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GENERALIZED DEDUCTIVE SYSTEMS
IN SUBREGULAR VARIETIES
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Abstract. An algebra o/ = (A, F) is subregular alias regular with respect to a unary
term function g if for each ©,® € Con &/ we have ©® = ® whenever [g(a)le = [g(a)]g for
each a € A. We borrow the concept of a deductive system from logic to modify it for
subregular algebras. Using it we show that a subset C' C A is a class of some congruence
on © containing g(a) if and only if C' is this generalized deductive system. This method is
efficient (needs a finite number of steps).
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Let &/ = (A, F) be an algebra and () # C C A a subset. The problem to decide
whether C' is a class of some congruence ©® € Con &/ has been a problem of long
standing. In general, it was solved by A.I.Mal’cev in 1954. However, his method
is far from being effective. Essential progress was done for certain subsets of A for
algebras having a constant 0. A. Ursini introduced a concept of an ideal in universal
algebra [8] and it was shown by him and H.-P. Gumm [7] that in varieties permutable
at 0 every 0-class of each congruence on .« is just an ideal of &/ and vice versa. It
turns out that for varieties which are permutable at 0 and weakly regular this method
is effective, i.e. for a finite algebra of a finite type it can be decided by a finite number
of steps of the corresponding algorithmical scheme. This method was extended for
an arbitrary congruence class of algebra & of a regular and permutable variety
and it was generalized by the author and R.Bé&lohlavek [2] to algebras in regular
varieties. Recently, we have used another method, the so called deductive systems,
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to characterize 0-classes in weakly regular varieties (see [5]) or arbitrary congruence
classes in algebras of regular varieties, see [3].

If the concept of regularity is weakened to the so called subregularity (see e.g.[1]),
one can still use an effective method to characterize certain congruence classes. This
is the aim of our paper.

Let us recall that an algebra o = (A4, F) is regular if every ©,® € Con &/ coincide
whenever they have a class in common. An algebra o/ with a constant 0 is weakly
regular if every ©,® € Con .o/ coincide whenever [0]o = [0]g.

These concepts have a common generalization.

Definition 1. Let g be a unary term function of an algebra & = (A, F). o
is regular with respect to g if © = ® for ©,® € Con &/ whenever [g(a)le = [g(a)]s
for each a € A. Let g be a unary term of variety . We say that ¥ is regular with
respect to g if each &/ € ¥ has this property (with respect to the corresponding term
function g4).

Regularity with respect to ¢ is known also under the name subregularity, see [1],
provided the term g is implicitly given.

Let us mention that if g(z) = x (the identity term) then regularity with respect to
g is the regularity; if 0 is a constant of & and g(x) = 0 then regularity with respect
to g is just the weak regularity.

Definition 2. Let g be a unary term of a variety ¥". A finite set {p1,...,pn} of
ternary terms pi,...p, of ¥ is called a g-difference system for ¥ if

[p1(z,y,2) = 9(2) &...& pn(z,y, 2) = g(2)] if and only if x = y.

Example. If g(z) = 0 where 0 is a constant of ¥ then the g-difference system is
just the Gddel equivalence system as introduced in [4] (of course, then every p;(z, y, 2)
is independent of the last variable thus it is properly binary). If g(z) = z then we
have the difference system as introduced in [3].

If g(2) = z and ¥ is a variety of groups then for p(z,y, z) = © — y+ z the singleton
{p} is a g-difference system; if ¥ is the variety of Boolean algebras then {p} is a g-
difference system for p(z,y, z) = c®y® z, where @ denotes the so called symmetrical
difference.

Analogously, if ¥ is the variety of pseudocomplemented semilattices and g(z) =
a** then {p} is a g-difference system for p(x,y,z2) = (z + y) + z where

ry=(@Ay) A" Ay
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An example of a difference system having more than one term was found for MV-
algebras in [3].
The following useful result was proved in [1]:

Proposition 1. Let g be a unary term of a variety . Then ¥ is regular with
respect to g if and only if there exist ternary terms p1, ..., pm, such that

{p1,...,pm} is a g-difference system of V.

Moreover, every variety ¥ which is regular with respect to g is n-permutable for
somen > 2.

Let us note that m and n in Proposition 1 need not coincide. E.g.for groups we
have n =2 and m = 1.

In the sequel we will use the following result which is considered to be a folklore
but its formal proof can be found in [6]:

Proposition 2. A variety ¥ is n-permutable for some n > 2 if and only if for
each o/ € ¥ and every binary relation R on </ the following implication holds: if R
is reflexive, transitive and compatible then R € Con <.

Recall that a relation R on an algebra o/ = (A, F') is compatible (with respect to
F) if for each n-ary f € F and aq,...,an,b1,...b, € A,

<ai;bi> €ER (1:17571) = <f(a15'"7an)7f(b17"'7bn)> ER?

in other words, R is compatible if it is a subalgebra of the square &/ x <.
The crucial concept of our paper is the following one:

Definition 3. Let g be a unary term function of an algebra &/ = (A, F) and
let t1,...,t, be ternary term functions of &7, z € A. A subset D C A is called a
(g, z)-deductive system of of with respect to {t1,...,t,} if

(i) 9(z) € D,
(ii) @ € D and ti(a,b,2) € D fori=1,...,n imply b € D,
(i) @ € D implies t;(g(z),a,z) € D fori=1,...,n.

Let us note that (i) and (ii) imply the converse of (iii), thus
a€D&ti(g(z),a,z) €D fori=1,...,n.

Example. Let “=” be the connective implication of an arbitrary (e.g. classical,
non-classical, intuitionistic, multiple-valued, etc.) logic and D the subset of “tau-
tologies”. Then for g(z) = 1 (the tautology) and n = 1, t1(z,y,2) == ¢ = y we
surely have
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1eD,

a € D and (a = b) € D implies b € D,

a € D implies (1 = a) € D.

Let R be a binary relation on a set A and « € A. Denote [z]g = {a € A;{(a,z) €
R}.

Definition 4. Let tq,...,t, be ternary term functions of an algebra o = (A, F)
and D C A, z € A. Define a binary relation ©p . on A induced by {t1,...,t,} as
follows:

(%) (a,b) € ©p . if and only if ¢;(b,a,2) € D for i =1,...,n.
We are ready to characterize the classes [g(z)]e, . of Op...

Lemma 1. Let ty,...,t, be ternary term functions of an algebra o = (A, F), let
g be a unary term function of &/ and z € A. If D is a (g, z)-deductive system of </
with respect to {t1,...,t,} and ©p . is induced by {t1,...,t,} then D = [g(2)]ep .-

Proof. Leta € D. By (iii) we have t;(g(2),a,2) € D for i = 1,...,n and,
by (), (a,9(z)) € ©p, . which yields a € [g(2)]e, .. Conversely, if a € [g(2)]e, .
then (a, g(z)) € ©p ., thus t;(9(z),a,z) € D for i = 1,...,n. Applying (i) we infer
g(z) € D and, by virtue of (ii), also a € D. Together, D = [g(2)]e, .- O

Lemma 2. Let t1,...,t, be ternary term functions of an algebra o = (A, F),
let g be a unary term function of &/ and z € A, D C A. Let ©p , be induced
by {ti,...,tn}. If ©p . is reflexive and transitive and D = [g(2)]e, . then D is a
(9, z)-deductive system of &/ with respect to {t1,...,t,}.

Proof. Suppose a € D and t;(a,b,z) € D fori =1,...,n. Then (b,a) € Op,.
Since D = [g(2)]e,.., also (a,g(2)) € Op .. Due to transitivity of ©p ., we have b €
[9(2)]ep.., i-e. D satisfies (ii) of Definition 3. The condition (i) follows by reflexivity
of ©p . (since g(2) € [g(2)]ep. = D).

If @ € D then {(a,g(z)) € ©p,., thus t;(9(z),a,2) € D for i = 1,...,n, i.e.D
satisfies also (iii) and hence it is a (g, z)-deductive system of & w.r.t. {t1,...,t,}.

([

Since congruences are compatible relations on an algebra o/ = (A, F'), we must
respect also the substitution property (with respect to F') to describe their classes.
Hence, we define:

Definition 5. Let g be a unary and ps, ..., p, n-ary term functions of an algebra
o = (A, F). We say that D C A is a compatible (g, z)-deductive system of </
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with respect to {p1,...,pn} if D is a (g, z)-deductive system of &/ with respect to
{p1,...,pn} and for each k-ary operation f € F and every a1,...,ax, b1,...,bp € A
the following implication holds:

if p;(a1,b1,2) € D,...,pi(ag,bg,z) € Dfori=1,...,n
then p;(f(a1,...,ax), f(b1,...,br),z) € Dfori=1,...,n.

Theorem 1. Let g be a unary term of a variety ¥ and {p1,...,pn} a g-difference
system for V. Let o = (A,F) € ¥,0 € Cons/, z€ A and D = [g(z)|le. Then
(a) ©p,.=6;
(b) D is a compatible (g, z)-deductive system of &/ with respect to {p1,...,pn}-

Proof. 1If (a,b) € ©p, then p;(b,a,2) € D = [g(z)]e for i = 1,...,n and
hence (p;(b,a, z),g(z)) € ©. Applying Proposition 1, we infer (b,a) € ©, thus also
(a,b) € © proving ©p , C ©.

Conversely, if (a,b) € O then (b,a) € © and, by Proposition 1 again, (p;(b,a, 2),
g(z)) € © for i =1,...,n, thus p;(b,a,z) € [g(2)]e = D. By (x) of Definition 4 we
conclude (a,b) € Op , giving © C Op ,. We have shown O = Op ,.

By Lemma 2, D is a (g, z)-deductive system of & with respect to {p1,...,pn}.
Since © € Con &7 is compatible, it is an easy exercise to show that also D is com-
patible. (Il

Theorem 2. Let g be a unary term of a variety ¥ and {p1,...,pn} a g-difference
system for V. Let o = (A,F) € ¥,z € A and let D be a compatible (g, z)-
deductive system of </ with respect to {p1,...,pn}. Then the relation ©p , induced
by {p1,...,pn} is a congruence on &/ and D = [g(z)]e, .-

Proof. By Proposition1, ¥ satisfies p;(x,z,z) = g(z) fori = 1,...,n and hence
the relation ©p ., induced by {p1,...,pn} is reflexive. Since the (g, z)-deductive
system D is compatible, also ©p , is compatible. Prove transitivity of ©p .: let
(a,b) € Op_, and (b,c) € Op_,. Then p;(c,b,z) € D for i = 1,...,n and, by virtue
of compatibility of ©p .,

(a,b) S ®D,z = <Pz‘(07 a, Z)api(ca b72)> € ®D,z

whence p;(pi(c, b, 2),pi(c,a,2),z) € D for j = 1,...,n. However, D is a (g, 2)-
deductive system of o7 with respect to {p1,...,pn}, thus, by (ii) of Definition 3, we
conclude p;(c,a,z) € D for i =1,...,n. Hence (a,c) € Op ..

By Proposition 1, ¥ is m-permutable for some m > 2 and, by Proposition 2, ©p .
is also symmetrical. Together, we have ©p ., € Con./. By Lemma 1 we conclude

D= lg()lep. .
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Corollary 1. Let ¥ be a variety which is regular with respect to g. Then ¥ has
a g-difference system {p1,...,pn} and for each o = (A,F) € ¥,z€ Aand D C A,
D is a congruence class containing g(z) if and only if D is a (g, z)-deductive system
of o/ with respect to {p1,...,pn}.

Although the involved method of (g, z)-deductive systems enables us to character-
ize only the congruence classes containing g(a) for some a € A and for &7 = (A, F)
from a variety which is regular with respect to g, this method is effective in the
following sense: if 7 is finite and of a finite type, we need to verify only a finite
number of conditions of Definition 3 and Definition 5. Thus there exists an algorith-
mical scheme deciding whether a subset C' C A is a congruence class of .2/ in a finite
number of steps. This scheme depends on the computability of functions p1,...,px.
Applying the same reasoning and a computation as in [3], we obtain:

Corollary 2. Let ¥ be a variety regular with respect to g and of a finite type
with k fundamental operation symbols. Let o(f;) be the arity of the i-th operation
symbol f;. Let {p1,...,pn} be its g-difference system. If o/ = (A, F) € ¥ is finite
and C C A, a € A, g(a) € C and |A| = m, |C| = r then there exists an algorithmical
scheme for deciding whether C' is a congruence class and this scheme needs

k
"Zm%i(ﬁ)+k.m2.n+r-(m~n+m+n)
i=1

steps.
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