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GRAPH OPERATIONS AND NEIGHBOR-INTEGRITY
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Abstract. Let G be a graph. A vertex subversion strategy of G, say S, is a set of vertices
in G whose closed neighborhood is removed from G. The survival-subgraph is denoted by
G/S. The Neighbor-Integrity of G, NI(G), is defined to be NI(G) = Sél%/h(lG){|S| +¢(G/S)},

where S is any vertex subversion strategy of G, and ¢(G/S) is the maximum order of the
components of G/S. In this paper we give some results connecting the neighbor-integrity
and binary graph operations.
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1. INTRODUCTION

If we think of a graph as a model of a network, the vulnerability measures the re-
sistance of the network to disruption of operation after the failure of certain stations
or communication links. In order to measure the vulnerability we have some param-
eters like connectivity, toughness, binding number, integrity and tenacity [4], [5], [6],
[10]. But these parameters do not consider the effect which removal of a vertex has
on the neighbors of that vertex. In a Spy Network, vertices correspond to stations or
operatives, and edges represent lines of communication. If a station or an operative
is captured, the adjacent stations will be betrayed and are therefore useless in the
whole network. Therefore, instead of removing only vertices from a graph, we remove
vertices and all of their adjacent vertices. The concept of Neighbor-Integrity was in-
troduced as a measure of graph vulnerability in this sense by Margaret B. Cozzens
and Shu-Shih Y. Wu [5].

Let G be a simple graph without loops and multiple edges and let u be any vertex
in G. The set N(u) = {v € V(G); v # u, v and u are adjacent} is the open
neighborhood of u, and N[u] = {u} U N(u) denotes the closed neighborhood of u. A
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vertex u in G is said to be subverted if the closed neighborhood of u, N[u], is removed
from G. A set of vertices S = {u1,us,...,un} is called a vertex subversion strategy
of G if each of the vertices in S has been subverted from G. If S has been subverted
from the graph G, then the survival subgraph is disconnected, a clique, or the empty
graph (see [5]). The survival subgraph is denoted by G/S. The Neighbor-Integrity
of a graph G is defined to be

NIG) = _min {IS]+¢(G/S)),
where S is any vertex subversion strategy of G, and ¢(G/S) is the maximum order
of the components of G/S [5].

Cozzens and Wu [5], [7], [8], [9] obtained several results on the neighbor-integrity.
In Section 2 the known results on the neighbor-integrity are given. In Section 3 we
give the neighbor-integrity of graphs obtained by binary graph operations.

2. BASIC RESULTS
In this section we will review some of the known results.

Theorem 2.1 [5], [8]. The neighbor-integrity of
(a) the complete graph K, is 1.
(b) the path P, is
[2v/n +3] —4, ifn > 2;

NI(Pn) = {1 ifn=1

3

If S achieves the neighbor-integrity of the graph P, then |S| = [v/n + 3] — 1.
(c) the cycle C,, is
[2vn] —3, ifn>5;
NI(C,) =4 2, ifn=4;
1, ifn=3.

If S achieves the neighbor-integrity of the graph C,,, then |S| = [\/n] — 1.

Theorem 2.2 [5]. (a) The size of a maximum matching in G is an upper bound
for NI(G).
(b) The independence number of G is an upper bound for NI(G).
(¢) NI(G) =1 if and only if G contains a spanning subgraph that is a star or G is
a set of isolated vertices.
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Theorem 2.3 [5]. Let C* be the k-th power of a cycle, wheren > 3 and 1 < k <
|n/2]. Then
2vn] — (2k + 1), if1 < k < ¥o=L,
wiety = [ 12V - ) 2
[n/(2k+1)], otherwise.
Theorem 2.4 [11]. (a) For any graph G, NI(G x P,,) < nNI(G).
(b) For any graphs G and H, NI(G x H) > max{NI(G),NI(H)}.

3. GRAPH OPERATIONS AND NEIGHBOR-INTEGRITY

In this section we consider the binary graph operations. These operations are join,
composition, product and corona of two graphs. The graphs G; and G2 have disjoint
vertex sets V(G1) and V(G2) and edge sets F(G1) and E(G2), respectively.

(a) Join

Definition 3.1. The union G = Gy UG; of graphs GG; and G5 is the graph with
V(G) = V(G1) UV(Gs2) and E(G) = E(G1) U E(G3). The join G = G1 + G2 of
graphs GG; and G is the graph union G; U G2 together with all the edges joining
V(G1) and V(G2).

Definition 3.2. A subset S of V(G) such that every edge of G has at least one
end in S is called a covering of G. The number of vertices in a minimum covering

of G is the covering number of G and is denoted by 5(G).

Theorem 3.1. Let G; and G5 be two graphs. Then

NI(G, + Ca) = { 1, 1fﬁ(G1') =1orB(Gy) =1
2, otherwise.

Proof. This proof is also valid up to symmetry for Go. If 5(G1) = 1, then
we can find a vertex w such that v € V(G1) and Nju] = V(G; + G2). Hence
(Gy + G2)/{u} is empty and ¢((G1 + G2)/{u}) = 0. Therefore NI(G; + G2) =1, if
B(G1) = 1. On the other hand, it is always true that NI(G; + G2) < 2 and it cannot
be 1if B(G1) > 2.

This completes the proof. O

(b) Composition

Definition 3.3. The composition G1[Gs] of two graphs G; and G2 has its vertex
set V(G1) x V(G2), with (u1,us) adjacent to (v1,vs) if either u; is adjacent to vy in
G1 or u; = v; and us is adjacent to vs in Gs.
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Definition 3.4. A wvertex dominating set for a graph G is a set S of vertices such
that every vertex of GG belongs to S or is adjacent to a vertex of S. The minimum
cardinality of a vertex dominating set in a graph G is called the vertex dominating
number of G and is denoted by v(G).

Theorem 3.2. Let H be a graph of order n > 2 and let G be a graph.
Then NI(G[H]) = min{NI(G) + ¢(G/S)(n — 2), v(G) + H‘l/i(I}{){C(H/U)}, Y(G)(1 +
ve

vgl/i&){NI(H/v)})} where S C V(G) and |S| + ¢(G/S) = NI(G).

Proof. Let X be asubset of V(G[H]) such that |X|+ ¢(G[H]/X) = NI(G[H]).
The graph G[H] contains n copies of G and let S be a set of removed vertices from
any copy of G. Then we have two cases:

Case 1: If S is not a dominating set, then X must contain the vertices of every
copy of G in G[H]. Hence | X| = |S| < v(G) and ¢(G[H]/X) = ¢(G/S)(n—1). When
S realizes the neighbor-integrity of G, we have

(1) NIUGIH]) = min {IS]+c(G/S)(n~ 1)} = NI(G) +c(G/S)(n ~ 2).

Case 2: If S is a dominating set, then | X| > v(G).

(2) If | X| =~(G), then ¢(G[H]/X) = 6rnin {c(H/v)}.
3) IFX] > (6), then o(GLH)/X) = min [NIH/0)} ().
The theorem follows from (1), (2) and (3). O

Corollary 3.1. (a) NI(P,,[P,]) = min{[2v/m +3](n — 1) + [vVm +3](2 —n) —

3n+2, [+ %371, [31([2vn] - 3)},

(b) NI(Ppn(Cp)] = min{[2v/m + 3[(n—1)+ [Vm +3](2—n) —=3n+2, [B] +n -3,
WW([ vnl *3)},

(¢) NI(Cw[Pn]) = min{([2ym] = 3)(n — 1) + [Vm](2 — n), [%] + [252],
[3 1([2\/_1 3)},

(d) NI(Cn[Cp]) = min{([2y/m]-3)(n—1)+[m](2—n), [F1+n=3, [F]([2Vn] -
3)}.

Proof. (a) follows from Theorem 3.2 and 2.1(b). The proof of the other parts

is similar. O
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(¢c) Product

Definition 3.5. The (Cartesian) product G; x G5 of graphs G; and G2 also has
V(G1) x V(G3) as its vertex set, but here (ui,u2) is adjacent to (v1,vz) if either
u1 = v1 and wue is adjacent to vo or us = v9 and wy is adjacent to vy.

In the next theorem we give NI(Ky x P,) for 5 < n < 34 and a lower bound
for NI(Ky x P,) where n > 34. In Theorem 3.4, we compute the exact result of
NI(Ky x P,) for n > 34.

Theorem 3.3. Let n be a positive integer. If 5 < n < 34, then NI(Ks x P,) =
[n/3] 4+ 1. Moreover, if n > 34, then NI(Ky x P,) > [2v/2n + 4] — 5.

Proof. LetS C V(KsxP,) and let b be the maximum order of the components
of (K3 x P,)/S. Then we have two cases, depending on b:

Case 1: Let b = 1. In order to obtain the components of order 1, we have to
remove [n/3] vertices. Hence NI(K3 x P,) = [n/3] + 1.

Case 2: Let b > 2. If we remove |S| = a vertices, then the number of components
is at most a + 1. So

2n —4a
Ko x P,)/S) 2 ————
(K x P)/8) > 22
and 9 4
NI(Ky x P,) > main{aJr Z+ 1a}.
The function f(a) = a+ 22;‘11“ assumes its minimum value at a = —1++/2n + 4 and

f(=1++2n+4) = 2¢/2n + 4 — 5. Since the neighbor-integrity is integer valued, we
round this result up to get a lower bound and so NI(K3 x P,) > [2y/2n +4] — 5 if
b>2.

Consequently, we have

NI(K3 x P,) > min{[n/3] + 1, [2v2n + 4] — 5} for every b.
One can easily show that

n/31+1<[2vV2n+4] —5for 5 <n < 34

Therefore
NI(Ks x P,) =[n/3]+1for 5<n<34
and
NI(Ks x P,) 2 [2V2n+ 4] — 5 for n > 34.
Hence the proof is completed. O

Before we prove Theorem 3.4, we need the following lemma.
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Lemma 3.1. Let a = -1+ |V2n+4], b = -4+ [v2n+4] and n > 0. The
following inequalities hold.
(a) 2n—ab—4a+1<3b+ 7,
(b) 2n—ab—3a—1<3b+6.

Proof. (a) We shall show that 2n + 6 < [v2n +4](2 + |v2n +4]). For every
n =0,

2n+6 <V2n+4(1+vV2n+4) <V2n+4(2+ [V2n +4))

[V2n+4](2+ [V2n +4]).

<
<

The proof of part (b) can be reduced to a sequence of inequalities similar to those
in (a). O

Theorem 3.4. Let a = —1+ |vV2n+4], b= -4+ [v2n+ 4] and n > 34. Then

a+b, ifn< i(ab+4a+b—2);
NI(Kyx P,) =14 a+b+1, ifn>1(ab+4a+0b—2) and n < 1(ab+ 4a + 2b + 2);
a+ b+ 2, otherwise.

Proof. LetS C V(KsxP,) and let b be the maximum order of the components
of (K2 x P,)/S. If we remove |S| = a vertices from any copy of P,, then we have
a + 1 components for n > 34. So we consider two cases, depending on b:

Case 1: Let b be an even number. If we remove |S| = a vertices in such a way
that the first component has b — 1 vertices and each of the a — 1 components have b
vertices from any copy of P,,, then we have a + 1 components as shown in Figure 1.
Let {x1,xa,...,2,} be a set of removed vertices from any copy of P,. Notice that
Figure 1 shows a specific situation and we can select the vertices x; from different

copies of P,.

First Second ath
component component component last component
with b — 1 vertices  with b vertices with b vertices
Figure 1

Our aim is to investigate whether some vertices should be deleted or not from the
last component.
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In this case, the last component has 2n — ab — 4a + 1 vertices and 2n — ab —4a +1
must be an odd number. By Lemma 3.1(a), we know that 2n —ab—4a+1 < 30+ 7.
That is, we must remove at most two vertices from the last component. Hence we
have the following three possibilities for the last component:

(a) The last component has at most b — 1 vertices,
(b) The last component has at least b and at most 2b + 3 vertices,
(c) The last component has at least 2b+ 4 and at most 3b + 7 vertices.

According to these possibilities, the neighbor-integrity of Ko x P, is equal to

a+b, if n < 3(ab+4a+b—2);
(4) a+b+1,ifn>1(ab+4a+b—2)and n < i(ab+4a+ 2b+ 2);
a+b+2, ifn>1(ab+4a+2b+2)and n < 1(ab+4a+ 3b+6).

Case 2: Let b be an odd number. If we remove |S| = a vertices in such a way
that the first component has b vertices and each of the a — 1 components have b — 1
vertices from any copy of P,,, then we have a + 1 components as shown in Figure 2.
Let {x1,xa,...,2,} be a set of removed vertices from any copy of P,. Notice that
Figure 2 shows a specific situation and we can select the vertices x; from different

copies of P,.

First Second ath
component component component last component
with b vertices  with b — 1 vertices with b — 1 vertices
Figure 2

Our aim is to investigate whether some vertices should be deleted or not from the
last component.

In this case, the last component has 2n — ab — 3a — 1 vertices. By Lemma 3.1(b),
we know that 2n —ab—3a—1 < 3b+6. That is, we must remove at most two vertices
from the last component. Hence we have three possibilities for the last component
and so the neighbor-integrity of Ko x P, is equal to

a+b, ifn<i(ab+3a+0b+1);
(5) a+b+1,ifn>1(ab+3a+b+1)and n < i(ab+ 3a+2b+ 4);
a+b+2,ifn>1(ab+3a+2b+4) andn < 1(ab+3a+3b+7).
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By elementary arithmetical operations it follows from (4) and (5) that we have

a+b, if n< i(ab+4a+b—2);
NI(Kyx P,) =14 a+b+1, if n> 1(ab+4a+b—2) and n < £ (ab+ 4a + 2b + 2);
a+ b+ 2, otherwise.

Theorem 3.5. Let n be a positive integer. If 5 < n < 39, then

(n/3) + 2, if n = 3k and k is odd;

NI(Ky x C,,) =
(%2 ) { [n/3] + 1, otherwise.

Moreover, if n > 39, then NI(Ky x Cy,) > [2v/2n] — 4.

Proof. LetS C V(K2xC,) and let b be the maximum order of the components
of (K3 x Cp,)/S. Then we have two cases, depending on b:

Case 1: Let b = 1. If n = 3k and k is odd, then we have to remove (n/3) + 1
vertices and so NI(Ky x Cy,) = (n/3)+2. Otherwise we have to remove [n/3] vertices
and so NI(Kjy x Cy,) = [n/3] + 1.

Case 2: Let b > 2. If we remove |S| = a vertices, then the number of components

is at most a. So

o — 4
NI(Ka x C) > min{a+ n “}
a a

and NI(Ko x P,) > [2v/2n+ 4] —5if b > 2.
The rest of the proof is very similar to that of Theorem 3.3. O

Theorem 3.6. Let a = |v2n], b= [v2n] —4 and n > 39. Then

a+b—1, ifn < 1(ab+ 3a);

a+b, ifn> 3(ab+3a) and n < 1(ab+ 4a);
NI(Ks x Cy) =
a+b+1, ifn> 1(ab+4a) and n < 3(ab+4a+ b+ 4);

a+ b+ 2, otherwise.

Proof. Let S C V(K3xCp) and let b be the maximum order of the components
of (K3 x Cy)/S. If we remove |S| = a vertices from any copy of C,,, then the number
of components is a. Now remove |S| = a vertices in such a way that each of the a — 1
components will have b vertices.

Our aim is to investigate whether some vertices should be deleted or not from the
last component. Then we have two cases, depending on b:
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Case 1: If b is an even number, then the last component has 2n — ab — 4a + b
vertices.

Case 2: If bis an odd number, then the last component has 2n —ab—3a+b—1
vertices.

The rest of the proof is very similar to that of Theorem 3.4. O
(d) Corona

Definition 3.6. The corona of two graphs Gy (on n vertices) and G is defined
as the graph G obtained by taking one copy of G; of order n and n copies of Go,
and then joining the ’th vertex of G; to every vertex in the i’th copy of G2. The
corona of two graphs (G; ad G is denoted by G o Gs.

Theorem 3.7. Let G, and G be graphs with orders m and n, respectively. Then
(a) If m < n, then NI(G; o G2) = m.
(b) If m > n, then NI(G1 0 G2) = n + 1.

Proof. Let S CV(G10Gs). If m < n,then S =V (G;) and ¢((G10G2)/S) = 0.
So NI(G; o G3) = m. Otherwise S C V(G;) and hence ¢((G1 0 G3)/S) = n. Then
NI(G1 0 G2) =2 n+ 1.

The proof is completed. O

Definition 3.7. The wheel with m spokes, W ,,, is a graph that contains an
m-cycle and one additional vertex that is adjacent to all vertices of the cycle.

Theorem 3.8. Let G be a graph of order n and W1 ,,, a wheel graph. Then

m+1, ifm+1<n;
NI(Wy 0 G) =

n+1, otherwise.

Proof. LetS C V(W) and u be a vertex which is adjacent to all the vertices
of the m-cycle. The first part of the proof follows from Theorem 3.7. Otherwise,
S ={u} and NI(W; ,, 0 G) =n + 1.

The proof is completed. O
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