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Abstract. The eccentricity of a vertex v of a connected graph G is the distance from v
to a vertex farthest from v in GG. The center of G is the subgraph of GG induced by the
vertices having minimum eccentricity. For a vertex v in a 2-edge-connected graph G, the
edge-deleted eccentricity of v is defined to be the maximum eccentricity of v in G — e over
all edges e of G. The edge-deleted center of G is the subgraph induced by those vertices of
G having minimum edge-deleted eccentricity. The edge-deleted central appendage number
of a graph G is the minimum difference |V (H)| — |V (G)| over all graphs H where the edge-
deleted center of H is isomorphic to G. In this paper, we determine the edge-deleted central
appendage number of all trees.
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1. INTRODUCTION

The distance d(u,v) between two vertices u and v in a connected graph G is the
length of a shortest u-v path in G. The eccentricity e(v) of a vertex v in a connected
graph G is the distance between v and a vertex farthest from v in G. The minimum
eccentricity among the vertices of G is called the radius rad(G) of G, while the
maximum eccentricity is the diameter diam(G) of G. A vertex v is called a central
vertez if e(v) = rad(G) and called a peripheral vertez if e(v) = diam(G). The center
C(G) of G is the subgraph induced by the central vertices of G while the periphery
P(G) of G is the subgraph induced by the peripheral vertices of G.

A graph G is 2-edge-connected if the removal of any edge of G never results in
a disconnected graph. For a vertex v in a 2-edge-connected graph G, the edge-
deleted eccentricity g(v) of v is defined to be the maximum eccentricity of v in G —e
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over all edges e of G. The vertices of G with minimum edge-deleted eccentricity
are called edge-deleted central vertices while the vertices of maximum edge-deleted
eccentricity are called edge-deleted peripheral vertices. The subgraph induced by the
edge-deleted central vertices of G is called the edge-deleted center EDC(G) of G and
the subgraph induced by the edge-deleted peripheral vertices EDP(G) is called the
edge-deleted periphery. Properties about the edge-deleted eccentricity of vertices and
the edge-deleted center of 2-edge-connected graphs were given in [3].

The central appendage number of a graph G is the minimum difference |V (H)| —
|[V(G)| over all graphs H with C(H) = G. Buckley, Miller, and Slater [2] charac-
terized trees with central appendage number 2 and showed that there are no trees
with central appendage number 3. The papers [1] and [5] also study this question.
The edge-deleted central appendage number A(G) of a graph G is the minimum dif-
ference |V(H)| — |[V(G)| over all graphs H with EDC(H) = G. The edge-deleted
central appendage number of several classes of graphs was studied in [4]. In partic-
ular, the edge-deleted central appendage number of trees was shown to be 2 or 3. In
this paper, we give necessary and sufficient conditions for a tree to have edge-deleted
central appendage number 2.

2. RESULTS

Throughout the paper, let T be a tree with A(T) = 2 and let H be a graph
with V(H) = V(T) U {z,y} and EDC(H) = T. Since = and y are the only edge-
deleted peripheral vertices in H, let g(z) = ¢g(y) = k with e € E(H) such that
dyg—_c(x,y) = k. Let D be the set of peripheral vertices of T' and define a branch of
T as a component of T' — V(C(T)).

Lemma 1. Suppose that T is a tree with A(T) = 2. Then gy (u) = k — 1 for all
ue V(T).

Proof. We know that gy(x) = gu(y) = k and that there exists a fixed n,
2 <n < k—1, such that gy (u) = n for every u € V(T'). Thus it will suffice to show
that g (u) = k — 1 for some u € V(7).

Let z,ui,us,...,up_1,y be a shortest z-y path in H — e. Clearly u; € V(T) for
each i, 1 < i < k— 1. Since the distance between u; and y is at least k — 1 in H —e,
g (u1) = k — 1. Therefore g(u;) =k — 1. O

Lemma 2. Suppose that T is a tree with A(T) = 2. If e is an edge of H with
dy—_c(x,y) =k, then e ¢ E(T).
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Proof. If zy € H, then the result is obvious. Suppose that zy ¢ E(H) and
that e = uu’ € E(T). Let x,u1,usg,...,Un,u be a shortest z-u path in H — e and
Y, uy, uh, ..., u.,u’ be a shortest y — v’ path in H — e.

Now, y # u; for 1 < i < m because if so, then dy_.(x,u) > dy_.(z,y) = k, which
is a contradiction. Similarly, x # wu} for 1 < ¢ < r. Consider a shortest u; — u}
path in H — e. This path must contain either = or y. If not, this path, u; — u path,
u’ — v} path, along with the edge uu’ would produce a cycle in T. Suppose that the
path contains . Then k — 1 >dpg_.(u1,u}) 2dg—c(x,u}) + 1 >k, a contradiction.
Switching the roles of x and y in the previous sentence completes the proof. O

Lemma 3. Suppose that T is a tree with A(T) = 2. If u,v € V(T) such that ux
and vy are edges in H — e, then
(1) a shortest u — v path in H — e lies entirely in T
(2) dy—e(u,v) =k—1ork—2
(3) eg—e(u) =eg_c(v) =k —1.

Proof. If (1) is false, then a shortest u — v path contains x or y. Without loss
of generality, assume that it contains z. Then k = dy_.(z,y) = dg_.(z,v) + 1 =
dy—e(u,v) =k — 1, a contradiction.

Now Lemma 1 implies that dg_.(u,v) < k — 1, and dg_.(x,y) = k implies that
dp—e(u,v) 2 k — 2; which proves (2).

Finally, dg_c(z,v) = k — 1 = dg—c(y,u) gives eg_.(u) 2 k— 1 and eg_.(v) >
k—1. But gg—c(u) = gg—e(v) = k — 1 implies ey _.(u) = eg_.(v) < k — 1. Thus,
(3) holds. O

Lemma 4. Let T be a tree with A(T) = 2. Let u and v be peripheral vertices
with uz,vy € E(H —e). Then dg—.(u,v) = k — 2 = diam(T).

Proof. Let if possible dg—.(u,v) < diam(T). If C(T) = ({w}), then u and v
must be end-vertices on the same branch of w. If C(T') = ({w, w'}), then without loss
of generality, u and v must be end-vertices on the branches of w (either on the same
branch or two separate branches of w). Let «’ € D, with dr(u,u') = diam(7T) (note
that in the case where C(T) = ({w,w’}), v/ must be an end-vertex on the branch
of w', if u is on the branch of w). If C(T) = ({w}), or if C(T) = {w,w’}) and u
and v are on the same branch of w or dg_.(u,v) = k — 1, then either dg_.(u,u’) or
dp_e(u',v) is greater than k — 1.

We may assume that C'(T') = ({w,w'}) and v and v are on two separate branches
of w. If there is no vertex on a branch of w’ which is adjacent to z, then dg_.(v', x)
is at least k, which contradicts g(u’) < k. Similarly, if there is no vertex on a branch
of w' adjacent to y, then dy_.(u',y) > k. We may assume that there are vertices
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z and 2’ on branches of w’ with zz and z'y € E(H — e). Notice that one of these
vertices may be u'. Since dy_.(x,y) = k, we must have dg_.(z,2') > k — 2, and
necessarily z and 2’ are both end-vertices.

If v/ is not adjacent to either z or y in H — e, then e = vz or w'y. But then
dy—ww (w,w") = k. We may assume without loss of generality that u’ = z.

The edge e is incident with at least one of x and y. If e = xy or if e joins either x or
y to an end-vertex of T, then dg_ ., (w,w") = k. We may assume that e joins x or
y to a vertex of T' that is not an end-vertex of 7. Without loss of generality, suppose
e joins z to a vertex on a branch of w. Then dy_,.(y,2") > k which contradicts
gz )=k -1

Therefore dy_e(u,v) = diam(T).

Let if possible now dg—.(u,v) = diam(T) = k — 1. Note that dy_.(z,y) = k and
g(s) = k—1 for all s € V(T). Therefore for all s € V(T') with sz € E(H — e), we
must have dy_.(s,y) = k — 1 and in particular dy_.(u,y) = k — 1. Therefore there
exists an s € V(T') — D such that sy € E(H — e). Using Lemma 3 and the fact that
s ¢ D, we get dy_.(u,s) = k — 2. Note that s must be an end-vertex. Otherwise
consider an end-vertex on the branch of s, say s, then dy_.(s’,x) > k — 1 which is
a contradiction to the fact that ey _.(s’) < k—1. By a similar argument we can find
an end-vertex z ¢ D with dg_.(v,2) =k —2 and zz € E(H —e).

Claim: dy_.(s,z) = diam(T).

In H —e, let a shortest u—v path be w, w1, ug, ..., Up, Upp1y oy Uppmy - -y Uk—2, U,
shortest u — s path be wu,uy, ug, ..., Upr,Upyq, o UL .-, U)_g, S, shortest v — z
path be v, ug_92, Ug—3, ..., Urtm, Vrtm—1,- - -, V2, 2. See Figure 1.
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Figure 1
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Let d(u,,s) = a, d(tpym,2) = b, d(tpym,v) = c. Then r +m +c¢ =k — 1,
r+a=k—2,c+b=k—2andb+m+a=dg_.(s,z) =k—2as s,z¢ D and by
Lemma 3. Solving these equations we would get 2m = 1 which is not possible since
m is a whole number. Therefore our assumption is false. O

Lemma 5. Let T be a tree with A(T) = 2. Then D must contain two vertices u
and v € V(H — e), such that ux,vy € E(H — e).

Proof. Since all end-vertices of T" must be adjacent to x or y in H, in H —e all
but possibly one of the end-vertices must be adjacent to either z or y. Let if possible
D not contain two vertices v and v in V(H — e), such that uz,vy € E(H —e). Then
without loss of generality, we can assume that in H — e all vertices in D are adjacent
to x only (except possibly one). Consider a vertex v € D with ux € E(H —e). Note
that in H — e, dg_.(x,y) = k and therefore all z-y paths must be of length greater
than or equal to k. Since g(u) = k — 1, there must exist a s € V(T) — D, with
sy€ E(H —e) and dy—(u,s) =k —2.

Case 1. Let if possible u and s be on the same branch of T

Counsider a vertex v’ € D with dr(u,v’) = diam(T). Now, dr(v/, s) = dr(u, s) +
2 = k. Since g(u') = k — 1, there must be a shorter ' — s path in H — e. If this path
goes through z, then dy_.(v',s) > dy—_e(z,s) + 1 = k which is not possible. The
shortest v’ — s path must go through y, so dy_.(u',y) < k — 2. Thus, v’ cannot be
adjacent to x. Thus v’ is the unique vertex at distance diam(7") from w in T. Since
g(u') = k—1, we have dy_.(uv/,x) < k— 1. On a shortest v’ — x path, let 2’ be
the vertex adjacent to x. On a shortest v’ — y path, let ¥’ be the vertex adjacent
to y. We may assume without loss of generality that ¢y’ ¢ D. The portion of the
u' — ' and v/ — y' paths moving towards C(T') must be the same. This common
portion is more than half of the u’ — 3’ path and at least half of the u’ — 2’ path,
so dy_e(2',y') = [552] =1+ [52] = k— 3. But then dy_(z,y) < k-1, a
contradiction.

Case 2. Let if possible s belong to C(T').

Note that if C'(T') has one vertex w, then rad(T) = k — 2 and wy must be an edge
in H—e. If C(T) has two central vertices w and w’, then both of them must be
adjacent to y and rad(T") — 1 = k — 2. Note that in both these cases, only vertices in
D can be adjacent to x in H —e, otherwise x-y paths of length less than k& would exist
in H —e. To make the argument easier to understand we will show later that when s
is a central vertex, all end-vertices of T" must belong to D. Using some of the similar
arguments we can also show that no other vertices of T' besides the central vertices
of T can be adjacent to y in H — e. Therefore, if we assume that all end-vertices
of T are in D, e = zy or yz for some z in V(T) in order for H to be 2-connected.
(Note that in the case when there are two central vertices we also have to consider
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e = xz for some z in V(T').) We will now show that e cannot equal zy in the case
|C(T)| = 1. The case |C(T)| = 2 is similar.

Claim: e cannot equal xy.

Proof of Claim: Let if possible e = zy. Let u; be a vertex of T' adjacent to
win H —e. Then dy_u, (w,u1) > k — 1. See Figure 2.

Figure 2

Claim: e cannot equal yz, for some vertex z of V(T).

Proof of Claim: If e = yz for some vertex z of V(T'), then consider a vertex
uy of T adjacent to w in H — e and belonging to a branch of T not containing z.
Then dp_wu, (w,u1) >k — 1. See Figure 3.
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u / v
¢/
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Mo
N

Figure 3

Therefore it is clear that s does not belong to C(T).

(Note that in the case when |C(T)| = 2, we would also have to consider that
e = xz for z in V(T). The proof to show that e cannot equal xz for some vertex z
of V(T') is identical to the proof when we show e cannot equal yz for some vertex z
of V(T). Also remember to insert rad(7") — 1 in place of rad(7’) in the above proof.)
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After proving the fact that all the end-vertices are in D, then we will know that
s cannot be in C(T).

Now we prove the fact that all end-vertices of T' must belong to D. We will prove
the result for the case when C(T") has only one vertex.

We know that w is a peripheral vertex and s is the central vertex, and dy _.(u, s) =
k — 2. Thus, any vertex in 7" that is adjacent to  in H — e must be a peripheral
vertex of T. Suppose there is a branch of T so that no vertex on that branch is
adjacent to x in H — e. Then for any vertex v’ on that branch, the shortest z-u’
path in H — e must go through either w or y, and so have length at least k. This
is a contradiction; we can assume without loss of generality that every branch of T
contains some peripheral vertex that is adjacent to x in H — e.

Let if possible there exist at least one end-vertex, say z, in V(T that is not in
D. Then z is an end-vertex on a branch of T containing at least one end-vertex in
D. Assume that at least one of the peripheral end-vertices on the branch containing
z is adjacent to x. If zy is an edge in H — e, then let v’ be the vertex on the
branch of z adjacent to x and belonging to D. Let u be an end-vertex in D with
dr(u,u') = diam(T'). Then the shortest z — « path must be either a combination of
a shortest z — v/ path (which clearly must be of length k& — 2 or more in H — e) along
with the edges v’z and zu, or a combination of a shortest z — w path (which must
be of length 2 or more) along with the shortest u — w path. This would imply that
d(z,u) >k —1.

If zy is not an edge in H — e, without loss of generality we can assume that there
are no end-vertices on the branch containing z that are not in D and are adjacent to
y. Let v’ be one of the end-vertices on the branch of z, adjacent to z and in D. Let u
be a vertex in D with d(u,u’) = diam(T") in T'. Clearly u is on another branch of T'.
Let the root of this branch be u;. Let the shortest u; —u path be uy,us,us, ..., ug_o
where ug_o = u. Let d(z,w) = n. Then d(z,ux_n) >k — 1.

When C(T') has two vertices consider u; be a vertex adjacent to the other central
vertex and replace k —n with k —1 —n. Therefore all end-vertices must belong to D.

Case 3. Let u and s belong to different branches of 7.

When there are two central vertices, note that « and s must belong to branches of
different central vertices. Let u’ be an end-vertex on the branch of s farthest away
from C(T'). Note that none of end-vertices on the branch of T' containing s could be
adjacent to z, otherwise there would exist an z-y path of length less than £ — 1 in
H — e. Therefore dy—.(v',z) > k — 1.

(In Case 3, if there are two central vertices w and w’ such that one of the branches
of w’ contains s, then none of the end-vertices of all the branches of w’ can be
adjacent to x in H — e.)
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Therefore d(u,s) = 2rad(7T) when there is one central vertex, and d(u,w) =

2rad(T) — 1 when there are two central vertices. And hence there must be at least
two vertices u, s in D with uz and sy as edges in H — e. O

Theorem 1. Let T be a tree with A(T) = 2. Then all the end-vertices are
equidistant from the center.

Proof. In order to show that all end-vertices are equidistant from the center
we will show that all end-vertices belong to D. Note that |D| > 2 for a tree. By
Lemma 5, there exist vertices u,v € D with uz,vy € E(H — ¢). By Lemma 4,
dy_c(u,v) = k — 2 = diam(T). Therefore all end-vertices adjacent to = or y must
be in D (otherwise there will exist an a-y path of length less than k). Suppose
there exists an end-vertex z, such that z ¢ D. This would imply that e = xz or yz.
Without loss of generality assume that e = zz. In this case let z; be a vertex of T
adjacent to z. Then dy_,,,(z,y) > k — 1 and therefore g(z) # k — 1. Therefore all
end-vertices must belong to D. O

Lemma 6. Let T be a tree with A(T) = 2. Let u,, and z, be end-vertices of the
same branch of T. If upz € E(H — e), then z,y ¢ E(H — e) (in other words the
end-vertices of the same branch of T' cannot be adjacent to x and y in H — e).

Proof. Clearly from Lemma 4 if u, and z, are end-vertices with u,x, z,y €
E(H —e), then dy_c(un,2z,) = k — 2 = diam(T). This implies that w, and z,
cannot be the end-vertices of the same branch (otherwise dp_.(un, 2,) < diam(7T) a
contradiction to Lemma 4). (]

Note 1. In H — e only vertices in D can be adjacent to an z or y (by Lemma 4
and Lemma 5). Also note that it is clear that e # zz for any z in D, otherwise
dp—2, (2,y) > k — 1 where z; is a vertex adjacent to z. A symmetric argument
shows that e # yz for any z in D.
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Note 2. By Lemma 4, Theorem 1 and Lemma 6, for a tree T' with A(T) = 2,
it follows that k¥ = 2rad(7T") + 2 when C(T) = ({w}) and & = 2rad(T) + 1 when
o(1) = {w,w'}).

Lemma 7. If T is a tree with C(T) = ({w,w'}), then A(T) # 2.

Proof. Let if possible A(T) = 2. By the note above we know that k =
2rad(T) 4+ 1. Therefore all end-vertices of w are adjacent to x and that of w’ to y.
In order for H to be 2-connected, ¢ = xy. Then dg_ . (w,w’) > k — 1 which is a
contradiction to the fact that g(w) =k — 1. O

Lemma 8. Let T be a tree with A(T) = 2 and C(T') = ({w}). Then e = xy.

Proof. From Lemma 5 it is clear that dg_.(z,y) = k = diam(T") + 2. Note 1
gives us that e # xz for any z € D. Let if possible e = xz for z € V(T) — D. For
cases 1 through 3, let z € V(T') — (D U {w}).

Case 1. Let z belong to a branch of w where all end-vertices are adjacent to x.
In this case in order for H to be 2-edge-connected, we must have deg(w) > 4, at
least two of the branches must have all their end-vertices adjacent to z, and at least
two of the branches must have all their end-vertices adjacent to y. Let u; € V(T') be
a vertex on a branch whose end-vertices are adjacent to x, with u;w € E(T). Then
dp—u,w(u1,y) > k — 1 which is a contradiction to the fact that gy (u1) =k — 1.

X

w W

Figure 5

Case 2. Let z belong to a branch of w where all end-vertices are adjacent to
y and there is more than one branch of w whose end-vertices are adjacent to y.
Let uy € V(T') be a vertex on a branch whose end-vertices are adjacent to z with
uiw € E(T). Consider a branch of w not containing z whose end-vertices are adjacent
to y. Let wy be a vertex on this branch adjacent to w. Then dy—qy,w(u1,w1) > k—1
which is a contradiction to the fact that gy (ui) = k — 1. See Figure 5.
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Case 3. Let z belong to a branch of w where all the end-vertices are adjacent
to y and there is only one branch of w whose end-vertices are adjacent to y. For H
to remain 2-edge-connected, the degree of y must be 2 or more and the degree of
at least one of the vertices 2’ on the branch containing z with dr (2, w) < dr(z, w)
must be at least 3. Notice that eg_.(z) < k — 1 for all edges e € E(H). Therefore
g(z) < k — 1 which is a contradiction. See Figure 6.

X

Figure 6

Case 4. Let z = w. Without loss of generality we can assume that e = zw.
Consider a vertex u; on a branch of w where end-vertices are adjacent to x and
uiw € E(T). Then dp_y,w(u1,y) > k — 1 which is a contradiction. When e = yw a
similar proof can be given.

Therefore e = xy. O

Lemma 9. Let T be a tree with A(T) =2 and C(T) = ({w}). Then deg(w) > 4.

Proof. Let if possible deg(w) < 4. Clearly deg(w) > 2, therefore without loss
of generality let us assume that only one branch of T" has end-vertices adjacent to
x. Let u; be a vertex on this branch with u;w € E(T). By Lemma 8, since e = xy,
dp—u,w(ur,w) >k — 1. This is a contradiction to the fact that g(uy) =k —-1. O

Theorem 2. Let T be a tree with C(T) = ({w}). Then A(T) = 2 if and only if
the following are satisfied:
(a) All end-vertices are equidistant from the center.
(b) deg(w) > 4, and
(c) for z € V(T), if 1 < dr(z,w) < n—1, then degy(z) = 2, and if dp(w, z) = n—1,
then degp(z) = 2.
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Proof. From [4], we have that a), b) and ¢) imply A(T) = 2. To see this,
construct a graph H from the tree T' by adding two new vertices x and y to T,
joining x to all end-vertices of T in two branches of w, joining y to the remaining
end-vertices of T, and adding the edge xy. In the graph H, we calculate g(z) = 2n+1
for z € V(T) and g(x) = g(y) = 2n + 2.

If A(T) = 2, then there is a graph H with V(H) = V(T) U{z, y} with EDC(H) =
T. It follows that all end-vertices are equidistant from the center by Theorem 1
and deg(w) > 4 by Lemma 9. Let u; € V(T) such that d(u;,w) < n —1 and
deg(w) > 2. Let uy be a vertex on this branch adjacent to w and without loss of
generality, assume that all end-vertices of this branch are adjacent to x. Also assume

that ws, wit1,. .., u, and u;, uj, 1, ..., u,, are at least two of the sub-branches of this

vertex. If 4 # 1, then g(u;41) < k— 1 and if ¢ = 1, then g(uz) < k — 1, which are

both contradictions. See Figure 7. O
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