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Abstract. In this paper the concept of a fuzzy contraction™ mapping on a fuzzy metric
space is introduced and it is proved that every fuzzy contraction™ mapping on a complete
fuzzy metric space has a unique fixed point.
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1. INTRODUCTION

The theory of fuzzy sets was introduced by Zadeh in 1965 [7]. Since then many
authors (Zi-ke 1982 [8], Erceg 1979 [1], George and Veeramani 1994 [2], Kaleva and
Seikkala 1984 [5]) have introduced the concept of a fuzzy metric space in different
ways. In this paper we follow the definition of a metric space given by George
and Veeramani [2] since the topology induced by the fuzzy metric according to the
definition of George and Veeramani [2] is Hausdorff. Motivated by the concept
of a metric space, Urysohn’s lemma and gluing lemma are studied. Based on the
concept of a fuzzy contraction mapping [6], the fuzzy contraction* mapping theorem
is established.

2. PRELIMINARIES
Definition 1 [4]. A binary operation *: [0,1] x [0,1] — [0,1] is a continuous
t-norm if * satisfies the following conditions:

1. % is associative and commutative,

2. % is continuous,
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3. axl=aforallacl1l],
4. axb < c¢*xd whenever a < ¢ and b < d, (a,b,c,d € ]0,1]).

Definition 2 [2]. The triple (X, M, *) is said to be a fuzzy metric space if X
is an arbitrary set, * is a continuous t-norm and M is a fuzzy set on X? x (0, 00)
satisfying the following conditions:

1. M(z,y,t) >0,

2. M(z,y,t) =11if and only if x = y,

3. M(z,y,t) = M(y,x,t),

4. M(z,y,t)« M(y,z,8) < M(z,z,t+s), z,y,2 € X and t,s > 0,

5. M(z,y,-): X2 x (0,00) — [0,1] is continuous, x,y,2 € X and ¢,s > 0.

Remark 1 [2]. M(x,y,t) can be thought of as the degree of nearness between
x and y with respect to t. We identify « = y with M(z,y,t) = 1, for t > 0 and
M(z,y,t) =0 with £ = 0o or y = 0.

Remark 2 [2]. In a fuzzy metric space (X, M, *), whenever M (z,y,t) > 1—r for
z,yin X,t>0,0<r <1, wecanfind a tg, 0 < tg < 1 such that M(x,y,t9) > 1—r.

Definition 3 [4]. A sequence {z,} in a fuzzy metric space (X, M, ) is said to
be a Cauchy sequence if for each €, 0 < € < 1 and ¢ > 0 there exists ng € N such
that M (2, Tm,t) > 1 — ¢ for all n,m > ny.

Definition 4 [2]. Let X (X, M,*) be a fuzzy metric space. We define the open
ball B(x,r,t) with centre z € X and radiusr, 0 <r < 1,¢t >0 as

Bla,rt) = {y € X: M(z,y,1) > 1—r}.

Definition 5 [4]. Let (X, M,x) be a fuzzy metric space. Define T = {A C
X: z € Aif and only if there exist r, t > 0, 0 < r < 1 such that B(z,r,t) C A}.
Then T is topology on X. This topology is called the topology induced by the fuzzy

metric.

Then by Theorem 3.11 of (George and Veeramani 1994 [2]) we know that a se-
quence x,, — x (x, converges to x) if and only if M(z,,z,t) — 1 as n — oo.

Definition 6 [2]. A fuzzy metric space is said to be complete if every Cauchy
sequence is convergent.

Notation. My(x,y,t) denotes the degree of nearness between x and y with
respect to t when z,y € A.
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3. URYSOHN’S LEMMA AND GLUING LEMMA

Proposition 1 (Urysohn’s Lemma). Let (X, M, *) be a fuzzy metric space. Let
T be a topology on X induced by the fuzzy metric. Let A and B be distinct members
of r. Then there exists a fuzzy continuous function f: X — [0, 1] such that f =0
onAand f=1on B.

Proof. Define a function f: X — [0,1] by

B 1—Ma(z,z,t)
B MB((E,(E,t) - MA(QC,(E,t) .

/(=)

Note that Mg (z,z,t)—Ma(z,z,t) #O0foranyz € X. If x € A, Ma(x,x,t) = 1, then
flx)=0. If x € B, Mp(z,z,t) =1, then f(x) =1— Ma(x,2,t)/1 — Ma(z,x,t) =
1. Since M(x,y,t) is fuzzy continuous (George and Veeramani 1994 [2]), f is fuzzy
continuous. (]

Proposition 2 (Gluing Lemma). Let (X, M, *) and (Y, M, x) be two fuzzy metric
spaces. Let U;, i € I be members of fuzzy induced topology T on X such that
U U; = X. Assume that there exists a fuzzy continuous function [3] f;: U; — Y
i€l
for each i € I with the property that f;(z) = f;(z) for allz € U;NU; and i,j € I.
Then the function f: X — Y defined by f(x) = fi(z) if x € U; is well defined and

fuzzy continuous on X .

Proof. Letz,y € X. Since f; is continuous for givenr € (0, 1), ¢ > 0 we can find
ro € (0,1),t/4 > 0 such that M (x,y,t9) > 1 —r¢ implies M (f;(x), fi(y),t/2) > 1—r.
Now M (x,y,t/4) > 1 —1. Let x € U;, y € U; for some i # j. Let x; € U; N U;.
Then

M(f(x)vf(y)at/Z) > M(f(l‘), f(q,‘z),t/ll) * M(f(x’t)a f(y)vt/4)
= M(fi(), fi(w:),t/4) * M(f;(x:), f3(y), t/4)

>(I—-r)x(l—-r)=1-r.

Therefore f is fuzzy continuous. (]
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4. FuzzYy CONTRACTION * MAPPING

Definition 7. Let (X, M, *) be a fuzzy metric space. A function f: X — X is
called a fuzzy contraction* mapping if M (x,y,t) > 1—(1—7r?) forall0 < 1—7r% < 1.
Then M (f(z), f(y),t) =1 — (1 —r3) for each 2,y € X for some 1 — 73 <1 —172 1.

Example 1. Consider the fuzzy metric space (R, M, *), where R is the set of all
real numbers and M (z,y,t) =t/(t+ |x —y|). Let f: R — R and define f(z) = z/2.
Then M(z,y,t) = t/(t+ |z —y]) >1—(1—-7r%),¢t>0,0<1—7r%< 1 where
1—7r%>|z—y|/(t+ |z —y|). Then

t
Tt (2/2) - (y/2)]
1= (/2 — w/2))
t+[(2/2) — (y/2)]

M(f(x), f(y),t)

>1—(1-12)

where
oo /)~ /)
L2 @) - )

Further,

Tttlr -yl t+|(2/2) — (y/2)]
=yl slz—yl

Ttttz -yl t+ iz —yl

|z —yl(t + 3le —yl) = 3o —yl(t + |z —y])
(t+ |z —y[)(t + |z —y])

|z —ylt — 3(|lz — y[t)

Tt —y)(E+ )z —yl
(t/2)|z -yl _

Tt le—y)t+ e -yl

Loyt s 23l (/D) = @/2)

To

=

?

which implies that f is a fuzzy contraction* by Definition 7.

Definition 8. A mapping from a fuzzy metric space X to a fuzzy metric space
Y is said to be fuzzy continuous* if for given 1 —7%, ¢ > 0,0 < 1 —r2 < 1 we can find
1—72 € (0,1), to > 0 such that M (x,y,tg) > 1—(1—73) implies M (f(z), f(y),t/2) >
1—(1-72).
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Proposition 3. Every fuzzy contraction® mapping on a fuzzy metric space is
fuzzy continuous®.

Proof. Let f: X — X be a fuzzy contraction* mapping. Therefore for =,y €
X, given 1 — 72 € (0,1), t > 0, we can find 1 —r2 € (0,1), t/4 > 0 such that
1—-r2=(01—-(1-73)* (- (1-rd). Now M(x,y,t/4) > 1 — (1 — rZ) implies
M(f(z), f(y),t/4) >1— (1 —s%) >1— (1 —r2) where 1 — s% € (0,(1 —r2)) (since f
is a fuzzy contraction* mapping). Let 1 € X. Then

M(f(l‘), f(y)vt/z) > M(f(x),f($1),t/4) * M(f($1),f(y),t/4)
SAI-—1=r2)*x(1—-1=r3))>1—(1=7%),(1-r%€(0,1)

which implies that f is a fuzzy continuous® mapping. O
Remark 3. The converse need not be true as the following example shows.

Example 2. Consider the fuzzy metric space (R, M, *) [2] where R is the set of
all real numbers and

M(a?,y,t)zm-

Let f: R — R and define f(x) = 22. Then

t

M t) =
(l‘,y,) t+|$—y|>1—(1—7"2)

where (1 —7?) > |z — y|/(t + |z — y|). Then

(t/2) _ t
(t/2) + ] — 92| t+2(j2% —y2))

2 2 _ .2
21—(1—r§)where1—r8>%
t+2(|e? = y2))

M(f(l‘), f(y)vt/z) =

which implies that f is a fuzzy continuous™ mapping. However, M (f(z), f(y),t) =
t/(t+ 2% —y?]) > 1 — (1 — s%) where 1 — 52 > |22 — 2|/ (t + |2? — 3?|) since

2 2
1—82)— (1 —7r2)> lz° — v _ |z —y
A=) == > P " ey

L 4z —yDla? =y — (¢t + |22 — ¢l — y]
(t+ )22 —y?))(t + [z — yl)
t(l2? — y? = |z —yl)
(t+ 22 =yt + |z —yl)

0 if =,y are integers

N WV

0 if =,y are not integers

and consequently, f is not a fuzzy contraction* mapping.
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Proposition 4. Every fuzzy contraction* mapping on a complete fuzzy metric
space [2] has a unique fixed point.

Proof. Let f be a fuzzy contraction® mapping on a complete fuzzy metric

space (X, M, ). |
Uniqueness part. If possible let ¢y # yo be two fixed points of f. Then we
have
zo = [1(x0) = f*(w0) = f*(x0) = ... = ["(x0),
yo=f'(yo) = f*(yo) = f*(yo) = ... = f"(yo) for each n € N.
Now

M (20, y0,t) = M(f™(x0), f"(yo)t) =1 — (1 —*)/k"
> M(x07y0at) (: 1- (1 - T2))
where k£ > 1, a contradiction, hence xy = yg. Therefore the fixed points are unique.
Existence part. Let 21 = f(z0), 22 = f(21), .-, Zn = f(Tn_1) = f* 1(21).
Then
M (2, ng1,t) = M(f"Ha), f* (@), ) = 1= (1—r?) [k

1 1
T for some T2 € (0,1).

>1-

Therefore,

1

(A) M(xn,anrl,t)}l—m.

For a given t' = (m —n)t > 0, ¢ > 0, choose ng such that 1/ng < €. Then for
mzn zng,

M (xp, 2, t') = M (20, Ty, ) % M(Tpg1, Tnaa,t) % .ok M(Tpm—1, T, t)
>(1-(1=-s))x(1-(1=5)x...x(1-(1-s)")
1 1
>1-= for some — € (0,1) >1—¢
n n

and hence {z,} is a Cauchy sequence. Since X is a complete metric space, this
sequence converges to, say, zop € X. Now we assert that zp is a fixed point of f.
Consider n € N for 0 < 1 —72 < 1, t > 0. Then we have

M(f(20),20,t) = M(f(20), f(w0),t/n + 1) % M(f(z0), f*(w0), t/n+1) ...
* M(f"(xo),zo,t/n—i— 1);
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and since f is a fuzzy contraction* mapping, this is for £k > 1 and 1/(1 —s2) € (0,1)
greater than or equal to

A-—Q=82N*x1—-—Q=rH)x1 -1 —=7r%/k)*...
« (1= (1 =r?)/E" ")« M(f™(20), 20,t/n + 1)
> (1= (1 —7)/k"*P) % M(f™(x0), 20, t/n+ 1)

for some p € N. Taking limit on both sides as n — oo we obtain

lim M(f(z0),20,t) = nlirr;o(l — (1= 72)/k""P) % nlirr;o M(f™(xo), z0,t/n+1)

:>M(f(20),20,t) 21*1:>f(20):'20
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