λ -LATTICES

VÁCLAV SNÁŠEL, Olomouc

(Received February 29, 1996)

Abstract. In this paper, we generalize the notion of supremum and infimum in a poset.

Keywords: supremum, infimum, ideal, congruence

MSC 1991: 06A, 06B10

1. λ -posets and λ -lattices

For terminology and notation throughout the paper see [MMT] and [GR]. Let $P = (P, \leq)$ be an ordered set. If $A \subseteq P$, denote by L(A) and U(A)

$$L(A) = \{x \in P : x \leqslant a \text{ for all } a \in A\}$$
$$U(A) = \{x \in P : x \geqslant a \text{ for all } a \in A\}.$$

Call L(A) or U(A) the lower or upper cone of A, respectively. If B is a finite family of elements of P, say $A = \{a_1, a_2, \ldots, a_n\}$, we write briefly $L(a_1, a_2, \ldots, a_n)$ or $U(a_1, a_2, \ldots, a_n)$ for L(A) or U(A), respectively.

A λ -poset is a poset (P, \leq) , where $L(a, b) \neq \emptyset \neq U(a, b)$ for every two elements $a, b \in P$, with a choice function λ where λ is choosing a single element from L(a, b) as well from U(a, b) and λ satisfies the following condition:

(*) if
$$a \leq b$$
 then $\lambda(L(a,b)) = a$ and $\lambda(U(a,b)) = b$.

The chosen element $\lambda(L(a,b))$ is denoted by $a \cdot b$ and $\lambda(U(a,b))$ by a+b. After the choice of λ , the elements $a \cdot b$ and a+b are fixed. Because L(a,b) = L(b,a) and U(a,b) = U(b,a), the choice of λ is independent on the order of the elements a and b. On the other hand, the choice is not assumed to be consequential, i.e. if

L(a,b) = L(c,d) for some elements $a,b,c,d \in P$, $(a,b) \neq (c,d)$, $a \cdot b$ and $c \cdot b$ need not be equal; and analogously for a+b and c+d. Thus the choice of λ depends on the elements a and b only.

Definition 1.1. A λ -lattice is an algebra $P = (P, \cdot, +)$ where + and \cdot are two binary operations on P, satisfying the following laws for all $a, b, c \in P$:

i.) $a \cdot a = a$ c.) $a \cdot b = b \cdot a$ t.) $a \cdot ((a \cdot b) \cdot c) = (a \cdot b) \cdot c$ a.) $a \cdot (a + b) = a$ i₊) a + a = ac₊) a + b = b + at₊) a + ((a + b) + c) = (a + b) + ca₊) $a + (a \cdot b) = a$

Theorem 1.1. Let (P, \leq, λ) be a λ -poset. Then the algebra $P = (P, \cdot, +)$ with binary operations \cdot and +, where $a \cdot b = \lambda(L(a, b))$ and $a + b = \lambda(U(a, b))$, is a λ -lattice.

Proof. i.): $a \cdot a = \lambda(L(a,a)) = a$. c.) is true because the choice λ is independent of the order of the elements a and b. t.): Because $a \cdot b$ is from L(a,b), $a \cdot b \leq a$ in (P, \leq) ; analogously $(a \cdot b) \cdot c \leq a \cdot b$, and from transitivity $(a \cdot b) \cdot c \leq a$. According to (*) we have $a \cdot ((a \cdot b) \cdot c) = \lambda(L((a \cdot b) \cdot c, a)) = (a \cdot b) \cdot c$. a.): Because $a + b \in U(a,b)$, $a + b \leq a$. According to (*) we have $\lambda(L(a + b, a)) = a$. The identities i_+), i_+ 0 and i_+ 1 can be proved analogously.

Theorem 1.2. Let $(P, \cdot, +)$ be a λ -lattice. A λ -poset (P, \leqslant) is obtained by putting $a \cdot b = a \iff a \leqslant b$. Moreover, if (P, \leqslant) is a λ -poset $(P, \cdot, +)$ the λ -lattice induced by (P, \leqslant) , and (P, \preceq) the λ -poset induced by $(P, \cdot, +)$ then $(P, \leqslant) = (P, \preceq)$.

Proof. The validity of the latter assertion is clear after proving the first one because $a \leqslant b \iff a \cdot b = a \iff a \leq b$. So it remains to show that the order $a \leqslant b$ induced by $a \cdot b = a$ is a partial order. In fact, we begin with proving that $a \cdot b = a \iff a + b = b$.

 \Rightarrow : $a + b = (a \cdot b) + b = b$ according to the absorption law in a_+) \Leftarrow : $a \cdot b = (a + b) \cdot a = a$ according to the absorption law in a_-)

Because of i.) $a \leqslant a$ for all $a \in P$. Let $a \leqslant b$ and $b \leqslant a$. Then $a \cdot b = a$ and $b \cdot a = a$; a = b follows from c.). Moreover $a \leqslant b$ and $b \leqslant c$, give a + b = b and b + c = c. Now

$$c = b + c = (a + b) + c = a + ((a + b) + c) = a + (b + c) = a + c$$

according to t_+), whence $a \le c$. Thus \le is a partial order in P. It remains to show that $L(a,b) \ne \emptyset \ne U(a,b)$ for every two elements $a,b \in P$. In fact, we will show that $a+b \in U(a,b)$; the proof is analogous to that of $a \cdot b \in L(a,b)$. From $(a+b) \cdot a = a$ it follows that $a \le a+b$ and, analogously, $b \le a+b$. Thus $a+b \in U(a,b)$.

Examples.

2. Ideals and strong ideals

A subset $I \subseteq P$ of a λ -lattice $(P,\cdot,+)$ is called an ideal of P, if $i \in I$ and $a \in P \Rightarrow i \cdot a \in I$, and if $i, j \in I \Rightarrow i + j \in I$.

The set theoretical intersection of an arbitrary system of ideals is clearly an ideal again, thus the set $\mathrm{Id}(P)$ of all ideals of P forms a complete lattice with respect to set inclusion. Evidently $I \wedge J = I \cap J$ and $I \vee J = \bigcap \{K; I, J \subseteq K \text{ and } K \text{ is an ideal of } P\}.$

If B is any subset of P then the ideal generated by B, denoted by I(B), is the intersection of all ideals of P containing B. If B is a finite set $\{a_1 \ldots a_n\}$ we will write $I(a_1 \ldots a_n)$ for $I(\{a_1 \ldots a_n\})$. An ideal J is said to be strong if it satisfies the following condition:

$$a \cdot b \in J \Rightarrow I(a) \cap I(b) \subseteq J$$
.

In a lattice every ideal is strong.

Note that $(a] = \{x; x \leq a, a \in P\}$ need not be an ideal of P.

Theorem 2.1. Let $(P, \cdot, +)$ be a λ -lattice induced by a λ -poset (P, \leq, λ) . If (a) is an ideal for every $a \in P$, then (P, \leq) is a join-semilattice.

Proof. If $a \le x$ and $b \le x$ then since $a, b \in (x]$ and since (x] is an ideal, we have $a + b \in (x]$ whence $a + b \le x$.

Theorem 2.2. Let $(P, \cdot, +)$ be a λ -lattice induced by a λ -poset (P, \leq, λ) . If (a] is a strong ideal for every $a \in P$, then (P, \leq) is a lattice.

Proof. According to Theorem 2.1, P is a join-semilattice and, we need only to show that P is also a meet-semilattice. If $x \leq a$ and $x \leq b$ then $(x] \subset (a]$ and $(x] \subseteq (b]$. Since $a \cdot b \leq (a \cdot b]$ and $(a \cdot b]$ is a strong ideal, then $(x] \subseteq (a] \cap (b] \subseteq (a \cdot b]$. Hence we have $x \leq a \cdot b$.

3. On congruences on a λ -lattice

Denote by Con P the lattice of all congruences on a λ -lattice P. Let $\Theta \in \operatorname{Con} P$. As usually, ω is the least element $(x \equiv y(\omega) \iff x = y)$ and i is the greatest element of Con P $(x \equiv y(i))$ for every elements $x, y \in P$). Further $x \equiv y(\Theta \land \Phi) \iff x \equiv y(\Theta)$ and $x \equiv y(\Phi)$. Moreover $x \equiv y(\Theta \lor \Phi) \iff$ there is a sequence $x = z_0, z_1, \ldots, z_n = y$ of elements such that $z_{j-1} \equiv z_j(\Theta)$ or $z_{j-1} \equiv z_j(\Phi)$ for every $i, i = 1, \ldots, n$. A subset $K \subseteq P$ of a λ -lattice P is called convex, if $a, b \in K$, $t \in P$ and $a \leqslant t \leqslant b \Rightarrow t \in K$.

Lemma 3.1. Let P be a λ -lattice. Then $[a]\Theta$ is a convex sub- λ -lattice for every $a \in P$.

Proof. First we prove that $[a]\Theta$ is a sub- λ -lattice. From $x\equiv a(\Theta)$ and $y\equiv a(\Theta)$ it follows that $x+y\equiv a(\Theta)$ and $x\cdot y\equiv a(\Theta)$ and we have that $[a]\Theta$ is a sub- λ -lattice. Further we prove that $[a]\Theta$ is convex. If $x\leqslant t\leqslant y,\ x,y\in [a]\Theta$ and $t\in P$ then $t=t\cdot y\equiv t\cdot a(\Theta),\ t=t+x\equiv (t\cdot a)+x\equiv (t\cdot a)+a=a(\Theta),$ so we have $t\in [a]\Theta$. \square

Theorem 3.2. Let P be a λ -lattice. A reflexive binary relation on P is a congruence on P iff the following three properties are satisfied for any $x, y, z, t \in P$.

- (i) $x \equiv y(\Theta) \iff x + y \equiv x \cdot y(\Theta);$
- (ii) $x \leqslant y \leqslant z$, $x \equiv y(\Theta)$, $y \equiv z(\Theta) \Rightarrow x \equiv z(\Theta)$;
- (iii) $x \leq y$ and $x \equiv y(\Theta) \Rightarrow x \cdot t \equiv y \cdot t(\Theta), \ x + t \equiv y + t(\Theta).$

Proof. If Θ is a congruence on P, then it obviously satisfies the conditions (i), (ii) and (iii). Hence we will prove the converse condition only. At first we prove that if $b,c \in [a,d] = \{x; a \leq x \leq d\}$ and if $a \equiv d(\Theta)$ then $b \equiv c(\Theta)$. According to (iii), we obtain $b \equiv d(\Theta)$, $a \equiv b(\Theta)$. By using of (iii) again we obtain $b \cdot c \equiv c(\Theta)$, $c \equiv c + b(\Theta)$. Because $b \cdot c \leq c \leq b + c$, (ii) implies $b \cdot c \equiv b + c(\Theta)$, and by (i) also

 $b \equiv c(\Theta)$. According to (i) Θ is symmetric. To prove transitivity of Θ , we assume that $x \equiv y(\Theta), y \equiv z(\Theta)$. Then by (i) $x \cdot y \equiv x + y(\Theta), y \cdot z \equiv y + z(\Theta)$, and by (iii)

$$y + z = (y + z) + (y \cdot x) \equiv (y + z) + (y + x)(\Theta),$$

$$y \cdot z = (y \cdot z) \cdot (y + x) \equiv (y \cdot z) \cdot (y \cdot x)(\Theta).$$

Because $y+z\equiv (y+z)+(y+x)(\Theta),\, y\cdot z\equiv (y\cdot z)\cdot (y\cdot x)(\Theta)$ and

$$(y \cdot z) \cdot (y \cdot x) \leqslant y \cdot z \leqslant y + z \leqslant (y + z) + (y + x),$$

we apply (ii) twice to obtain

$$(y \cdot z) \cdot (y \cdot x) \equiv (y+z) + (y+x)(\Theta).$$

Because

$$x,z \in [(y\cdot z)\cdot (y\cdot x),(y+z)+(y+x)],$$

the proof of the preceding paragraph imply that $x \equiv z(\Theta)$. Next we prove the assertion: if $x \equiv y(\Theta)$, then $x+t \equiv y+t(\Theta)$. Since $x,y \in [x\cdot y,x+y]$, (i) and the proof of the first paragraph imply that $x \equiv x+y(\Theta)$, $y \equiv x+y(\Theta)$. Now, according to (iii), $x+t \equiv (x+y)+t(\Theta)$, $y+t \equiv (x+y)+t(\Theta)$, and by applying transitivity proved above, we obtain $x+t \equiv y+t(\Theta)$. Now we are able to prove the substitution property of Θ for +: Let $x_0 \equiv y_0(\Theta)$, $x_1 \equiv y_1(\Theta)$. Then $x_0+x_1 \equiv x_0+y_1(\Theta)$, $x_0+y_1 \equiv y_0+y_1(\Theta)$, and according to the transitivity, also $x_0+x_1 \equiv y_0+y_1(\Theta)$. The substitution property for \cdot can be proved similarly.

Theorem 3.3. The lattice Con P of all congruences on a λ -lattice P is distributive.

Proof. Consider a λ -lattice term

$$M(x, y, z) = ((x \cdot y) + (y \cdot z)) + (z \cdot x).$$

It is a routine to show that for all $a, b \in P$

$$M(a, a, b) = a$$

$$M(a, b, a) = a$$

$$M(b, a, a) = a,$$

i.e. M(x, y, z) is a majority term and, therefore, Con P is distributive.

A c k n o w l e d g e m e n t . The author thanks Prof. I. Chajda and Prof. J. Rachůnek for their valuable comments.

References

- [MMT] R. N. McKenzie, G. F. McNulty, W. F. Taylor: Algebras, Lattices, Varieties. Volume 1, Wadsworth, 1987.
 - [GR] G. Grätzer: General Lattice Theory. Birkhäuser, Basel-Stuttgart, 1987.
 - [LN] K. Leutola, J. Nieminen: Poset and generalized lattices. Algebra Universalis 16 (1983), 344-354.
 - [N] J. Nieminen: On distributive and modular c-lattices. Yokohama Math. J. 31 (1983), 13–20.

Author's address: Václav Snášel, Department of Computer Science, Palacky University Olomouc, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: vaclav.snasel@upol.cz.