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Non-interacting bosons

The number of particles is given by Bose-Einstein distribution
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» For N > N.(T) or T < Tc(N) the lowest energy state becomes
macroscopically occupied and has to be treated separately
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M.H. Anderson et al, Nature (1995)



Non-interacting bosons on a lattice (N, = # lattice sites)
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> Kinetic energy
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condensed bosons
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Bose-Einstein condensate on an optical lattice




Bose-Hubbard model
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Standard approximations to the Bose-Hubbard model
» Bogoliubov approximation (dilute Bose gas): b; = (b;) + b;, where (b;) is
a complex number (classical variable) (Bogoliubov, 1947)
» Weak coupling expansion — valid for small U
> Gutzwiller (static) mean field (Fisher, 1989)
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The mean-field phase diagram
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» Strong-coupling expansion in t around the atomic limit — valid for small t



Bose-Hubbard model in optical lattices

a  Optical lattice
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b Real crystal
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Greiner et al Nature (2002, 2009)
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b Mott insulator




Bosonic dynamical mean-field theory

The bosonic Hubbard model

H=Ytyblb; + %UZn,-(n; _1)
ij i

Effective single-site problem




Bosonic dynamical mean-field theory

The bosonic Hubbard model

H=Ytyblb; + %UZn,-(n; _1)
ij i

Effective single-site problem

K. Byczuk and D. Vollhardt Phys. Rev. B 77, 235106 (2008)



Bosonic dynamical mean-field theory

Spatial correlations are treated
on mean-field level

Local correlations in time are captured exactly
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The bosonic dynamical mean-field theory (B-DMFT)

» comprehensive (valid for all values of U, t, nand T), thermodynamicaly
consistent and conserving approximation

> treats normal and condensed bosons on equal footing

» exact in the limit of d — 0o or Z — oo

When taking the limit d — oo, the hopping amplitudes t; have to be rescaled
for the kinetic energy to remain finite.

Scalling of hopping amplitudes for lattice bosons
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The action for the bosonic Hubbard model
s ery O . 1
S= / dr [Z b; (7')(8* — p)bi(7) + Z tii b (T)bi(7) + 3 Z Uni(7)(ni(T) — 1)]
0 i T i i
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\/ (with hoppings rescaled differently
for normal bosons and BEC)
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» Both the dynamical mean-field (hybridization) A(7 — 7’) and the BEC

order parameter ®(7) are obtained self-consistently.

> k is a lattice dependent parameter k = Z#o tio

K. Byczuk and D. Vollhardt Phys. Rev. B 77, 235106 (2008)



The B-DMFT equations

> The local Green function is given by

Sr== (67 &E7) ) = TR s

Note the Nambu notation: bt = (b, b)
> The BEC order parameter ¢ is given by

¢ = (b(r))s,,_,

> A(T — 7') can be calculated using G(7 — 7’) with the help of lattice Hilbert
transform

G(wn):/No(E) [( fon —i_()u_6 —iwn-(i)-u—f )_):(iw,,)}_l

and Dyson equation

Y (iwn) = ( """0*“ _,-MSM ) — A(iwn) — [G(iwn)] 71

> For Bethe lattice A(T — 7') = t?>G(7 — 7') and ® = (¢, *)



Existing solutions

» Exact diagonalization:
> A. Hubener, M. Snoek, and W. Hofstetter Phys. Rev. B 80, 245109 (2009)

> Wen-Jun Hu and Ning-Hua Tong Phys. Rev. B 80, 245110 (2009)
» Continuous time quantum Monte Carlo
> P. Anders, E. Gull, L. Pollet, M. Troyer, and P. Werner Phys. Rev. Lett.
105, 096402 (2010)

» Strong-coupling expansion in hybridization (presented here)

Bosonic DMFT vs. fermionic

» Two hybridization functions A11(7), A12(7) instead of one to be obtained
self-consistently

v

Order parameter ®

v

Infinitely large Hilbert space — ED more CPU time consuming

\{

No analogue of particle-hole symmetry

\{

No "30 years of Kondo physics" behind — no ready-to-use solvers




Linked-cluster expansion (LCE) in hybridization

The B-DMFT local action Sj,c we split into two parts:
g 9 1 8 g
Sioe = / drb (1) (2 — wb(r) + X / drUn(7)(n() — 1) + = / drot (1)b(r) +
0 87’ 2 0 0
So — treated exactly
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LCE with respect to hybridization A

Benchmarks

» Exact in the atomic limit (¢t = 0)

» For A = 0 reduces to the mean-field theory

» The results obey Hugenholtz-Pines theorem — non-interacting

le(kIO,WIO)—Zu(k:O,w:O):,u i




Hybridization expansion in more detail
We split the B-DMFT local action into Sy and S’

B B
St = S0+ = So+ / dr / dr' b (r)A(r, 7)b(+)
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The partition function
7= /Db*Dbe‘S = Zo(e %Yo
The ensemble average (---)o and Zp are given by
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Next we perform the linked-cluster expansion with respect to S’

, B8 B8
(e_s Yo=1— AdT/odT/ <TTbT(T)A(T, 7)b(7"))o+

1 8 B B B
+5 /dTl/dT{/de/dTé <T7—bT(T1)A(’7'1,T{)b(T]/_) bT(Tz)A(Tz,Té)b(Té»o-f—
Jo 0 0 0




With the use of linked-cluster theorem we put connected averages back
into the exponent
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We can obtain now the Green functions
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The order parameter of the BEC
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Having obtained G(7,7") and the BEC order parameter ¢

» Using B-DMFT equations, we can obtain new A(r,7’) from G(7,7")

> Then the new A(7,7’) and ¢ are used to obtain a new G(7,7’) until the
self-consistent solution is reached

Remarks

> The averages (- --)o are calculated with the use of the Hamiltonian
representation

_ L sk
(do= 3 T(e M)
where Hp = %Un(n —1) — pn+ kb’ + ko™ b
has to be diagonalized numerically

» The number of bosons on one site has to be cut off — otherwise the
Hilbert space is infinitely large

» There is a trivial hysteresis — if we start from a solution with ¢ = 0 we
never reach the solution with ¢ # 0




Comparison with MF results

Phase diagram and spectral functions in the B-DMFT (first order LCE in A)

and MF approximations
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Phase diagram obtained with first order LCE in A in B-DMFT

c ibility f iff
of the interaction U

A "normal” (compressible) phase is present:
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A(w + ) for the Bethe lattice (Padé)

Spectral functions for different values A+ p)?
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Conclusions and outlook

The strong coupling expansion solution of the BDMFT
» Describes normal and condensed bosons on equal footing

» Gives access to spectral functions in Mott-insulating, normal and BEC
phases

» Reproduces Hugenholtz-Pines theorem

» The validity of the first order LCE expansion is limited to the vicinity of
the Mott phase

Outlook

» Multi-species bosons — simulators of magnetic systems
» Disorder? Non-equilibrium?
» LDA + B-DMFT, real-space B-DMFT

Bose-Fermi mixtures
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Real space images of bosons in optical lattice
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Bloch et al Nature (2010)



