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Abstract. In this paper, we generalize the notion of supremum and infimum in a poset.
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1. A-POSETS AND A\-LATTICES

For terminology and notation throughout the paper see [MMT] and [GR].
Let P = (P, <) be an ordered set. If A C P, denote by L(A) and U(A)

L(A)={zeP;z
UA)={zeP;z

a for all a € A}
a for all a € A}.

VA

Call L(A) or U(A) the lower or upper cone of A, respectively. If B is a finite
family of elements of P, say A = {a1,a2,...,a,}, we write briefly L(a1,az,...,a,)
or U(a1,as,...,an) for L(A) or U(A), respectively.

A M-poset is a poset (P, <), where L(a,b) # 0 # U(a,b) for every two elements
a,b € P, with a choice function A where A is choosing a single element from L(a,b)
as well from U (a,b) and A satisfies the following condition:

(%) if a < b then A\(L(a,b)) = a and A\(U(a,b)) = b.

The chosen element A\(L(a,b)) is denoted by a - b and A\(U(a,b)) by a + b. After
the choice of A, the elements a - b and a + b are fixed. Because L(a,b) = L(b,a)
and U(a,b) = U(b,a), the choice of \ is independent on the order of the elements
a and b. On the other hand, the choice is not assumed to be consequential, i.e. if
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L(a,b) = L(c,d) for some elements a,b,c,d € P, (a,b) # (¢,d), a-b and c- b need
not be equal; and analogously for a + b and ¢ + d. Thus the choice of A depends on
the elements a and b only.

Definition 1.1. A M-lattice is an algebra P = (P,-,+) where + and - are two
binary operations on P, satisfying the following laws for all a,b,c € P:

i)a-a=a it)ata=a

c)a-b=b-a cy)a+b=b+a
t)a-((a-0)-¢c)=(a-b)-c  ty)at+((a+d)+c)=(a+b)+c
a)a-(a+b)=a a;)a+(a-b)=a

Theorem 1.1. Let (P,<,\) be a A-poset. Then the algebra P = (P,-,+) with
binary operations - and +, where a - b = A(L(a,b)) and a +b = A(U(a,b)), is a
M-lattice.

Proof. i): a-a=A(L(a,a)) = a. c.)is true because the choice ) is independent
of the order of the elements a and b. t.): Because a- b is from L(a,b), a-b < a in
(P, £); analogously (a-b)-c < a-b, and from transitivity (a-b) - ¢ < a. According to
() we have a- ((a-b)-¢) = AML((a-b)-¢,a)) = (a-b)-c. a.): Because a+b € U(a,b),
a+b < a. According to (*) we have A(L(a + b,a)) = a. The identities i} ), cy), t4)
and a;) can be proved analogously. O

Theorem 1.2. Let (P,-,+) be a A-lattice. A M\-poset (P, <) is obtained by putting
a-b=a <= a<b. Moreover, if (P,<) is a A-poset (P,-,+) the A-lattice induced
by (P, <), and (P, =) the A-poset induced by (P,-,+) then (P,<) = (P, X).

Proof. The validity of the latter assertion is clear after proving the first one
because a < b < a-b=a <= a < b. So it remains to show that the order
a < binduced by a-b = a is a partial order. In fact, we begin with proving that
a-b=a < a+b=hb.

=:a+b=(a-b)+b=0>b according to the absorption law in a,)

<:a-b=(a+Db)-a=a according to the absorption law in a.)

Becauseofi.)a < aforalla € P. Leta < band b < a. Then a-b =a and b-a = a;
a = b follows from c.). Moreover a < b and b < ¢, give a+b=>b and b + ¢ = ¢. Now

c=b+c=(a+b)+c=a+((a+b)+c)=a+(b+c)=a+c

according to t4 ), whence a < ¢. Thus < is a partial order in P. It remains to show
that L(a,b) # 0 # U(a,b) for every two elements a,b € P. In fact, we will show that
a+b € U(a,b); the proof is analogous to that of a-b € L(a,b). From (a+b)-a=a
it follows that a < a + b and, analogously, b < a +b. Thus a +b € U(a, b). O
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Examples.

1
-{0abcl +{0abcl
N 0/00000| [0[0abecl
a|0al0aa alaalcl
a b bl0O0ObbLD blblbel
cl0abcc clccccl
1|0abcl 1(11111
0
1
-10abecdl +|0abcdl
0/0000dO 0|0abcecdl
c d al0alaaa alaadcdl
bl|0ObbLLD blbdbecdl
a b cl0abcac clccceccell
d|0abadd dlddd1ldl1l
1|0abedl 11111111
0

2. IDEALS AND STRONG IDEALS

A subset I C P of a Alattice (P,-,+) is called an ideal of P, if i € I and
aceP=i-acl andifi,jecl=i+jel

The set theoretical intersection of an arbitrary system of ideals is clearly an ideal
again, thus the set Id(P) of all ideals of P forms a complete lattice with respect to
set inclusion. Evidently IAJ =INJand IVJ =(|{K; I,J C K and K is an ideal
of P}.

If B is any subset of P then the ideal generated by B, denoted by I(B), is the
intersection of all ideals of P containing B. If B is a finite set {a1...a,} we will
write I(ay ...an) for I({as...an}). An ideal J is said to be strong if it satisfies the
following condition:

a-beJ=I(a)NI(b)CJ

In a lattice every ideal is strong.
Note that (a] = {z; = < a,a € P} need not be an ideal of P.

Theorem 2.1. Let (P,-,+) be a A-lattice induced by a A-poset (P, <,\). If (a]
is an ideal for every a € P, then (P, <) is a join-semilattice.
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Proof. If a < z and b < z then since a,b € (z] and since (2] is an ideal, we
have a + b € (z] whence a + b < z. O

Theorem 2.2. Let (P,-,4) be a \-lattice induced by a A-poset (P,<,\). If (a)
is a strong ideal for every a € P, then (P, <) is a lattice.

Proof. According to Theorem 2.1, P is a join-semilattice and, we need only
to show that P is also a meet-semilattice. If z < a and « < b then (2] C (a] and
(x] C (b]. Since a-b < (a-b] and (a-b] is a strong ideal, then (z] C (a] N (b] C (a-b].
Hence we have x < a - b. O

3. ON CONGRUENCES ON A A-LATTICE

Denote by Con P the lattice of all congruences on a A-lattice P. Let © € Con P. As
usually, w is the least element (z = y(w) <= x = y) and ¢ is the greatest element of
Con P (x = y(z) for every elements z,y € P). Further t = y(O A ®) <— z =y(O)
and z = y(®). Moreover z = y(OVP) <= thereisasequence z = zg,21,...,2n = Y
of elements such that z;_1 = 2;(©) or z;_1 = z;(®) for every ¢,i = 1,...,n. A subset
K C P of a Mlattice P is called convex, if a,b€ K,t€e Panda<t<b=t€e K.

Lemma 3.1. Let P be a A-lattice. Then [a]® is a convex sub-A-lattice for every
acP.

Proof. First we prove that [a]© is a sub-A-lattice. From z = a(©) and y = a(0)
it follows that z+y = a(©) and z-y = a(©) and we have that [a]© is a sub-\-lattice.
Further we prove that [a|© is convex. If z < t < y, z,y € [a]© and t € P then
t=t-y=t-a(0®),t=t+zx=(t-a)+xz=(t-a)+a=a(0),sowe havet € [a]®. O

Theorem 3.2. Let P be a \-lattice. A reflexive binary relation on P is a con-
gruence on P iff the following three properties are satisfied for any x,vy, z,t € P.

=y(©) <= z+y=z-y(9);
Ly<z z=y(0), y=2(0) =z =2(0);

Proof. If ©isa congruence on P, then it obviously satisfies the conditions (i),
(ii) and (iii). Hence we will prove the converse condition only. At first we prove
that if b,c € [a,d] = {z; a < < d} and if a = d(O) then b = ¢(0). According to
(iii), we obtain b = d(0),a = b(0). By using of (iii) again we obtain b - ¢ = ¢(0),
c=c+b(©). Because b-c < ¢ < b+ ¢, (ii) implies b- ¢ = b+ ¢(0), and by (i) also
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b = ¢(0©). According to (i) © is symmetric. To prove transitivity of ©, we assume
that z = y(0),y = 2(0©). Then by (i) z-y =z +y(0), y-z =y + 2(0), and by (iii)

ytz=(y+2)+ @y z)=W+2)+y+2)0),
y-z=-2)-(y+a)=(y-2) (y-2)(O).

Because y+z=(y+2)+ (y+2)(0),y-2=(y-2)- (y-z)(©) and
W-2) (y-2)<y-2<y+2<(y+z)+(y+a),

we apply (ii) twice to obtain

(y-2)-(y-z)=(y+2)+ (y+2)(0).

Because
z,2€((y-2) (y-a),(y+2)+@y+a)

the proof of the preceding paragraph imply that z = 2(©). Next we prove the
assertion: if z = y(0), then x4+t = y+¢(0). Since z,y € [z-y, z+y], (i) and the proof
of the first paragraph imply that x = 2 +y(0),y = 2+ y(0). Now, according to (iii),
4+t = (z+y)+t(0),y+t = (z+y)+t(0), and by applying transitivity proved above,
we obtain x +t = y+t(0). Now we are able to prove the substitution property of ©
for +: Let 20 = y0(0), 21 = y1(©). Then zo+x; = 2o+ y1(0), 20 +y1 = Yo +v1(0),
and according to the transitivity, also zo+x1 = yo+y1(©). The substitution property
for - can be proved similarly. d

Theorem 3.3. The lattice Con P of all congruences on a A-lattice P is distribu-
tive.

Proof. Consider a A-lattice term

M(z,y,2) = (¢ y) + (y- 2)) + (2 - @).

It is a routine to show that for all a,b € P

M(a,a,b) =a
M(a,b,a) =a
M(b,a,a) = a,
ie. M(z,y,z2) is a majority term and, therefore, Con P is distributive. |
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