Thermoelectric power generation-materials

Classical guidelines for thermoelectric materials : - semiconductors, but which???

$$\alpha, \rho, \lambda \longleftarrow$$

Electronic structure, scattering mechanism, phonon spectrum,...

Two approaches:

✓ Boltzman Equation of transport✓ Kubo formalism...

2

Increase of ZT

$$ZT = \frac{\alpha^2}{\rho(\lambda_{electron} + \lambda_{lattice})}T$$

To aius

To ajust Fermi level E_F (optimal doping,...)

 E_{F} should be at the edge of the band, sharp variation of DOS, $\Leftrightarrow \alpha \sim \pm \, 200 \; \mu \text{V/K}$

$$\frac{\mu}{(m^*)^{\frac{3}{2}}}$$
 highest as possible

B.C.

Semiconductors with a high mobility (μ), high effective mass (m*) and low thermal conductivity of the lattice ($\lambda_{lattice}$) ²

For almost all typical thermoelectric materials, namely <u>low gap semiconductors</u>, if doping is increased, the electrical conductivity increases but the Seebeck coefficient is reduced.

The Thermoelectric Figure of Merit (ZT)

1930 - 1995 : Classical materials... Limits in ZT (~ 1) ...Limits in temperature (T< 250 °C)

- SC low gap + heavy elements
- ZT optimized only for narrow temperature window
- At T ~ 300 K used solutions based on Te, namely (Bi_2Te_3)
- ZT ~ 1 standard

Since 1995 - ... : New orientations

Environmental problems (Kyoto...), energy, waste heat, etc → New interest in thermoelectricity (USA, Japon, Europe is still on the tail....) Proposal of new concepts to target new matrials, need systems with ZT>1

Motivation for Nanotechnology in Thermoelectricity

(2D quantum wells, 1D nanowires, 0D quantum dots)

Difficulties in increasing *ZT* in bulk materials:

$$\sigma \uparrow \Leftarrow S \downarrow$$
 and $\kappa \uparrow$

A limit to Z is rapidly obtained in conventional materials \Rightarrow So far, best bulk material (Bi_{0.5}Sb_{1.5}Te₃)

Low dimensional physics gives additional control:

- Enhanced density of states due to quantum confinement effects \Rightarrow Increase *S* without reducing σ
- Boundary scattering at interfaces can reduce κ more than σ
- Possibility of materials engineering to further improve *ZT*

- (D.O.S.) more favourable (stronger dependence of DOS on E)
- \rightarrow increase of α without increasing ρ
- additional degree of freedom (size) for tailoring of the transport
- possibility to explore the anisotropy of transport properties
- chance to decrese $~\lambda_{\text{lattice}}$ due to phonon scattering on interfaces
- $-ZT_{0D} > ZT_{1D} > ZT_{2D} > ZT_{3D}$

Theoretical predictions – decrease of the dimensionality

Heterostructures PbSeTe/PbTe (MBE)

PbSe dots

Plots de PbSeTe dans des couches de PbTe

(Harman et al., J. Electron. Mater., 29, L1, 2005)

- Type n : ZT ~ 1,5 à 300 K (compared to 0,45 pour PbTe bulk),
- ZT ~ 3,5 à 570 K
- Type p : ZT ~ 1,1 à 300 K.

DUE TO:

- Confinement of charge carriers in 2D
- Decrease of lattice thermal conductivity due to scattering

-EXAMPLE (laboratory):

(Harman et al., Science., **297**, 2002)

- Cooling: junction cooled 44 K below RT (31 K pour Bi_2Te_3)
- Power generation : 2,2 W/cm² for $\Delta T = 220 \text{ K}$

C B D A E B

(Harman et al., APL., 88, 243504, 2006)

Impurity and alloy atoms scatter only short - λ phonons that are absent at low T!

are scattered by imbedded nanostructures!

NANOSTRUCTURING- decrease of thermal conductivity. Phonon Scattering on nanostructure interface

"Phonon engineering" thermoelectrics Artificial nanostructuring: Si nanowires

electron

 $d < \lambda_{\rm dB}$

(Hochbaum et al., Nature 451 (2008), 163)

ADVANCED BULK MATERIALS

Complex material science and advanced synthesis technology:-

Open structures and very complex crystal structures with many atoms with different mass in unit cell can ⇔ identify materials with a weak link between thermal and electric properties⇔ concept of «Phonon Glass Electron Crystal (called PGEC)», G. Slack, 1994.

Open crystal structures : materials with «cages »

Materials with open crystallographic positions which can serve as efficient "host" for inserted atoms , only weakly bonded with basic structural frame \rightarrow can vibrate around central position (« rattlers ») \rightarrow heat carrying phonons experience thus important damping from these local Einstein modes....

2

High Temperature Oxide Thermoelectrics

New class of compound, metallic oxides, stable chemically at high temperatures, studied are cobaltites and manganites, then chromites,...

 Layered cobaltites - Ca₃Co₄O₉ Ο - (Bi,Pb)₂Sr₂Co_{1.82}O_v 00°6°5°6°5°6°6° **α > 0 Ca** $-Na_{x}CoO_{2}$ • Co, Mn • 3D - cobaltites • 2D - cuprates • 3D - Manganites - Ca_{0.95}La_{0.05}MnO₃ α < 0 • 3D - Titanates $-Sr_{0.95}La_{0.05}TiO_{3}$ Spinels

2

Gradual increase of ZT during last 60 years...

