − (x − λ1)λ
−1
1 λ2αα∗.

The map T transforms this line into the graph of the function f(x) := 1/L(1/x). At the

point T (λ0), this graph has the slope

f ′(1/λ1) = L(λ1)
−2L′(λ1)λ

2
1 = −λ1

λ2
αα∗ = −λ1

λ2
· λ1λ2µ

2b12b21

(1 − λ1µb11)2
=

−µ2b12b21

(λ−1
1 − µb11)2

.

This is exactly the slope of the tangent to the corresponding hyperbola (1.6) passing through

d = T (λ0). Hence, in a sufficiently small neighborhood of λ0, the circular sector in Figure 4

is transformed by T into a set which is contained in a circular sector as sketched in Figure 5,

and vice versa. The only condition on this sector is that its arms have to form a positive

angle with the tangent to the hyperbola at the point d.

Summarizing, we have proved the following result.

Lemma 3.3. Let d be a point of a hyperbola from (1.6) which is not an intersection point

of two such different hyperbolas (although it may lie on a family of coinciding hyperbolas).

Suppose that Λ0 ⊆ P is such that the intersection of T (Λ0) with some neighborhood of

d is contained in a circular sector as sketched in Figure 5 (i.e. with positive angles to

the tangent). Then λ0 = T (d) satisfies the (K, A, K0)-sign-condition on Λ0 with K0 :=

EA∗(λ0) ∩ K.

Now let d be an intersection point of two different hyperbolas Cn and Cm. Since the

functions ē and ẽ in (3.19) are orthogonal to each other, a straightforward extension of the

above calculation shows that the estimate (2.7) remains valid when Λ0 is such that T (Λ0) is

contained in the intersection of the circular sectors Rn and Rm with the vertex at d = T (λ)
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d1

d2

d

tangent at d

DS

b

Figure 5. (d1, d2)-domain where (2.7) holds if d = T (λ0) belongs only to one hyperbola

such that Rj is contained strictly (except for the vertex d) in the open half-plane below the

tangent to the hyperbola Cj at the point d. We thus obtain the following generalization of

Lemma 3.3.

d1

d2

d

tangent at d

tangent at d

DS

b

Figure 6. (d1, d2)-domain where (2.7) holds if d = T (λ0) is an intersection
point of hyperbolas

Lemma 3.4. Let d be a point on at least one hyperbola from (1.6). Suppose that Λ0 ⊆ P is

such that the intersection of T (Λ0) with some neighborhood of d is contained in a circular

sector as sketched in Figure 6 (i.e. the arms form positive angles with all tangents to the

hyperbolas to which d belongs). Then λ0 = T (d) satisfies the (K, A, K0)-sign-condition on

Λ0 with K0 := EA∗(λ0) ∩ K.

Using the same arguments as in [16, Lemma 2.3], only replacing in its proof the application

of [16, Lemma 2.2] by (2.6), one can obtain the following result:

Proposition 3.4. Let C ⊆ ∂DS be the family of all points d ∈ DS ∩
⋃

n Cn for which

λ = T (d) is (K, A)-interior. Then there is an open neighborhood W ⊆ R
2 of C such that

for each d ∈ W ∩ DS the corresponding variational inequality (2.8) has for λ = T (d) only

the trivial solution.

By a local bifurcation point of (3.2)/(3.3) we mean λ0 such that in any neighborhood of

(λ0, 0) in P × H there is a weak solution (λ, u), u 6= 0, of (3.2)/(3.3).
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Theorem 3.1. Assume the unilateral sign conditions (3.8) and the nondegeneration hy-

potheses (3.9)/ (3.10). Let C ⊆ ∂DS∩
⋃

n Cn be a set such that each d ∈ C satisfies (3.21)(a)

or, in the case when Γ is a smooth manifold with boundary and Ω0 = ∅, only (3.21)(b).

Let W ⊆ R
2
+ contain a neighborhood (in R

2
+) of C and be such that T (W ∩DS) ⊆ P and

that c0 and c1 have no zero on T (W ∩ DS). Suppose also that each point λ ∈ T (W ∩ DS)

has an open neighborhood Λ0 in P with (3.6).

Then there is an open set W0 ⊆ W , C ⊆ W0, with the following two properties:

(1) No point in T (W0 ∩ DS) is a local bifurcation point of (3.2)/ (3.3).

(2) For each λ ∈ T (W0 ∩ DS) and all ρ ∈ (0, r(λ))

deg(id − A(λ) − G(λ, · ) − M(λ, · ), Bρ, 0) = 0. (3.23)

In fact, Theorem 3.1 remains valid if we replace the assumption (3.21) by the hypothesis

that all points d ∈ C are (K, A)-interior values and satisfy EA∗(T (d)) ∩ K \ (−K) 6= ∅.

However, the only way we know how to verify this abstract hypothesis in our situation is

by using (3.21) and Proposition 3.2 or Proposition 3.3, perhaps also Remark 3.2.

Proof. We may assume that W is open. Clearly, it is sufficient to prove that each point

d ∈ C has an open neighborhood W0 with all properties (except of C ⊆ W0) required.

Hence, without loss of generality, we may assume that C consists of a single point d0.

We can assume that T (W ) is bounded and set Λ := T (W ). Then Λ is compact and the

hypotheses (A) and (B) are fulfilled by Proposition 3.1.

For the proof of (2) we will verify the assumptions of Theorem 2.2. The value λ0 = T (d0)

is (K, A)-interior by Proposition 3.2 or Proposition 3.3 under the assumption (3.21)(a)

or (3.21)(b), respectively.

Set K0 = EA∗(λ0) ∩ K. Then K0 6= −K0. Indeed, let U ∈ EA(λ0) be the (unique)

function pair with second component e with e from the assumption (3.21), and let U∗ be

the associated function, defined by (3.17)/(3.18) or (3.20)/(3.18) with (λ1, λ2) = λ0 and

µ = µn or µ = µm, respectively. Then U∗ ∈ K0, but in view of (3.10) and the hypothesis

on e we have −U∗ /∈ K, and so U∗ /∈ −K0. Hence, the assumption about the existence of

u0, u∗
0 satisfying (2.11) follows from Remark 2.3.

Due to Proposition 3.4 we can choose an open W0 ⊆ W with d0 ∈ W0 such that W0 ∩DS

is connected and that the variational inequality (2.8) has for all λ ∈ T (W0 ∩ DS) only the

trivial solution.

In the first step, denote by Λ0 the intersection of T (W0∩DS) with a circular sector associ-

ated with d0 = T (λ0) in Lemma 3.3 or Lemma 3.4, i.e. as in Figure 5 or 6. Then λ0 satisfies

the (K, A, K0)-sign-condition on Λ0 by Lemma 3.4, the condition (2.3) (therefore also (2.4))

follows from the assumption (3.6) by Lemma 3.1. The assumptions (2.2) and (2.12) follow

from (3.8) and (3.9), respectively, by Lemma 3.2.

Hence, Theorem 2.2 implies that if λ ∈ Λ0 then (3.23) holds for sufficiently small ρ > 0.

In the second step, consider λ̃ ∈ T (W0 ∩ DS) \ Λ0. Lemma 3.2 implies that any λ ∈
T (W0 ∩ DS) satisfies (2.2), now even with Λ0 = T (W0 ∩ DS). The set Λ1 = T (W0 ∩ DS)

satisfies the assumptions of Theorem 2.1 by virtue of the properties of W0. Since it is

connected and contains λ̃ and some λ1 in the sector considered above, the last assertions

of Theorem 2.1 and Remark 2.2 imply that (3.23) holds also for λ̃ and all sufficiently small

ρ > 0. Hence, (2) is proved.
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For the proof of (1), let us consider an arbitrary λ̃ ∈ T (W0 ∩ DS). By the assumptions,

there is an open neighborhood Λ0 ⊆ P of λ̃ satisfying (3.6). Lemma 3.1 implies that (2.3)

holds on this Λ0. Hence, the set Λ0 ∩ Λ1 with Λ1 := T (W0 ∩ DS) satisfies the assumptions

of Corollary 2.1, which guarantees that λ̃ is not a bifurcation point, and (1) follows. �

Remark 3.3. Theorem 2.1 in [7] implies that if λ = T (d) with d = (d1, d2), d1 > b11
κ1

, then

the variational inequality (2.8) has no nontrivial solution. In fact, this assertion is proved

in [7] for an inclusion problem

u − λ1(b11Au + b12Av) = 0,

v − λ2(b21Au + b22Av) ∈ M0(v)

with a certain positively homogeneous multivalued map M0 instead of (2.8), but it is clear

from the definition of M0 that the problem is equivalent to our variational inequality (2.8).

(The map M0 is in a certain sense a linearization, or more exactly, a homogenization of

M , but this is not essential for us – now we are interested just in the properties of the

inequality (2.8) itself.) If we use this result for the coefficients bij replaced by tbij with some

t ∈ (0, 1), then we obtain that the variational inequality

W ∈ K, 〈W − tA(λ)W, V − W 〉 ≥ 0 for all V ∈ K (3.24)

has no nontrivial solution for all d1 > t b11
κ1

, i.e. in particular, for all d1 > b11
κ1

.

Lemma 3.5. Let λ̃ = T (d) with d = (d1, d2), d1 > b11
κ1

, and let c0(λ̃) 6= 0 6= c1(λ̃). Suppose

that (3.8), (3.9) and (3.6) with some Λ0 hold, λ̃ ∈ Λ0.

Then there is r > 0 such that for all ρ ∈ (0, r) and λ ∈ Λ0 sufficiently close to λ̃ we have

deg(id − A(λ) − G(λ, · ) − M(λ, · ), Bρ, 0) = 1. (3.25)

If the set Λ0 from the assumption (3.6) is an open neighborhood in P of λ̃ then λ̃ is not a

local bifurcation point of (3.2)/ (3.3).

Proof. First, we will prove that there is r > 0 such that

U − tA(λ)U − tG(λ, U) /∈ M(λ, U) (3.26)

for all t ∈ [0, 1], U ∈ Br \ {0} and λ ∈ Λ0 sufficiently close to λ̃. Assume by contradiction

that there are λn, Un and tn such that 0 < ‖Un‖ → 0, 0 ≤ tn → t ∈ [0, 1], λn → λ̃,

Wn := Un/ ‖Un‖⇀W and

Wn − tnA(λn)Wn − tn
G(λn, Un)

‖Un‖
∈ M(λn, Un)

‖Un‖
.

Since the hypothesis (A) is fulfilled with any compact Λ ⊆ P by Proposition 3.1 and (2.3)

holds by Lemma 3.1, we have

Yn := tnA(λn)Wn + tn
G(λn, Un)

‖Un‖
→ tA(λ)W .

Hence, (2.2) and (2.3) (which holds true by (3.8), (3.9), (3.6) and Lemmas 3.2 and 3.1) im-

plies that Wn → W and that W satisfies the variational inequality (3.24) with λ = λ̃. Since

‖W‖ = 1, this contradicts Remark 3.3 and the assertion (3.26) is proved. Consequently, by

the homotopy invariance of the degree, for all ρ ∈ (0, r) and λ ∈ Λ0 sufficiently close to λ̃
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we have

deg(id − A(λ) − G(λ, · ) − M(λ, · ), Bρ, 0) = deg(id − M(λ, · ), Bρ, 0).

To see (3.25), it suffices to show that the homotopy

H(t, U) := U − tM(λ, U)

has no zero on [0, 1] × (Br \ {0}) and to realize that deg(id , Bρ, 0) = 1. We have even

0 /∈ H(t, U) for each t ≥ 0 and each U 6= 0, because for each Z ∈ M(λ, U) we have

by (3.12) that

〈U − tZ, U〉 = 〈U, U〉 − t 〈Z, U〉 ≥ 〈U, U〉 > 0,

which in particular implies U − tZ 6= 0. Hence, (3.25) is proved.

If Λ0 is an open neighborhood in P of λ̃ then (3.26) holds for t = 1, all U ∈ Br \ {0} and

λ sufficiently close to λ̃, i.e. λ̃ cannot be a bifurcation point. �

3.3. Main Result.

Theorem 3.2. Let the conditions (3.8) and (3.9)/ (3.10) be fulfilled. Let C ⊆ ∂DS ∩
⋃

n Cn

and W be such that the hypotheses of Theorem 3.1 are satisfied. Let W0 be as in that theorem.

Let σ = (σ1, σ2) : I → T (P ) be a continuous path with some closed (not necessarily bounded)

interval I such that

{σ(s) : s ∈ I, σ1(s) >
b11

κ1

} ⊆ W . (3.27)

Let s0, s1 ∈ I, s0 < s1, be such that σ(s0) ∈ W0 ∩ DS and σ1(s1) > b11
κ1

.

Then there occurs a global bifurcation on (s0, s1) of (3.2)/ (3.3) along the path T ◦ σ in

the following sense.

There is a connected subset B ⊆ I × (H \ {0}) of nontrivial solutions (i.e. for each

(s, u, v) ∈ B the pair of functions (u, v) 6= 0 is a weak solution of (3.2)/ (3.3) with λ =

T (σ(s))) such that the closure B in R × H contains a point (sB, 0, 0) with sB ∈ (s0, s1),

σ1(sB) ≤ b11
κ1

. Moreover, B satisfies at least one of the following properties:

(1) B is unbounded or reaches the end of the path σ, i.e. contains a point of the form

(a, u, v) with a ∈ ∂I.

(2) B returns to the trivial solution outside [s0, s1], i.e. there is a point s2 ∈ I \ [s0, s1]

such that (s2, 0, 0) ∈ B and σ1(s2) ≤ b11
κ1

.

Of course, by using the transformation T we can reformulate Theorem 3.2 for the original

system (1.9)/(1.2) to describe its global bifurcation along the path σ arising between a

neighborhood of some point d ∈ ∂DS ∩ ⋃n Cn satisfying (3.21), and the region d1 > b11
κ1

.

In this way we would obtain an exact form of Theorem 1.1. Let us do it in Corollary 3.1

below very briefly, without exactly reformulating all assumptions about the functions gi, mi

to the assumptions about fi, ωi. Hence, consider the original system (1.9)/(1.2) with given

functions fi (i = 1, . . . , 4), ωi (i = 1, 2) defined for d ∈ Q, Q ⊆ R
2
+, and the corresponding

functions gi (i = 1, . . . , 4), mi (i = 1, 2) defined by (3.1) for λ ∈ P = T (Q).

Corollary 3.1. Assume that the functions gi (i = 1, . . . , 4), mi (i = 1, 2) defined by (3.1),

the sets C ⊆ ∂DS ∩
⋃

n Cn, W and the curve σ satisfy the assumptions of Theorem 3.2.

Then there occurs a global bifurcation on (s0, s1) of (1.9)/ (1.2) along the path σ in the

following sense.
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There is a connected subset B ⊆ I×(H\{0}) of nontrivial weak solutions of (1.10)/ (1.2)

such that the closure B in R×H contains a point (sB, 0, 0) with sB ∈ (s0, s1) and σ1(sB) ≤
b11
κ1

. Moreover, B satisfies at least one of the following properties:

(1) B is unbounded or reaches the end of the path σ, i.e. contains a point of the form

(a, u, v) with a ∈ ∂I.

(2) B returns to the trivial solution outside [s0, s1], i.e. there is a point s2 ∈ I \ [s0, s1]

with σ1(s2) ≤ b11
κ1

such that (s2, 0, 0) ∈ B.

Remark 3.4. Let us assume that Ω0 is open and Γ is relatively open in ∂Ω. The eigen-

function e1 of the Laplacian corresponding to the principal eigenvalue κ1 is continuous in Ω,

positive on Ω∪ (∂Ω \Γ0). Hence, the assumption (3.21)(b) is always fulfilled for all d ∈ C1,

and (3.21)(a) is fulfilled for all d ∈ C1 if Ω0 ∩ Γ0 = ∅ and Γ ∩ Γ0 = ∅.

Remark 3.5. The curve (straight line) σ = (σ1, σ2) = (s2d1, s
2d2) (with fixed (d1, d2)) cor-

responding to the growth of the domain mentioned in Section 1.2 satisfies the assumptions

of Theorem 3.2 if d2

d1

is slightly less than the slope S from (1.7) of the common tangent to our

hyperbolas. In this case Theorem 3.2 guarantees the existence of a global bifurcation for the

system (3.2)/(3.3) along T (σ), i.e. a global bifurcation for the original system (1.9)/(1.2)

along σ. Simultaneously, there is no bifurcation for the corresponding classical problem

(with m0 = m1 = {0}) because the whole σ lies in DS and the classical system (1.9)/(1.2)

with ω0 = ω1 = {0} has no bifurcation in the domain of stability of its trivial solution.

Remark 3.6. In general, if the assumptions of Theorem 3.2 are fulfilled then there are

s̃ ∈ (s0, s1) and ε > 0 such that σ1(s̃) = b11
κ1

, σ1(s) > b11
κ1

for all s ∈ (s̃, s̃ + ε). Let s be

the smallest such s̃. We can take s1 arbitrarily close to s to get in fact sB ∈ (s0, s] in

the assertion of Theorem 3.2. In other words, there is a global bifurcation for the original

system between a neighborhood of some point d ∈ ∂DS ∩
⋃

n Cn satisfying (3.21) and the

first real intersection (not only touching) point of σ with the asymptote to C1.

Moreover, if σ1(s) > b11
κ1

for all s > s1 then in the case (2) of Theorem 3.2, we have

actually s2 < s0 (because σ1(s2) ≤ b11
κ1

).

The proof of Theorem 3.2 bases on a Rabinowitz type bifurcation result from [25]. For

simplicity, we formulate here only a special case which we will use.

Theorem 3.3. Let I be a closed interval and ϕ : I ×H ⊸ H an upper semicontinuous and

compact map with nonempty closed convex values. Let

Fix(ϕ) := {(s, U) ∈ I × H : U ∈ ϕ(s, U)}
and let s0, s1 ∈ I, s0 < s1, be such that there are r > 0 and ε > 0 satisfying

Fix(ϕ) ∩ (([s0 − ε, s0] ∪ [s1, s1 + ε]) × (Br \ {0})) = ∅ (3.28)

and

deg(id − ϕ(s0, · ), Br, 0) 6= deg(id − ϕ(s1, · ), Br, 0). (3.29)

Then Fix(ϕ) \ (I × {0}) contains a connected set B such that B ∩ ([s0, s1] × {0}) 6= ∅ and

at least one of the following holds:

(1) B is unbounded or contains a point from (∂I) × H.

(2) B contains a point of the form (s2, 0) with s2 /∈ [s0 − ε, s1 + ε].
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Proof of Theorem 3.3. Apply [25, Theorem 7] with Ω := X := Y := H, F := id , the

“coincidence degree” degF,ϕ(s, Ω0) := deg(id −ϕ(s, · ), Ω0, 0), and B0 being the family of all

bounded subsets of R×H. Note that for each closed set B ∈ B0 the intersection Fix(ϕ)∩B

is indeed compact, because ϕ is compact and upper semicontinuous. �

Proof of Theorem 3.2. We set

ϕ(s, U) := A(T (σ(s)), U) + G(T (σ(s)), U) + M(T (σ(s)), U)

and verify the assumptions of Theorem 3.3. We have σ(s) ∈ W0 ∩ DS for all s ∈ I ∩ [s0 −
ε, s0 + ε] and σ1(s) > b11

κ1

for all s ∈ I ∩ [s1−ε, s1 + ε]. The assertion (1) of Theorem 3.1 and

the last assertion of Lemma 3.5 (with Λ0 an open neighbourhood of λ̃ := T (σ(s1)) satisfying

(3.6) ensured by the last assumption about W from Theorem 3.1) imply the existence of

r > 0 such that

Fix(ϕ) ∩ (([s0 − ε, s0 + ε] ∪ [s1 − ε, s1 + ε]) × (Br \ {0})) = ∅. (3.30)

In particular, (3.28) is fulfilled. Furthermore, the assertion (2) of Theorem 3.1 and Lemma 3.5

imply that

deg(id − ϕ(σ(si), · ), Bρ, 0) = i, i = 0, 1, for all ρ ≤ r,

i.e. (3.29) holds. Hence, Theorem 3.3 guarantees the existence of a set B with all the

properties announced in Theorem 3.2 with sB ∈ [s0, s1] instead of sB ∈ (s0, s1) and without

the inequalities σ1(sB) ≤ b11
κ1

, σ1(s2) ≤ b11
κ1

. However, (3.30) implies that the cases sB = s0

and sB = s1 are excluded. The remaining two inequalities follow from the last assertion of

Lemma 3.5, because (s, 0, 0) ∈ B implies that σ(s) is a local bifurcation point. �

Remark 3.7. Our proof shows that in Theorem 3.2 we may replace (3.27) by

T (σ(I ∩ (s1 − ε, s1 + ε))) ⊆ W for some ε > 0 (3.31)

if we drop the two assertions σ1(sB), σ1(s2) ≤ b11
κ1

.

Moreover, if one replaces in addition the assertion sB ∈ (s0, s1) by the weaker assertion

sB ∈ (s0, s1] in Theorem 3.2, one can even relax (3.31) to the assumptions that (3.6) holds

with Λ0 = T (σ(I ∩ [s1, s1 + ε))) with some ε > 0 and that c0(T (σ(s1))) 6= 0 6= c1(T (σ(s1))).

(In the case (3.31) these assumptions were fulfilled due to the assumptions about W from

Theorem 3.1.)

Remark 3.8. We point out once more that all results in this paper hold under the as-

sumptions sketched in Remark 3.1 also for multivalued g1, g2, g3, g4 (i.e. essentially if the

multivalued map gi(λ, x, · ) is only upper semicontinuous).
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