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Abstract. The class of linear differential systems with coefficient matrices which are
commutative with their integrals is considered. The results on asymptotic equivalence of
these systems and their distribution among linear systems are given.
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Consider the linear system

(1)
dx
dt
= A(t)x, x ∈ �

n , t ∈ I = [t0,+∞[,

where A(t) is an n× n matrix of a real-valued continuous and bounded functions of
a real variable t on the non-negative half-line I. Usually [1, p. 117], (1) is called the

Lappo-Danilevskii system if the matrix A is commutative with its integral, i.e.

(2) A(t)
∫ t

s

A(u) du =
∫ t

s

A(u) duA(t),

for some s, t ∈ I.

We define three types of the Lappo-Danilevskii systems.

Definition. We say that

i) A(t) is a right Lappo-Danilevskii matrix with the initial point s (A ∈ LDr(s))
if there exists an s, s ∈ I, such that (2) is fulfilled for all t ∈ Ir(s) = [s,+∞[;
ii) A(t) is a left Lappo-Danilevskii matrix with the initial point s (A ∈ LDl(s)) if

there exists an s ∈ I, s > t0, such that (2) is fulfilled for all t ∈ Il(s) = [t0, s];

iii) A(t) is a bilateral Lappo-Danilevskii matrix with the initial point s (A ∈
LDb(s)) if there exists an s, s � t0, such that (2) is fulfilled for all t ∈ I.
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The corresponding systems (1) are called right, left or bilateral Lappo-Danilevskii

systems. Note that a special case of the bilateral Lappo-Danilevskii system is the
system (1) with a functional commutative matrix A, where for all s, t ∈ I

(3) A(t)A(s) − A(s)A(t) = 0.

It is well known that if A is a right, left or bilateral Lappo-Danilevskii matrix,

then the fundamental solution matrix Xs(t) of (1) (Xs(s) = E, E is the identity
matrix) can be represented as

(4) Xs(t) = exp
∫ t

s

A(u) du

for t ∈ Ir(s), t ∈ Il(s), t ∈ I, respectively. This simple representation (4) of the
fundamental solution matrix explains the fact that the class of Lappo-Danilevskii

systems is one of the main and interesting classes of linear systems. For example,
in some cases it is possible to calculate asymptotic characteristics, in particular,

Lyapunov exponents of the solutions of (1) directly using the coefficients of (1) (see
for instance [2]). In this connection we consider the problem of reducibility of an

arbitrary linear system with bounded coefficients to the Lappo-Danilevskii system
and to the system with a functional commutative matrix of coefficients.

It is well known [3, p. 274] that any linear system is almost reducible to some diag-
onal system. It is a trivial fact that any diagonal matrix is a functional commutative

matrix. However, the case of linear systems under Lyapunov’s transformations is
quite different.

A linear transformation

(5) x = L(t)y

is a Lyapunov transformation if L(t) is a Lyapunov matrix, i.e.

(6) max

{
sup
t�t0

‖L(t)‖, sup
t�t0

‖L−1(t)‖, sup
t�t0

∥∥∥∥ ddtL(t)
∥∥∥∥
}

< +∞.

It is easy to see that if (5) reduces (1) to the system

(7)
dy
dt
= B(t)y, y ∈ �

n , t ∈ I,

then

(8) B(t) = L−1(t)A(t)L(t) − L−1(t)
d
dt

L(t).
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We follow Yu.Bogdanov [4] and say that two linear systems are asymptotically

equivalent if there exists a Lyapunov transformation reducing one of them to the
other. Note that the Lyapunov transformations do not change the asymptotic prop-
erties of the solutions, in particular, their stability.

Theorem 1. The linear system (7) is asymptotically equivalent to the system
(1) with a functional commutative matrix of coefficients if and only if the Cauchy
matrix KB(t, s) of (7) can be presented in the form

(9) KB(t, s) = L(t) exp
∫ t

s

A(u) duL−1(s) ∀t, s � t0,

where L(t) is Lyapunov’s matrix.

�����. 1. Let (7) be asymptotically equivalent to (1) with the functional
commutative matrix A satisfying (3). Then there exist s0 � t0 and a non-singular

constant matrix C such that

(10) Ys0(t)CX−1
s0 (t) = L(t),

where L(t) is Lyapunov’s matrix, Xs0 and Ys0 are fundamental matrices of the so-
lutions of (1) and (7), respectively (Xs0(s0) = Ys0 (s0) = E). Since A is a functional

commutative matrix, we have

(11) KA(t, s) = exp
∫ t

s

A(u) du,

where KA(t, s) is the Cauchy matrix of (1). It follows from (10) that

KB(t, s) = Ys0(t)Y
−1
s0 (s) = L(t)Xs0(t)C

−1CX−1
s0 (s)L

−1(s) = L(t)KA(t, s)L−1(s).

Using (11), we obtain the required relation (9).

2. Let a transformation

(12) y = L(t)x

with the Lyapunov matrix L(t) satisfying (6) reduce (7) to a linear system d
dtx =

P (t)x. Then P satisfies (see (8)) the equality

P (t) = L−1(t)B(t)L(t) − L−1(t)
d
dt

L(t).
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Since L(t) = KB(t, s)L(s) exp(−
∫ t

s
A(u) du), we have

d
dt

L(t) = B(t)KB(t, s)L(s) exp

(
−

∫ t

s

A(u) du

)

− KB(t, s)L(s) exp

(
−

∫ t

s

A(u) du

)
d
dt

(
exp

∫ t

s

A(u) du

)
exp

(
−

∫ t

s

A(u) du

)

= B(t)L(t)− L(t)
d
dt

(
exp

∫ t

s

A(u) du

)
exp

(
−

∫ t

s

A(u) du

)
.

Therefore, P (t) = d
dt (exp

∫ t

s A(u) du) exp(− ∫ t

s A(u) du), hence

P (t) exp
∫ t

s

A(u) du =
d
dt

(
exp

∫ t

s

A(u) du

)
∀t, s � t0.

Thus,

P (t)

(
E +

∞∑
m=1

1
m!

( ∫ t

s

A(u) du

)m)
=
d
dt

(
E +

∞∑
m=1

1
m!

( ∫ t

s

A(u) du

)m)

= A(t) +
∞∑

m=2

1
m!

m−1∑
k=0

( ∫ t

s

A(u) du

)k

A(t)

( ∫ t

s

A(u) du

)m−1−k

∀t, s � t0.

Substituting t for s, we get P (t) = A(t) for all t � t0. Therefore, (12) reduces (7) to
(1). It suffices to show that A is a functional commutative matrix.

Consider the transformation (12); if Y is any fundamental matrix of solutions of
(7), then X(t) = L−1(t)Y (t) is a fundamental matrix of (1). Therefore, from (9) it
follows that

KA(t, s) = X(t)X−1(s) = L−1(t)Y (t)Y −1(s)L(s)

= L−1(t)KB(t, s)L(s) = exp
∫ t

s

A(u) du ∀t, s � t0.

From [5] it follows that A is a functional commutative matrix. The theorem is proved.

A similar result is valid for the right and bilateral Lappo-Danilevskii systems.

Theorem 2. The linear system (7) is asymptotically equivalent to the right
(bilateral) Lappo-Danilevskii system (1) if and only if there exists a fundamental

matrix Y (t) of (7) which can be presented in the form

Y (t) = L(t) exp
∫ t

s

A(u) du ∀t � s � t0 (∀t � t0),

where L(t) is Lyapunov’s matrix and A ∈ LDr(s) (A ∈ LDb(s)).
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There is no problem to reduce linear systems to left Lappo-Danilevskii systems,

because it is easy to prove that any linear system is asymptotically equivalent to
some left Lappo-Danilevskii system. On the other hand, the following result is valid
[6], [7].

Theorem 3. There exists a linear system which is asymptotically equivalent
neither to a system with a functional commutative matrix of coefficients nor to a

right (bilateral) Lappo-Danilevskii system.

To prove this fact it is sufficient to consider the linear system with the matrix of

coefficients (En−2 is the (n − 2)× (n − 2) identity matrix)

(13)




0 1 0 . . . 0

0 (t − t0 + 1)−1 0 . . . 0
0 0

. . . . . . En−2
0 0


 , t ∈ [t0,+∞[,

and to use the specific structure and the distribution of zeros of the integrals of the

Lappo-Danilevskii matrices.

However, system (13) is a regular system (in the Lyapunov sense) and can be re-
duced (Basov-Grobman-Bogdanov’s criterion [8, p. 77]) to a system with a functional
commutative matrix of coefficients by the generalized Lyapunov transformation (5)

with a matrix L such that lim
t→+∞t−1 ln ‖L(t)‖ = lim

t→+∞t−1 ln ‖L−1(t)‖ = 0.
But even if we expand the set of our transformations up to the set of generalized

Lyapunov transformations there is a statement which is similar to Theorem 3 (see

[9], [10]).

Theorem 4. There exists a two-dimensional linear system which is generalized
asymptotically equivalent neither to a system with a functional commutative matrix

of coefficients nor to a right (bilateral) Lappo-Danilevskii system.

We believe that this fact holds for linear systems of an arbitrary dimension n, but
now we have the proof only for n = 2.

Note that condition (2) is sufficiently strong and small perturbations of the ele-
ments of A can output the matrix from the class of the Lappo-Danilevskii matrices.

So we consider some problems on the behavior of the Lappo-Danilevskii matrices in
the set of all matrices.

Let the distance between matrices A and B be defined by the formula �(A, B) =
sup
t�t0

‖A(t)− B(t)‖, where ‖ · ‖ is an arbitrary matrix norm.
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The following results are valid [11].

Theorem 5. Let Ai ∈ LDα(si), i ∈ �, α ∈ {b, r}, and �(A, Ai)→ 0 as i → +∞.
If there exists M such that si � M < +∞ for all i ∈ �, then A is a bilateral (right)

Lappo-Danilevskii matrix.

Theorem 6. Let Ai ∈ LDl(si), i ∈ �, and �(A, Ai) → 0 as i → +∞. If there
exist m, M such that t0 < m � si � M < +∞ for all i ∈ �, then A is a left

Lappo-Danilevskii matrix.

However, if the sequences (si) for the sequences of the right and left Lappo-
Danilevskii matrices are not bounded, then the previous results are not valid, namely,

the following facts hold.

Theorem 7. There exists a sequence Ai, Ai ∈ LDr(si), (Ai ∈ LDl(si)), i ∈ �,

�(A, Ai)→ 0 and si → +∞ (si → t0+0) as i → +∞, such that A �∈ LDr (A �∈ LDl).

To prove this statement it is sufficient to construct the following sequences of Ak

(k ∈ �, t0 = 0):

Ak(t) =

(
Bk(t) O1

O2 C(t)

)
, Bk(t) =

(
g(t) fk(t)

e−t g(t)

)
, t ∈ [0,+∞[,

where O1, O2 are the 2× (n− 2), (n− 2)× 2, zero-matrices, respectively, C(t) is an
(n− 2)× (n− 2) functional commutative matrix, g is a continuous bounded function
on [0,+∞[. If

fk =

{
(1− e−t)e−t, 0 � t � k,

(1− e−k)e−t, t > k,

then Ak ∈ LDr(k), but the limit matrix A does not belong to LDr; if

fk =

{
e−

1
k−t, 0 � t � 1

k ,

e−2t, t > 1
k ,

then Ak ∈ LDl( 1k ), but the limit matrix A does not belong to LDl.

The following result establishes the closedness of the set of two dimensional bilat-
eral Lappo-Danilevskii matrices in the set of all matrices.

Theorem 8. Let Ai ∈ LDb(si), i ∈ �. If �(A, Ai) → 0 as i → +∞, then A is a

bilateral Lappo-Danilevskii matrix.

To complete our review of the Lappo-Danilevskii systems we say some words about
the connection between the properties (2) and (4).
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It is well known that condition (2) is sufficient for the representation (4).

J. F. P.Martin proved (see [12]) that if the differences of the eigenvalues of the
integral of A are not zero roots of the equation

(14) ez − z − 1 = 0,

then (4) implies (2). From the results of J. F. P.Martin [12] and V.N. Laptinskii [13]
it follows that if the coefficients of (1) are analytic functions on I, then (4) also

implies (2). However, there was an open question of the existence of a linear system
with infinitely differentiable non-analytic coefficients such that this system was not

a Lappo-Danilevskii system but its fundamental solution matrix had the form (4).
We have proved that such system exists [14].

To verify this fact it is sufficient to consider the system (1) with the matrix

A(t) =


−µa(t) 0 −νa(t)

b(t) 0 0

νa(t) 0 −µa(t)


 , t ∈ [0,+∞[,

where µ ± iν are roots of the equation (14), a and b are infinitely differentiable

non-analytic functions such that∫ t

0
a(u) du > 0 ∀ t ∈]0, s0],

∫ s0

0
a(u) du = 1, a(t) = 0 ∀ t � s0 > 0,(15)

b(t) =



0, t ∈ [0, s0[,
bk(t) �≡ 0, t ∈ [s2k, s2k+1[,

0 t ∈ [s2k+1, s2k+2[, k = 0, 1, . . . ,
(16)

((sk) is an arbitrary sequence of positive numbers such that sk+1 > sk and sk → +∞
as k → +∞). In this case the fundamental solution matrix X0(t) of (1) may be

represented as (4) with s = 0 but A(t) is not a Lappo-Danilevskii matrix with the
initial point s = 0.

Note that for a two dimensional real-valued matrix A condition (2) is necessary
and sufficient for representation (4), which follows from the distribution of the roots

of (14) and the eigenvalues of the integral of A. But for a two dimensional complex-
valued matrix A condition (2) is not necessary for (4). For example, if γ is a root of

(14) and the functions a, b satisfy (15) and (16), then the matrix

A(t) =

(−γa(t)
2 0

b(t) γa(t)
2

)
, t ∈ [0,+∞[,

is not a Lappo-Danilevskii matrix with the initial point s = 0, however the funda-
mental solution matrix X0(t) of (1) may be represented as (4) with s = 0.
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