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In this paper, we consider a class of incompressible viscous fluids whose viscosity depends on the shear
rate and pressure. We deal with the isothermal steady flow and analyze the Galerkin discretization of
the corresponding equations. We discuss the existence and uniqueness of discrete solutions, and their
convergence to the solution to the original problem. In particular, we derive a priori error estimates which
provide optimal rates of convergence with respect to the expected regularity of the solution. Finally, we
demonstrate the achieved results by numerical experiments.
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hydrodynamic lubrication, where very high pressures occur. Here, we consider shear-thinning fluid
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on the pressure is allowed. The mathematical theory concerned with the self-consistency of the gov-
erning equations has emerged only recently. We adopt the established theory in the context of discrete
approximations. To our knowledge, this is the first analysis of the finite element method for fluids with
pressure-dependent viscosity. The derived estimates coincide with the optimal error estimates established
recently for Carreau-type models, which are covered as a special case.
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1. Introduction

The article is devoted to the finite element discretization of equations governing the steady flow of a class
of incompressible fluids whose viscosity depends non-linearly on shear rate and pressure. We discuss
the well-posedness of the discretized problem and derive a priori estimates of the discretization error.

The isothermal flow of an incompressible viscous fluid is typically described by the Navier–Stokes
equations, which embody Newton’s hypothesis that the viscosity—the ratio between the shear stress
and the shear rate—is constant. Since the early formation of fluid mechanics it has been known that this
assumption may not be applicable to all viscous flows. In the last decades many non-Newtonian phe-
nomena have become subject of scientific interest. We will consider models with shear-dependent and
pressure-dependent viscosity, which play an important role in many areas such as elasto-hydrodynamic
lubrication, the modeling of Earth’s mantle, glaciers or avalanches. The viscosity of fluids in such
applications varies considerably, even by several orders, with the pressure.

We study the steady isothermal flow of an homogeneous incompressible viscous fluid in a bounded
domain Ω ⊂Rd , d ∈ {2,3}, governed by the following system of PDEs:

−divSSS(π,DDDvvv)+∇π = fff

divvvv = 0

}
in Ω , (1.1)

where vvv is the velocity, π denotes the pressure (more specifically, the ratio of the mean normal stress
and the density), and fff represents the density of an applied body force. Here, DDDvvv is the symmetric part
of the velocity gradient. Note that we avoid mathematical difficulties related to the convective term by
neglecting inertial forces in the first equation. We consider extra stress tensors SSS of the form

SSS(π,DDDvvv) = 2η(π, |DDDvvv|2)DDDvvv, (1.2)

where η is the generalized kinematic viscosity. Many details, examples, and an extensive discussion
concerning the class of models (1.2) can be found in (Málek & Rajagopal, 2006, 2007).

We assume that the domain boundary ∂Ω is Lipschitz and consists of two parts, ∂Ω = ΓD ∪ΓP,
|ΓD| > 0. Then, we complement the system (1.1) by the boundary conditions

vvv = vvvD on ΓD, (1.3)
−SSS(π,DDDvvv)nnn+πnnn = bbb on ΓP, (1.4)

where nnn denotes the unit outer normal vector to ∂Ω . We distinguish two cases:

a) If |ΓP| = 0 (i.e., the Dirichlet boundary conditions are prescribed on the whole boundary, ΓD =
∂Ω ) then we additionally fix the level of pressure by requiring

−
∫

Ω

π dxxx = π0 ∈R. (1.5)

For simplicity of notations∗ we assume π0 = 0.

b) If |ΓP| > 0 then (1.4) suffices to fix the level of pressure. This was shown in (Lanzendörfer &
Stebel, 2008, 2009), see also Lemma 2.6 and Theorem 3.2 below.

∗The theoretical methods and results of this paper are not restricted to the choice π0 = 0.
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It is a special feature of piezoviscous fluids in the case a) that the number π0 affects through SSS(π,DDDvvv)
the whole solution, including the velocity field. Hence, the non-physical constraint (1.5) comprises an
important input parameter undeterminable by practical applications. By contrast, bbb in (1.4) represents
the force acting on the domain boundary and reflects physically reasonable input data.

While the mathematical self-consistency of the shear-thinning or shear-thickening fluid models has
been studied intensively since the 1960’s, the rigorous analysis of those with pressure-dependent vis-
cosity has emerged only recently, see (Málek & Rajagopal, 2006) for references. The well-posedness of
problems where the viscosity depends solely on the pressure, or grows with the pressure super-linearly,
has not been resolved, except under severe restrictions on data size or time interval. When the vis-
cosity changes with the pressure too rapidly, the equations corresponding to the steady flow lose their
ellipticity. A breakthrough result appeared in a paper by Málek et al. (Málek et al., 2002), where vis-
cosities depending both on the pressure and the shear rate have been considered. The structure of the
viscosity proposed therein has allowed for global and large data existence results for both steady and
unsteady motions under various boundary conditions, see e.g. (Franta et al., 2005; Bulı́ček et al., 2007;
Lanzendörfer, 2009; Lanzendörfer & Stebel, 2009).

Our aim is to adopt the established mathematical theory in the framework of Galerkin discretization.
The finite element method has been studied extensively in the context of power-law/Carreau models
(where the viscosity only depends on the shear rate), see (Baranger & Najib, 1990; Barrett & Liu, 1993,
1994) and the references therein. In particular, Hirn (Hirn, 2010) and Belenki et al. (Belenki et al., 2010)
have recently derived optimal a priori error estimates in the case of shear thinning. However, no such
analysis is available when the fluid’s viscosity depends also on the pressure. To our best knowledge, the
present paper provides the first analytical study of the finite element method in the context of fluids with
shear rate and pressure dependent viscosity.

This paper is devoted to the finite element discretization of the problem (1.1)–(1.5). We will show
that the finite element solutions (vvvh,πh) exist, are determined uniquely, and that they converge to the
weak solution (vvv,π) strongly in W1,p(Ω)×Lp′(Ω), p ∈ (1,2), for diminishing mesh size h. Moreover,
if the solution (vvv,π) satisfies the regularity condition∫

Ω

(1+ |DDDvvv|)p−2|∇DDDvvv|2 dxxx < ∞ and π ∈W1,p′(Ω), (1.6)

then an O(h) error bound for the velocity in W1,p(Ω), and an O(h
2
p′ ) error bound for the pressure in

Lp′(Ω) will be established:

‖vvv− vvvh‖1,p 6 ch, ‖π−πh‖p′ 6 ch
2
p′ .

These estimates will be derived by means of the well-known quasi-norm technique which has originally
been developed for the error analysis of the p-Laplace equation, see (Barrett & Liu, 1994). Numerical
experiments indicate that these estimates are optimal with respect to the supposed regularity. Moreover,
the present paper also covers the case of Carreau-type models, for which the a priori error estimates
derived here coincide with those established in (Hirn, 2010) and (Belenki et al., 2010).

The paper is organized as follows: In Section 2 we formulate basic assumptions, introduce tools
and define the problem and its discretization. Section 3 deals with the existence and uniqueness of the
discrete solutions and their convergence to the weak solution of the problem. A priori error estimates
are derived in Section 4 and are applied to the finite element discretization in Section 5. Finally, in
Section 6 we demonstrate the theoretical results by numerical experiments.
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2. Preliminaries

In this section we introduce the notation, we state our assumptions on the extra stress tensor, indicate
how the stress tensor is related to N-functions and we show its resulting properties. Then, we introduce
the weak formulation of the system (1.1)–(1.5) and its Galerkin discretization.

NOTATION AND FUNCTION SPACES. The set of all positive real numbers is denoted by R+. Let
R+

0 :=R+∪{0}. The Euclidean scalar product of two vectors ppp, qqq ∈Rd is denoted by ppp ·qqq, the scalar
product of PPP, QQQ ∈ Rd×d is defined by PPP : QQQ := ∑

d
i, j=1 Pi jQi j. We set |QQQ| := (QQQ : QQQ)1/2. Often we use

c as a generic constant, whose value may change from line to line but does not depend on important
variables. We write a∼ b if there exist positive constants c and C independent of all relevant quantities
such that cb6 a6Cb. Similarly, the notation a. b is used for a6Cb.

For measurable set ω ⊂Ω , |ω| denotes its d-dimensional Lebesgue measure. For ν ∈ [1,∞], Lν(Ω)
stands for the Lebesgue space and Wm,ν(Ω) for the Sobolev space of order m. The space Lν

0 (Ω) contains
all q ∈ Lν(Ω) with −

∫
Ω

qdx := 1
|Ω |
∫

Ω
qdx = 0. For ν > 1 we use the notation W1,ν

0 (Ω) for the Sobolev
space with vanishing traces on ∂Ω . The Lν(ω)-norm is denoted by ‖·‖ν ;ω and the Wm,ν(ω)-norm is
denoted by ‖·‖m,ν ;ω . The notation (u,v)ω is used for the integral

∫
ω

uvdxxx. In case of ω = Ω , we usually
omit the index Ω . Spaces of Rd-valued functions are denoted with boldface type, though no distinction
is made in the notation of norms and inner products; the norm in Wm,ν(Ω) ≡ [Wm,ν(Ω)]d is given by
‖www‖m,ν =

(
∑16i6d ∑06|α|6m‖∂ α wi‖ν

ν

)1/ν , etc.

STRUCTURAL ASSUMPTIONS ON THE STRESS TENSOR. Let p > 1, ε > 0, and γ0 > 0 be given.
We suppose that the extra stress tensor SSS belongs to the class (1.2) and satisfies the structural assump-
tions:

(A1) There exist positive constants σ0,σ1 such that for all PPP,QQQ ∈Rd×d
sym , q ∈R there holds

σ0(ε
2 + |PPP|2)

p−2
2 |QQQ|2 6 ∂SSS(q,PPP)

∂PPP
: (QQQ⊗QQQ)6 σ1(ε

2 + |PPP|2)
p−2

2 |QQQ|2,

where Rd×d
sym := {PPP ∈Rd×d ; PPP = PPPT} and (QQQ⊗QQQ)i jkl = Qi jQkl .

(A2) For all PPP ∈Rd×d
sym and q ∈R there holds∣∣∣∂SSS(q,PPP)

∂q

∣∣∣6 γ0(ε
2 + |PPP|2)

p−2
4 .

REMARK 2.1 Many examples of viscosities fulfilling these assumptions can be found, e.g., in (Málek
et al., 2002; Málek & Rajagopal, 2006, 2007). See also Remark 6.1.

We depict how the stress tensor relates to N-functions. A continuous, convex function ψ :R+
0 →R+

0
is called N-function if ψ(0) = 0, ψ(t)> 0 for t > 0, limt→0+ ψ(t)/t = 0 and limt→∞ ψ(t)/t = ∞. Con-
sequently, there exists the right derivative ψ ′ of ψ , which is non-decreasing and satisfies ψ ′(0) = 0,
ψ ′(t) > 0 for t > 0, and limt→∞ ψ ′(t) = ∞. We define the complementary N-function ψ∗ by
ψ∗(t) := sups>0(st −ψ(s)) for all t > 0. If ψ ′ is strictly increasing, then (ψ∗)′ = (ψ ′)−1. An im-
portant subclass of N-functions are those that satisfy the ∆2-condition: ψ satisfies the ∆2-condition, if
there exists C > 0 such that ψ(2t)6Cψ(t) for all t > 0. Here, ∆2(ψ) denotes the smallest such constant.
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Lemma 32 in (Diening & Ettwein, 2008) provides the following Young-type inequality: For all δ > 0
there exists cδ > 0, which only depends on ∆2(ψ), ∆2(ψ

∗)< ∞, such that for all s, t > 0 there holds

sψ
′(t)+ψ

′(s)t 6 δψ(s)+ cδ ψ(t). (2.1)

Let us consider the following simple examples: For p > 1 we introduce the convex function

ϕ ∈C(R+
0 ,R

+
0 ), ϕ(t) :=

1
p

t p. (2.2)

Clearly, ϕ and ϕ∗, where ϕ∗(t) = 1
p′ t

p′ , are N-functions satisfying the ∆2-condition. For given N-
function ψ with ∆2(ψ), ∆2(ψ

∗)< ∞, we define the family of shifted functions {ψa}a>0 by

ψa(t) :=
∫ t

0
ψ
′
a(s)ds with ψ

′
a(t) := ψ

′(a+ t)
t

a+ t
. (2.3)

Then, Lemma 23 in (Diening & Ettwein, 2008) ensures that {ψa}a>0 are again N-functions and satisfy
the ∆2-condition uniformly in a> 0 with ∆2-constants only depending on ∆2(ψ), ∆2(ψ

∗). Let us return
to the case (2.2): The family of shifted N-functions {ϕa}a>0 belongs to C1(R+

0 )∩C2(R+) and satisfies
the ∆2-condition uniformly in a> 0 with ∆2-constants only depending on p. Using the definition of ϕa,
we easily conclude

min{1, p−1}(a+ t)p−2 6 ϕ
′′
a (t)6max{1, p−1}(a+ t)p−2 (2.4)

and ϕ ′a(t) ∼ ϕ ′′(a+ t)t ∼ ϕ ′′a (t)t. Moreover, ϕa(t) ∼ ϕ ′a(t)t uniformly in t, a > 0. Due to (2.4) the
inequalities of Assumption (A1) defining the (p,ε)-structure of SSS can be expressed equivalently in terms
of the N-functions ϕε .

BASIC PROPERTIES OF THE EXTRA STRESS TENSOR. We express several consequences of Assump-
tions (A1) and (A2). Below we formulate the results as general as possible, although in the forthcoming
sections we only treat the shear thinning case p < 2. We introduce the function FFF : Rd×d

sym →Rd×d
sym by

FFF(PPP) :=
(
ε + |PPP|

) p−2
2 PPP, (2.5)

where p and ε are the same as in Assumptions (A1)–(A2). The quantity FFF is closely related to the extra
stress tensor SSS as depicted by the following lemma:

LEMMA 2.1 For given p ∈ (1,∞) and ε ∈ [0,∞) let SSS satisfy (A1), let FFF be defined by (2.5), and let ϕ

be defined by (2.2). Then, uniformly for all PPP, QQQ ∈Rd×d
sym , q ∈R, it holds:(

SSS(q,PPP)−SSS(q,QQQ)
)

: (PPP−QQQ)∼ (ε + |PPP|+ |QQQ|)p−2|PPP−QQQ|2

∼ ϕε+|PPP|(|PPP−QQQ|)∼ |FFF(PPP)−FFF(QQQ)|2,
|SSS(q,PPP)−SSS(q,QQQ)| ∼ ϕ

′
ε+|PPP|(|PPP−QQQ|),

where the constants only depend on σ0,σ1 and p. In particular, they are independent of ε > 0. Moreover,
the following estimates hold:

SSS(q,QQQ) : QQQ>
σ0

2p
(|QQQ|p− ε

p) and |SSS(q,QQQ)| 6 σ1

p−1
|QQQ|p−1. (2.6)
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Proof. For (2.6), see (Málek et al., 1996, Lemma 1.19). All remaining estimates are proven in (Diening
& Ettwein, 2008). �

As a straightforward consequence of Assumptions (A1) and (A2) we also obtain

LEMMA 2.2 For given p ∈ (1,∞), ε ∈ (0,∞) and γ0 ∈ [0,∞) let SSS satisfy (A1), (A2). Then, for all
PPP,QQQ ∈Rd×d

sym and π,q ∈R, denoting PPPs := QQQ+ s(PPP−QQQ), it holds:

σ0

2

∫ 1

0
(ε2 + |PPPs|2)

p−2
2 |PPP−QQQ|2ds6 (SSS(π,PPP)−SSS(q,QQQ)) : (PPP−QQQ)+

γ2
0

2σ0
|π−q|2,

|SSS(π,PPP)−SSS(q,QQQ)|6 σ1

∫ 1

0
(ε2 + |PPPs|2)

p−2
2 |PPP−QQQ|ds+ γ0

∫ 1

0
(ε2 + |PPPs|2)

p−2
4 |π−q|ds.

Proof. See, e.g., (Bulı́ček et al., 2007, Lemma 1.4). �
In view of Lemma 2.2 we define the distance

d(vvv,uuu)2 :=
∫

Ω

∫ 1

0
(ε2 + |DDDuuu+ s(DDDvvv−DDDuuu)|2)

p−2
2 |DDDvvv−DDDuuu|2 dsdxxx (2.7)

for all vvv,uuu ∈W1,p(Ω). We get the following

COROLLARY 2.1 For given p ∈ (1,∞), ε ∈ (0,∞) and γ0 ∈ [0,∞) let SSS satisfy (A1), (A2). Let d(·, ·) be
defined by (2.7). Then, for all vvv,www ∈W1,p(Ω) and π,q ∈ L2(Ω) there holds:

σ0

2
d(vvv,www)2 6 (SSS(π,DDDvvv)−SSS(q,DDDwww),DDDvvv−DDDwww)Ω +

γ2
0

2σ0
‖π−q‖2

2. (2.8)

Moreover, for each δ > 0 there exists a positive constant cδ = cδ (σ1,γ0) such that

(SSS(π,DDDvvv)−SSS(q,DDDwww),DDDvvv−DDDwww)Ω 6 cδ d(vvv,www)2 +δ‖π−q‖2
2. (2.9)

In particular, if p < 2, then for all vvv,www ∈W1,p(Ω) and all sufficiently smooth functions π,q there exists
a positive constant c = c(p,σ1) such that

‖SSS(π,DDDvvv)−SSS(q,DDDwww)‖2 6 σ1ε
p−2

2 d(vvv,www)+ γ0ε
p−2

2 ‖π−q‖2, (2.10)

‖SSS(π,DDDvvv)−SSS(q,DDDwww)‖p′ 6 cd(vvv,www)
2
p′ + γ0ε

p−2
2 ‖π−q‖p′ . (2.11)

Proof. The proof is based on Lemma 2.2. In order to derive (2.11), we additionally need Lemma 2.1 in
(Acerbi & Fusco, 1989). �

We remark that the distance d(·, ·) is equivalent to the so-called quasi-norm which was introduced
by Barrett/Liu in (Barrett & Liu, 1993). Hence, all results below can also be expressed in terms of
quasi-norms. The following lemma indicates that d(·, ·) is also equivalent to the FFF–distance:

LEMMA 2.3 For p ∈ (1,∞), ε ∈ (0,∞) let SSS satisfy (A1). Let d(·, ·) be defined by (2.7), and let FFF be
defined by (2.5). For all vvv,uuu ∈W1,p(Ω) and π ∈ L2(Ω) there holds:

d(vvv,uuu)2 ∼ ‖FFF(DDDvvv)−FFF(DDDuuu)‖2
2 ∼ (SSS(π,DDDvvv)−SSS(π,DDDuuu),DDDvvv−DDDuuu)Ω . (2.12)

All constants only depend on p,σ0,σ1.
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Proof. The assertion follows from Lemma 2.1 and Lemma 2.1 in (Acerbi & Fusco, 1989). �
The following lemma, whose proof can be found in (Berselli et al., 2010), shows the connection

between the quasi-norms and Sobolev norms:

LEMMA 2.4 For p ∈ (1,2] and ε ∈ (0,∞) let SSS satisfy (A1), and let FFF be defined by (2.5). Then, for all
sufficiently smooth functions vvv, uuu and for ν ∈ [1,2] there holds:

‖DDD(vvv−uuu)‖2
ν . ‖FFF(DDDvvv)−FFF(DDDuuu)‖2

2‖(ε + |DDDvvv|+ |DDDuuu|)2−p‖ ν
2−ν

, (2.13)

where the constant only depends on p, σ0, and σ1. If ν = 2, then ν

2−ν
= ∞.

WEAK FORMULATION. The natural spaces for the velocity and pressure are given by

XXX p := {www ∈W1,p(Ω); trwww = 000 on ΓD},

Qp := {q ∈ Lp′(Ω); if |ΓP|= 0 then
∫

Ω
qdxxx = 0},

where p′ := p/(p−1). The following Korn inequality holds in XXX p as long as |ΓD|> 0:

LEMMA 2.5 (Korn’s inequality) Let ν ∈ (1,∞), Ω ⊂Rd be a bounded domain and ∂Ω ,ΓD ∈C0,1, where
ΓD⊂ ∂Ω has nonzero (d−1)-dimensional measure. Then there exists a constant cK := cK(Ω ,ΓD,ν)> 0
such that

cK‖www‖1,ν 6 ‖DDDwww‖ν ∀www ∈ XXXν .

Proof. The result can be found e.g. in (Málek et al., 1996, Theorem 1.10 on p. 196); although it is
formulated for ΓD = ∂Ω there, its proof covers the case |ΓD| > 0. �

Let us summarize the general assumptions that will be used in the following sections.

Assumption 2.1. We suppose that

• Ω ⊂Rd , d > 2 is a bounded domain, ∂Ω = ΓD∪ΓP and ∂Ω ,ΓD,ΓP ∈C0,1, |ΓD| > 0;

• For given p ∈ (1,2), ε ∈ (0,ε0] with ε0 > 0 arbitrary, and γ0 ∈ (0,∞), Assumptions (A1) – (A2)
hold true;

• The following data are given:

vvv0 ∈W1,p(Ω), divvvv0 = 0 a.e. in Ω , vvv0 = vvvD on ΓD,

fff ∈ Lp′(Ω) and bbb ∈ L(p#)′(ΓP), with (p#)′ := (d−1)p
d(p−1) .

Here, p# := (d−1)p
d−p is such that tr(W1,p(Ω)) ↪→ Lp#

(∂Ω).

The weak formulation of the system (1.1)–(1.5) reads:

(pS) Find (vvv,π) ∈ (vvv0 +XXX p)×Qp (the weak solution) such that

(SSS(π,DDDvvv),DDDwww)Ω − (π,divwww)Ω = ( fff ,www)Ω − (bbb,www)ΓP ∀www ∈ XXX p, (2.14)
(divvvv,q)Ω = 0 ∀q ∈ Qp. (2.15)
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GALERKIN APPROXIMATION. For given h > 0, let XXXh, Yh be finite-dimensional spaces and

XXX p
h := XXXh∩XXX p, Qp

h := Yh∩Qp,

VVV p
h :=

{
wwwh ∈ XXX p

h ; (divwwwh,qh)Ω = 0 for all qh ∈ Qp
h

}
.

We will specify the spaces in the context of finite elements in Section 5, h will then stand for the mesh
parameter. At this stage, we only require that XXX p

h and Qp
h approximate XXX p and Qp in the following sense

lim
h↘0

inf
wwwh∈XXX p

h

‖www−wwwh‖1,p = lim
h↘0

inf
qh∈Qp

h

‖q−qh‖p′ = 0 ∀www ∈ XXX p, ∀q ∈ Qp. (2.16)

The pure Galerkin approximation of (pS) consists in replacing the Banach spaces XXX p and Qp by their
finite dimensional subspaces XXX p

h and Qp
h :

(pSh) Find (vvvh,πh) ∈ (vvv0,h +XXX p
h)×Qp

h (the discrete solution) such that

(SSS(πh,DDDvvvh),DDDwwwh)Ω − (πh,divwwwh)Ω = ( fff ,wwwh)Ω − (bbb,wwwh)ΓP ∀wwwh ∈ XXX p
h , (2.17)

(divvvvh,qh)Ω = 0 ∀qh ∈ Qp
h . (2.18)

Here, vvv0,h is any† appropriate approximation of the Dirichlet data which satisfies

(divvvv0,h,qh)Ω = 0 ∀qh ∈ Qp
h and lim

h↘0
‖vvv0− vvv0,h‖1,p = 0. (2.19)

INF-SUP CONDITIONS. The following observation plays an essential role in the further analysis.

LEMMA 2.6 Let Assumption 2.1 be satisfied. For any ν ∈ (1,∞) there exists a constant β (ν) (depending
on ν , Ω and ΓP) such that

0 < β (ν)6 inf
q∈Qν

sup
www∈XXXν

(q,divwww)Ω

‖q‖ν ′‖www‖1,ν
. (2.20)

In particular, there exists a constant β0(ν) depending on ν and Ω such that

0 < β0(ν)6 inf
q∈Lν ′

0 (Ω)

sup
www∈W1,ν

0 (Ω)

(q,divwww)Ω

‖q‖ν ′‖www‖1,ν
. (2.21)

If |ΓP| > 0 then one possible choice of β (ν) is related to β0(ν) through (2.22).

Proof. If |ΓP| = 0 then XXXν = W1,ν
0 (Ω) and Qν = Lν ′

0 (Ω). Then, (2.20) and (2.21) are identical,
well-known and follow from the properties of the Bogovskii operator, see Remark 2.2.

Let |ΓP| > 0. Then, (2.20) can be derived from (2.21), see, e.g., (Haslinger & Stebel, 2010). For
q ∈ Lν ′(Ω) arbitrary, we write q = q0 + (−

∫
Ω

qdxxx). Since q0 ∈ Lν ′
0 (Ω), there exists www0 ∈W1,ν

0 (Ω),
‖www0‖1,ν = 1 such that β0(ν)‖q0‖ν ′ 6 (q0,divwww0)Ω = (q,divwww0)Ω . Since ΓP ∈ C0,1, |ΓP|> 0, there
exists some ξξξ ∈ XXXν such that

∫
Ω

divξξξ dxxx =
∫

ΓP
ξξξ ·nnndxxx = 1. Taking

www := www0 +δ sign(−
∫

Ω
qdxxx)ξξξ , with δ :=

β0(ν)|Ω |1/ν ′

1+ |Ω |1/ν ′‖divξξξ‖ν

,

†For example, vvv0,h ∈ XXXh is typical in the context of finite elements; but one can also take vvv0,h = vvv0.
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and using ‖q‖ν ′ 6 ‖q0‖ν ′ + |Ω |1/ν ′ |−
∫

Ω
qdxxx|, we obtain:

(q,divwww)Ω = (q,divwww0)Ω +δ sign(−
∫

Ω
qdxxx)(q0,divξξξ )Ω +δ |−

∫
Ω

qdxxx|(1,divξξξ )Ω

> β0(ν)‖q0‖ν ′ −δ‖q0‖ν ′‖divξξξ‖ν +δ |−
∫

Ω
qdxxx|

>
β0(ν)

1+ |Ω |1/ν ′‖divξξξ‖ν

‖q‖ν ′ .

Also, www ∈ XXXν , and ‖www‖1,ν 6 1+δ‖ξξξ‖1,ν , which finally gives (2.20) with

β (ν) =
β0(ν)

1+ |Ω |1/ν ′‖divξξξ‖ν +β0(ν)|Ω |1/ν ′‖ξξξ‖1,ν
. (2.22)

This completes the proof. �

REMARK 2.2 There exists a continuous linear operator B : Lν
0 (Ω)→W1,ν

0 (Ω) referred to as the Bo-
govskii operator, such that div(B f ) = f in Ω and ‖B f‖1,ν 6Cdiv(Ω ,ν)‖ f‖ν , see (Bogovskii, 1980;
Amrouche & Girault, 1994; Novotný & Straškraba, 2004). In the preceding studies, see (Franta et al.,
2005; Lanzendörfer, 2009), the Bogovskii operator was applied directly instead the inf–sup condition.
For |ΓP| = 0, one observes Cdiv(Ω ,2)> β0(2)−1.

For |ΓP| > 0, the modified operator B̃ f := B( f − (
∫

Ω
f dxxx)divξξξ ) + (

∫
Ω

f dxxx)ξξξ was utilized, see
(Lanzendörfer & Stebel, 2008, Lemma 2.4). Note from (2.22) that the corresponding constant
C̃div(Ω ,ΓP,ν) (see ibid.) equals β (ν)−1.

REMARK 2.3 Lemma 2.6 reveals, in terms of the spaces XXX p, Qp, why the additional constraint (1.5) is
requisite to fix the level of pressure if and only if the boundary condition (1.4) is not present.

Below, we require for given ν ∈ (1,∞) that the families of spaces {XXXν
h}h>0, {Qν

h}h>0 satisfy the
discrete inf–sup condition:

(ISν ) For given ν ∈ (1,∞), there exists a constant β̃ (ν) independent of h such that

0 < β̃ (ν)6 inf
q∈Qν

h

sup
www∈XXXν

h

(q,divwww)Ω

‖q‖ν ′‖www‖1,ν
.

The availability of (ISν ) (and the value of β̃ (ν)) depends on the choice of the spaces XXXh and Yh. For the
purposes of Theorem 3.3, we also require the following modification of (ISν ).

(ISν
0 ) There exists a constant β̃0(ν), independent of h, such that

0 < β̃0(ν)6 inf
q∈Yh∩Lν ′

0 (Ω)

sup
www∈XXXh∩W1,ν

0 (Ω)

(q,divwww)Ω

‖q‖ν ′‖www‖1,ν
.

REMARK 2.4 If |ΓP| = 0, then (ISν
0 ) is exactly (ISν ). In general, (ISν

0 ) need not be implied by (ISν )
and vice versa. Let us suppose for a while that both conditions hold true. Since (2.22) in Lemma 2.6
indicates‡ β0(ν) > β (ν) on the continuous level, we can expect β̃0(ν) > β̃ (ν) for typical choices of
XXXh, Yh. In such a case, the additional requirement of (ISν

0 ) will guarantee convergence results for a larger
range of γ0, see (3.7) in Theorem 3.3 and (3.18) in Corollary 3.1.

‡We did not prove β0(ν)> β (ν); (2.22) merely gives a lower bound for β (ν) which is lower than β0(ν).
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In the sequel we will use (IS2
0) in conjunction with the following observation:

REMARK 2.5 Let (IS2
0) hold, let |ΓP| > 0 and p∈ (1,2). For arbitrary q∈Qp

h , we write q = q0+−
∫

Ω
qdxxx,

where§ q0 ∈ Yh∩L2
0(Ω). Since ‖q‖2 6 ‖q0‖2 + |Ω |1/2|−

∫
Ω

qdxxx|, we obtain

β̃0(2)
(
‖q‖2−|Ω |1/2|−

∫
Ω

qdxxx|
)
6 sup

www∈XXX2
h

(q,divwww)Ω

‖www‖1,2
, ∀q ∈ Qp

h . (2.23)

3. Well-posedness of the problem

In the following we show the existence of discrete solutions to (pSh), we discuss the conditions guar-
anteeing the uniqueness of solutions both to (pSh) and (pS), and we finally establish the existence of
a weak solution to (pS) as the limit of the discrete solutions.

Note that the well-posedness of (pS) with a convective term included has already been resolved: For
ΓD = ∂Ω this was published in (Franta et al., 2005; Lanzendörfer, 2009), while the case |ΓP| > 0 was
conducted in (Lanzendörfer & Stebel, 2009). In these works, the proof was done in a different way than
here: First a quasi-compressible approximation to (pS) was established (by the Galerkin method), and
later it was shown that this approximation converges (on the continuous level) to the “incompressible”
solution to (pS). Here, since our concern lies with the finite element discretization, the weak solution
is established directly as a limit of discrete solutions, where the discrete solutions satisfy the (discrete)
incompressibility constraint (2.18). Many of the estimates used here will be employed also in the next
section. Compared to the previous studies, we slightly relax the restriction on γ0 and—since we neglect
convection—our procedure allows for p ∈ (1,2). We begin with the well-posedness of (pSh):

THEOREM 3.1 (Existence of discrete solutions) Let Assumption 2.1 hold. Let XXX p
h and Qp

h fulfil (ISp)
with β̃ (p)> 0 arbitrary.

Then there exists a discrete solution to (pSh). Moreover, any such solution (vvvh,πh) satisfies the
a priori estimate

‖vvvh‖1,p +‖SSS(πh,DDDvvvh)‖p′ + β̃ (p)‖πh‖p′ 6 K, (3.1)

with K depending only on Ω ,ΓD, p,ε0,σ0,σ1,‖ fff‖p′ ,‖bbb‖(p#)′;ΓP
and ‖vvv0,h‖1,p.

Proof. For any δ > 0 (small), we consider the quasi-compressible problem (pSδ
h ):

Find (vvvδ
h ,π

δ
h ) ∈ (vvv0,h +XXX p

h)×Qp
h such that

(SSS(πδ
h ,DDDvvvδ

h ),DDDwwwh)Ω − (πδ
h ,divwwwh)Ω = ( fff ,wwwh)Ω − (bbb,wwwh)ΓP ∀wwwh ∈ XXX p

h , (3.2)

δ (πδ
h ,qh)Ω +(qh,divvvvδ

h )Ω = 0 ∀qh ∈ Qp
h . (3.3)

The inserted term δ (πδ
h ,qh)Ω ensures the coercivity of the equations with respect to the pressure and

allows to use the Brouwer fixed-point theorem to establish the solution to (pSδ
h ). Indeed, setting

wwwh := vvvδ
h −vvv0,h and qh := πδ

h , summing the equations and using Hölder’s and Korn’s inequality, (2.19)1,
the embedding tr(W1,p(Ω)) ↪→ Lp#

(∂Ω), the estimate

(SSS(πδ
h ,DDDvvvδ

h ),DDDvvvδ
h −DDDvvv0,h)Ω >

σ0

2p
‖DDDvvvδ

h‖p
p−

σ1

p−1
‖DDDvvvδ

h‖p−1
p ‖DDDvvv0,h‖p−

σ0

2p
|Ω |ε p

§Here we assume that constants belong to Yh.
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due to (2.6), and Young’s inequality, we obtain the a priori bound

δ‖πδ
h ‖2

2 +‖vvvδ
h‖

p
1,p +‖SSS(π

δ
h ,DDDvvvδ

h )‖
p′

p′ 6C,

where C > 0 depends on Ω ,ΓD, p,ε0,σ0,σ1,‖ fff‖p′ ,‖bbb‖(p#)′;ΓP
and ‖vvv0,h‖1,p. In particular, C is indepen-

dent of δ and h. Therefore, using (ISp) and (2.14), we observe that

β̃ (p)‖πδ
h ‖p′ 6 sup

wwwh∈XXX p
h

(πδ
h ,divwwwh)Ω

‖wwwh‖1,p
6C,

with C > 0 and β̃ (p)> 0 independent of δ and h. The same arguments applied to (pSh) prove (3.1).
The uniform bounds above and the fact that XXX p

h and Qp
h are of finite dimension imply that there is

(vvvh,πh) ∈ (vvv0,h +XXX p
h)×Qp

h such that (for some sequence δn↘ 0)

vvvδn
h → vvvh in W1,p(Ω),

π
δn
h → πh in Lp′(Ω),

SSS(πδn
h ,DDDvvvδn

h )→ SSS(πh,DDDvvvh) in Lp′(Ω)d×d .

Consequently, (vvvh,πh) is a solution to (pSh). �
According to Theorem 3.1, discrete solutions exist regardless of Assumption (A2). However, unique-

ness of the solution can only be shown by means of (A2) under a smallness assumption on γ0 as depicted
by the following theorem:

THEOREM 3.2 (Uniqueness) Let the assumptions of Theorem 3.1 hold. Provided that (IS2) is satisfied
and

γ0 < β̃ (2)ε
2−p

2
σ0

σ0 +σ1
, (3.4)

the solution to (pSh) is determined uniquely.
Similarly, there is at most one solution to (pS) if Assumption 2.1 is satisfied and

γ0 < β(2)ε
2−p

2
σ0

σ0 +σ1
.

Proof. We prove the uniqueness to (pSh), the other result is analogous. Let (vvvi
h,π

i
h), i = 1,2, be two

solutions to (pSh). Then

(SSS(π1
h ,DDDvvv1

h)−SSS(π2
h ,DDDvvv2

h),DDDwwwh)Ω = (π1
h −π

2
h ,divwwwh)Ω ∀wwwh ∈ XXX p

h .

In particular, choosing wwwh := vvv1
h− vvv2

h we observe

(SSS(π1
h ,DDDvvv1

h)−SSS(π2
h ,DDDvvv2

h),DDDvvv1
h−DDDvvv2

h)Ω = 0

and we thus obtain from (2.8) that

d(vvv1
h,vvv

2
h)

2 6
γ2

0

σ2
0
‖π1

h −π
2
h‖2

2. (3.5)
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Hence, (IS2) and (2.10) yields:

β̃ (2)‖π1
h −π

2
h‖2 6 sup

wwwh∈XXX2
h

(π1
h −π2

h ,divwwwh)Ω

‖wwwh‖1,2

6 ‖SSS(π1
h ,DDDvvv1

h)−SSS(π2
h ,DDDvvv2

h)‖2

6 σ1ε
p−2

2 d(vvv1
h,vvv

2
h)+ γ0ε

p−2
2 ‖π1

h −π
2
h‖2, (3.6)

which together with (3.5) and (3.4) leads to π1
h = π2

h a.e. in Ω and to d(vvv1
h,vvv

2
h)= 0. But this completes the

proof, because (2.12), (2.13) and the a priori bound (3.1) ensure that ‖DDDvvv1
h−DDDvvv2

h‖2
p 6C d(vvv1

h,vvv
2
h)

2 = 0.
Since |ΓD| > 0, Lemma 2.5 yields vvv1

h = vvv2
h a.e. in Ω . �

THEOREM 3.3 (Convergence of discrete solutions) Let the assumptions of Theorem 3.1 hold, let the
discrete spaces {(XXX p

h ,Q
p
h)}h>0 satisfy (2.16), and let {vvv0,h}h>0 satisfy (2.19). In addition, let (IS2

0) hold
and let γ0 fulfill

γ0 < β̃0(2)ε
2−p

2
σ0

σ0 +σ1
. (3.7)

Then, the discrete solutions to (pSh) converge to a weak solution to (pS) as follows,

(vvvhn ,πhn)→ (vvv,π) strongly in W1,p(Ω)×Lp′(Ω), for some hn↘ 0. (3.8)

In addition, if the weak solution to (pS) is unique, then the whole sequence {(vvvh,πh)}h>0 tends to (vvv,π).

REMARK 3.1 Note that β̃0(2) appears in (3.7) even in the case |ΓP| > 0. In general, this guarantees
convergence for larger range of γ0 than, e.g., compared to (3.4), see Remark 2.4.

Proof of Theorem 3.3.
Theorem 3.1 ensures that discrete solutions (vvvh,πh) ∈ (vvv0,h +XXX p

h)×Qp
h to (pSh) exist and satisfy

the a priori estimate (3.1). Hence, there exist (vvv,π) ∈ (vvv0 +XXX p,Qp) and SSS ∈ Lp′(Ω)d×d such that for
a sequence hn↘ 0 there holds

vvvhn ⇀ vvv weakly in W1,p(Ω), (3.9)

πhn ⇀ π weakly in Lp′(Ω), (3.10)

SSS(πhn ,DDDvvvhn)⇀ SSS weakly in Lp′(Ω)d×d . (3.11)

Obviously, the weak limits satisfy equation (2.15) and

(SSS,DDDwww)Ω − (π,divwww)Ω = ( fff ,www)Ω − (bbb,www)ΓP ∀www ∈ XXX p. (3.12)

Here, we have used the density (2.16). Subtracting (3.12) and (2.17), we observe

(SSS(πhn ,DDDvvvhn)−SSS,DDDwwwhn)Ω = (πhn −π,divwwwhn)Ω ∀wwwhn ∈ XXX p
hn
. (3.13)

Then, (3.13) with wwwh := vvvhn − vvv0,hn implies

(SSS(πhn ,DDDvvvhn)−SSS(π,DDDvvv),DDDvvvhn −DDDvvv)Ω = (πhn −π,div(vvvhn − vvv0,hn))Ω

+(SSS,DDDvvvhn −DDDvvv0,hn)Ω +(SSS(πhn ,DDDvvvhn),DDDvvv0,hn −DDDvvv)Ω − (SSS(π,DDDvvv),DDDvvvhn −DDDvvv)Ω .
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Using (2.19), (2.18), (2.15), and recalling (3.9)–(3.11), we conclude that

(SSS(πhn ,DDDvvvhn)−SSS(π,DDDvvv),DDDvvvhn −DDDvvv)Ω = o(1), hn↘ 0, (3.14)

where o(1) denotes an arbitrary sequence that tends to zero for hn↘ 0. Furthermore, from (2.13), (3.1),
(2.8), and (3.14) we deduce (cf. (3.5))

C‖DDDvvvhn −DDDvvv‖2
p 6 d(vvvhn ,vvv)

2 6
γ2

0

σ2
0
‖πhn −π‖2

2 +o(1) (3.15)

for some C > 0 independent of hn. We suppose for a while that

β̃0(2)‖πhn −π‖2 6 ‖SSS(πhn ,DDDvvvhn)−SSS(π,DDDvvv)‖2 +o(1). (3.16)

Then, combining (3.16) and (2.10), we arrive at

β̃0(2)‖πhn −π‖2 6 σ1ε
p−2

2 d(vvvhn ,vvv)+ γ0ε
p−2

2 ‖πhn −π‖2 +o(1), hn↘ 0.

Using (3.15) and the assumption (3.7), we conclude ‖πhn−π‖2 6 o(1). Consequently, (3.15) also yields
‖DDDvvvhn −DDDvvv‖p 6 o(1), which finally implies that

πhn → π a.e. in Ω and DDDvvvhn → DDDvvv a.e. in Ω .

This allows us to apply the Vitali’s lemma and to identify SSS,∫
Ω

SSS(πhn ,DDDvvvhn) : DDDwwwdxxx→
∫

Ω

SSS(π,DDDvvv) : DDDwwwdxxx =
∫

Ω

SSS : DDDwwwdxxx ∀www ∈ XXX p.

Therefore, it only remains to show (3.16). Define w̃wwhn ∈ XXX2
hn

, ‖w̃wwhn‖1,2 = 1, such that

sup
wwwhn∈XXX2

hn

(πhn −π,divwwwhn)Ω

‖wwwhn‖1,2
= (πhn −π,div w̃wwhn)Ω .

Then, there exists w̃ww ∈ XXX2 such that (for a not-relabelled subsequence) w̃wwhn − w̃ww ⇀ 0 weakly in XXX2 and¶

‖w̃wwhn − w̃ww‖1,2 6 1. Hence, using (3.13) and (3.11) we obtain:

(πhn −π,div w̃wwhn)Ω =(SSS(πhn ,DDDvvvhn)−SSS,DDDw̃wwhn −DDDw̃ww)Ω +o(1)
=(SSS(πhn ,DDDvvvhn)−SSS(π,DDDvvv),DDDw̃wwhn −DDDw̃ww)Ω +o(1)
6‖SSS(πhn ,DDDvvvhn)−SSS(π,DDDvvv)‖2 +o(1), hn↘ 0.

Further, recalling (2.23) and using that −
∫

Ω
πhn −π dxxx→ 0, we have for any qhn ∈ Qp

hn
that

β̃0(2)‖πhn −qhn‖2 6 sup
wwwhn∈XXX2

hn

(πhn −qhn ,divwwwhn)Ω

‖wwwhn‖1,2
+ β̃0(2)|Ω |1/2

∣∣∣∣−∫
Ω

πhn −qhn dxxx
∣∣∣∣

6 sup
wwwhn∈XXX2

hn

(πhn −π,divwwwhn)Ω

‖wwwhn‖1,2
+‖π−qhn‖2 +C

∣∣∣∣−∫
Ω

πhn −qhn dxxx
∣∣∣∣

6 ‖SSS(πhn ,DDDvvvhn)−SSS(π,DDDvvv)‖2 +C‖π−qhn‖2 +o(1), hn↘ 0,

¶Indeed, ‖w̃ww‖2
1,2 6 2(w̃wwhn , w̃ww)1,2;Ω for n large enough, which implies ‖w̃wwhn − w̃ww‖2

1,2 6 ‖w̃wwhn‖2
1,2 (= 1).
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with C > 0 independent of hn. Using the density of {Qp
hn
} in Qp, we finally assert (3.16):

β̃0(2)‖πhn −π‖2 6 β̃0(2) inf
qhn∈Qp

hn

{‖πhn −qhn‖2 +‖qhn −π‖2}

6 ‖SSS(πhn ,DDDvvvhn)−SSS(π,DDDvvv)‖2 +o(1), hn↘ 0.

This completes the proof. �
Theorem 3.3 guarantees existence of weak solutions to (pS) provided that we have a suitable family

of discrete spaces {XXX p
h ,Q

p
h}h>0. The proper existence result is formulated in Corollary 3.1. In the

following lemma we construct such a family of discrete spaces, which satisfies (ISp) and (IS2
0) with the

constant β̃0(2) almost equal to β0(2).

LEMMA 3.1 Let Ω , ΓD, ΓP and p be as in Assumption 2.1. Then for any δ > 0 (small), there exists
a family of finite-dimensional spaces {XXXhn}, {Yhn}, hn↘ 0 that satisfy (2.16) and fulfill (ISp) and (IS2

0)
with

β̃ (p)> β (p)−δ and β̃0(2)> β0(2)−δ . (3.17)

Proof. Consider arbitrary hn ↘ 0, n = 1, . . .. Since W1,2
0 (Ω), XXX p, Qp are separable Banach spaces

with the bases {w̄wwn}∞
n=1, {wwwn}∞

n=1, {qn}∞
n=1, respectively, and since W1,2

0 (Ω) ⊂ XXX p, we can define the
Galerkin spaces by XXXm := span{w̄wwi,wwwi}m

i=1 and Y n := span{qi}n
i=1, clearly allowing for (2.16). In order

to ensure (3.17), we only need to choose suitable pairs of the spaces, i.e., to any discrete pressure space
we have to assign a rich enough discrete velocity space. We show this only for (IS2

0) and (3.17)2, the
inclusion of (ISp) is obvious.

Due to (2.16) and Lemma 2.6, for any q ∈ L2
0(Ω) there exists k(q) such that

β0(2)−δ 6 sup
www∈XXXk(q)∩W1,2

0 (Ω)

(q,divwww)Ω

‖q‖2‖www‖1,2
.

(we choose minimal such k(q)). For n fixed, define m(n) := sup{q∈Y n∩L2
0(Ω)} k(q). It is easy to see that

Yhn := Y n and XXXhn := XXXm(n) satisfy (IS2
0) and (3.17). It remains to prove that m(n) is finite. This is

shown by contradiction: Let m(n) be infinite. Then we find a sequence q j ∈ Y n ∩L2
0(Ω), ‖q j‖2 = 1,

j = 1,2, . . ., such that k(q j)> j and

sup
www∈XXX j∩W1,2

0 (Ω)

(q j,divwww)Ω

‖www‖1,2
< β0(2)−δ .

Since Y n is of finite dimension, we find some q̃ ∈ Y n∩L2
0(Ω), ‖q̃‖2 = 1, and a subsequence ji > i such

that ‖q ji − q̃‖2 < δ/2 for i = 1,2, . . .. But then,

sup
www∈XXX i∩W1,2

0 (Ω)

(q̃,divwww)Ω

‖www‖1,2
< β0(2)−δ/2

holds for any i = 1,2, . . ., which combined with the density (2.16) and Lemma 2.6 gives the contradic-
tion. �

COROLLARY 3.1 (Existence of solutions) Let Assumption 2.1 hold and

γ0 < β0(2)ε
2−p

2
σ0

σ0 +σ1
. (3.18)
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Then there exists a weak solution to (pS). Moreover, any solution to (pS) fulfils the a priori estimate

‖vvv‖1,p +‖SSS(π,DDDvvv)‖p′ +β (p)‖π‖p′ 6 K, (3.19)

with K depending only on Ω ,ΓD, p,ε,σ0,σ1,‖ fff‖p′ ,‖bbb‖(p#)′;ΓP
and ‖vvv0‖1,p.

Proof. The a priori estimate (3.19) follows by the procedure analogous to the proof of (3.1). The
existence result follows from Theorems 3.1 and 3.3, and Lemma 3.1. �

4. A priori error estimates

In this section we aim to derive a priori estimates for the error of approximation vvv− vvvh and π−πh. For
the remainder of this paper, let us use the convention that (vvv,π) and (vvvh,πh) denotes the solution to (pS)
and (pSh), respectively, whose existence and uniqueness was shown in the previous section. The main
results are given by Corollaries 4.1 and 4.2 which state a priori error estimates in the form of a best
approximation result.

LEMMA 4.1 Let Assumption 2.1 hold. For each δ > 0 there exists a constant cδ > 0 such that for all
uuuh ∈ (vvv0,h +VVV p

h) and rh ∈ Qp
h there holds

d(vvv,vvvh)6 cδ

(
‖FFF(DDDvvv)−FFF(DDDuuuh)‖2 +‖DDDvvv−DDDuuuh‖p +‖π− rh‖p′

)
+
(

γ0

σ0
+δ

)
‖π−πh‖2,

where the constant cδ also depends on p, ε0, γ0, σ0, σ1, ΓD and Ω .

Proof. Let (uuuh,rh) be an arbitrary element of (vvv0,h +VVV p
h)×Qp

h . From (pS) and (pSh) it follows that

(SSS(π,DDDvvv)−SSS(πh,DDDvvvh),DDDwwwh)Ω = (π−πh,divwwwh)Ω = (π− rh,divwwwh)Ω

for all wwwh ∈VVV p
h . This, with wwwh := (uuuh− vvvh) ∈VVV p

h , implies

(SSS(π,DDDvvv)−SSS(πh,DDDvvvh),DDDvvv−DDDvvvh)Ω = (SSS(π,DDDvvv)−SSS(πh,DDDvvvh),DDDvvv−DDDuuuh)Ω

+(π− rh,div(uuuh− vvvh))Ω =: I1 + I2

Applying (2.8), we conclude

σ0

2
d(vvv,vvvh)

2 6 I1 + I2 +
γ2

0
2σ0
‖π−πh‖2

2. (4.1)

It remains to estimate I1 and I2. First, we split the term I1 in the following way,

I1 = (SSS(π,DDDvvv)−SSS(πh,DDDuuuh),DDDvvv−DDDuuuh)Ω

+(SSS(πh,DDDuuuh)−SSS(πh,DDDvvvh),DDDvvv−DDDuuuh)Ω =: I3 + I4.

Due to (2.9) and Lemma 2.3, for each δ1 > 0 there exists cδ1 > 0 such that

I3 6 cδ1d(vvv,uuuh)
2 +δ1‖π−πh‖2

2 6 cδ1‖FFF(DDDvvv)−FFF(DDDuuuh)‖2
2 +δ1‖π−πh‖2

2.

In order to get an upper bound to I4, we apply Lemma 2.1 and Young’s inequality (2.1) for shifted
N-functions, recalling that the ∆2-constants of ϕa, (ϕa)

∗ only depend on p and do not depend on the
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shift-parameter a> 0. Hence, for any δ2 > 0 we obtain

I4 6 c
∫

Ω

ϕ
′
ε+|DDDuuuh|(|DDDuuuh−DDDvvvh|)|DDDvvv−DDDuuuh|dx

6 δ2

∫
Ω

ϕε+|DDDuuuh|(|DDDuuuh−DDDvvvh|)dx+ cδ2

∫
Ω

ϕε+|DDDuuuh|(|DDDvvv−DDDuuuh|)dx

∼ δ2‖FFF(DDDuuuh)−FFF(DDDvvvh)‖2
2 + cδ2‖FFF(DDDvvv)−FFF(DDDuuuh)‖2

2

6 δ2cd(vvv,vvvh)
2 + cδ2‖FFF(DDDvvv)−FFF(DDDuuuh)‖2

2,

where we have also used Lemma 2.3. Collecting the estimates above, we arrive at

I1 6 cδ1,δ2‖FFF(DDDvvv)−FFF(DDDuuuh)‖2
2 +δ1‖π−πh‖2

2 +δ2cd(vvv,vvvh)
2. (4.2)

Next, we estimate the term I2. Using Korn’s and Young’s inequality, applying Lemma 2.4 with ν = p,
we deduce that for each δ3 > 0 there exists cδ3 such that

I2 6
∣∣(π− rh,div(uuuh− vvvh))Ω

∣∣6 c‖π− rh‖p′‖DDDuuuh−DDDvvvh‖p

6 δ3
(
‖DDDvvv−DDDuuuh‖2

p +‖DDDvvv−DDDvvvh‖2
p
)
+ cδ3‖π− rh‖2

p′

6 δ3‖DDDvvv−DDDuuuh‖2
p +δ3c‖FFF(DDDvvv)−FFF(DDDvvvh)‖2

2‖ε + |DDDvvv|+ |DDDvvvh|‖2−p
p + cδ3‖π− rh‖2

p′

6 δ3‖DDDvvv−DDDuuuh‖2
p +δ3cd(vvv,vvvh)

2 + cδ3‖π− rh‖2
p′ . (4.3)

Here, we have also used the fact that DDDvvv and DDDvvvh are uniformly bounded in Lp(Ω)d×d . Combining the
estimates (4.1), (4.2) and (4.3), we conclude

σ0

2
d(vvv,vvvh)

2 6 δ2cd(vvv,vvvh)
2 +δ3cd(vvv,vvvh)

2 + cδ1,δ2‖FFF(DDDvvv)−FFF(DDDuuuh)‖2
2 +δ3‖DDDvvv−DDDuuuh‖2

p

+ cδ3‖π− rh‖2
p′ +

(
γ2

0
2σ0

+δ1

)
‖π−πh‖2

2.

Multiplying this with 2/σ0, taking the square root, we easily complete the proof. �
Lemma 4.1 enables us to estimate the pressure error in the L2-norm.

THEOREM 4.1 Let Assumption 2.1 hold. Let the discrete spaces fulfil (IS2) and let the parameters meet
the condition (3.4): γ0 < β̃ (2)ε

2−p
2 σ0

σ0+σ1
. Then, there exists a constant c= c(p,ε,γ0,σ0,σ1, β̃ (2),ΓD,Ω)

such that the pressure error is bounded in L2(Ω) by

‖π−πh‖2 6 c inf
uuuh∈vvv0,h+VVV p

h

(
‖FFF(DDDvvv)−FFF(DDDuuuh)‖2 +‖DDDvvv−DDDuuuh‖p

)
+ c inf

rh∈Qp
h

‖π− rh‖p′ .

Proof. Let (uuuh,rh) be an arbitrary element of (vvv0,h +VVV p
h)×Qp

h . Then, (pS), (pSh) imply

(rh−πh,divwwwh)Ω = (SSS(π,DDDvvv)−SSS(πh,DDDvvvh),DDDwwwh)Ω +(rh−π,divwwwh)Ω (4.4)

for all wwwh ∈ XXX p
h . Using (IS2) and (4.4), we deduce, cf. (3.6),

β̃ (2)‖rh−πh‖2 6 sup
wwwh∈XXX2

h

(rh−πh,divwwwh)Ω

‖wwwh‖1,2
6 ‖SSS(π,DDDvvv)−SSS(πh,DDDvvvh)‖2 +‖rh−π‖2.
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Applying (2.10) and Lemma 4.1, we conclude that for each δ > 0 there exists a constant cδ > 0 such
that

β̃ (2)‖rh−πh‖2 6 σ1ε
p−2

2 d(vvv,vvvh)+ γ0ε
p−2

2 ‖π−πh‖2 +‖rh−π‖2

6 σ1ε
p−2

2 cδ

(
‖FFF(DDDvvv)−FFF(DDDuuuh)‖2 +‖DDDvvv−DDDuuuh‖p +‖π− rh‖p′

)
+σ1ε

p−2
2

(
γ0

σ0
+δ

)
‖π−πh‖2 + γ0ε

p−2
2 ‖π−πh‖2 +‖rh−π‖2.

Using Minkowski’s inequality and Lp′(Ω) ↪→ L2(Ω) for p6 2, we arrive at

‖π−πh‖2 6 cδ

(
‖FFF(DDDvvv)−FFF(DDDuuuh)‖2 +‖DDDvvv−DDDuuuh‖p +‖π− rh‖p′

)
+ β̃ (2)−1

σ1ε
p−2

2

(
γ0

σ0
+δ

)
‖π−πh‖2 + β̃ (2)−1

γ0ε
p−2

2 ‖π−πh‖2.

Recalling (3.4), and choosing δ > 0 sufficiently small, we can absorb all terms, which include the
pressure error, in the left-hand side. Hence, we get the desired result. �

COROLLARY 4.1 Let the assumptions of Theorem 4.1 be satisfied. Then, the error of approximation of
the velocity field is bounded by

‖FFF(DDDvvv)−FFF(DDDvvvh)‖2 6 c inf
uuuh∈(vvv0,h+VVV p

h )

(
‖FFF(DDDvvv)−FFF(DDDuuuh)‖2 +‖DDDvvv−DDDuuuh‖p

)
+ c inf

rh∈Qp
h

‖π− rh‖p′ . (4.5)

Proof. The estimate follows from Lemma 2.3, Lemma 4.1, and Theorem 4.1. �

COROLLARY 4.2 Let the assumptions of Theorem 4.1 hold. In addition, let (ISp) hold and

γ0 < β̃ (p)ε
2−p

2 . (4.6)

Then, the error of approximation of the pressure field is bounded in Lp′(Ω) by

‖π−πh‖p′ 6 c‖FFF(DDDvvv)−FFF(DDDvvvh)‖
2
p′
2 + c inf

rh∈Qp
h

‖rh−π‖p′ . (4.7)

Proof. The estimate is again based on the inf–sup inequality (ISp). Using (ISp), Hölder’s inequality,
(4.4), (2.11) and (2.12), for arbitrary rh ∈ Qp

h we obtain the estimate

β̃ (p)‖rh−πh‖p′ 6 sup
wwwh∈XXX p

h

(rh−πh,divwwwh)Ω

‖wwwh‖1,p

6 ‖SSS(π,DDDvvv)−SSS(πh,DDDvvvh)‖p′ +‖rh−π‖p′

6 c‖FFF(DDDvvv)−FFF(DDDvvvh)‖
2
p′
2 + γ0ε

p−2
2 ‖π−πh‖p′ +‖rh−π‖p′ .

Due to assumption (4.6), this completes the proof. �
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COROLLARY 4.3 Let the assumptions of Theorem 4.1 hold. Then, for all (uuuh,rh) ∈ (vvv0,h +VVV p
h)×Qp

h
there holds

‖FFF(DDDvvv)−FFF(DDDvvvh)‖2 +‖π−πh‖2 6 c‖FFF(DDDvvv)−FFF(DDDuuuh)‖2

+ c
(
ε0 +‖∇uuuh‖∞ +‖∇vvvh‖∞

) 2−p
2 ‖π− rh‖2,

(4.8)

where c only depends on p, ε, γ0, σ0, σ1, β̃ (2), ΓD and Ω .

Proof. First, we slightly modify the proof of Lemma 4.1. Let (uuuh,rh) be an arbitrary element of
(vvv0,h+VVV p

h)×Qp
h . Here, we estimate the term I2 differently. Using (2.13) with ν = 2, Young’s inequality,

and (2.12), we deduce that for each δ3 > 0 there exists cδ3 such that

I2 6
∣∣(π− rh,div(uuuh− vvvh))Ω

∣∣6 c‖π− rh‖2‖DDDuuuh−DDDvvvh‖2

6 c‖π− rh‖2‖FFF(DDDuuuh)−FFF(DDDvvvh)‖2
(
ε0 +‖∇uuuh‖∞ +‖∇vvvh‖∞

) 2−p
2

6 δ3

[
d(vvv,vvvh)

2 +‖FFF(DDDvvv)−FFF(DDDuuuh)‖2
2

]
+ cδ3

(
ε0 +‖∇uuuh‖∞ +‖∇vvvh‖∞

)2−p‖π− rh‖2
2.

Following the same arguments as in the proof of Lemma 4.1, we conclude that for each δ > 0 there
exists a constant cδ , which only depends on p,ε0,γ0,σ0,σ1,Ω and δ , such that

d(vvv,vvvh)6 cδ

(
‖FFF(DDDvvv)−FFF(DDDuuuh)‖2 +

(
ε0 +‖∇uuuh‖∞ +‖∇vvvh‖∞

) 2−p
2 ‖π− rh‖2

)
+
(

γ0

σ0
+δ

)
‖π−πh‖2.

Adopting the arguments presented in the proof of Theorem 4.1, we arrive at (w.l.o.g. ε0 > 1)

‖π−πh‖2 6 c
(
‖FFF(DDDvvv)−FFF(DDDuuuh)‖2 +

(
ε0 +‖∇uuuh‖∞ +‖∇vvvh‖∞

) 2−p
2 ‖π− rh‖2

)
provided that condition (3.4) is satisfied. Obviously, the latter estimate implies the desired error estimate
for the velocity. �

In practice, one never obtains the discrete solution (vvvh,πh) to (pSh) exactly. Instead, one obtains its
approximation (ṽvvh, π̃h) ∈ (vvv0,h +VVV p

h)×Qp
h , satisfying

(SSS(π̃h,DDDṽvvh),DDDwwwh)Ω − (π̃h,divwwwh)Ω = ( fff ,wwwh)Ω − (bbb,wwwh)ΓP + 〈eee,wwwh〉 ∀wwwh ∈ XXX p
h ,

(div ṽvvh,qh)Ω = 〈g,qh〉 ∀qh ∈ Qp
h ,

where eee ∈ (XXX p
h)
∗, g ∈ (Qp

h)
∗, and the brackets denote the corresponding duality pairings. Here, eee =

eee(ṽvvh, π̃h) and g = g(ṽvvh, π̃h) represent some additional error (which includes, e.g., the residuum associ-
ated with the approximate solution to the non-linear algebraic problem, or the error due to numerical
integration). However, provided that one is able to estimate eee and g, then one can derive estimates
for vvv− ṽvvh and π − π̃h analogous to those derived in this section by following the same procedure. For
instance, denoting |〈eee,wwwh〉| 6 E ‖wwwh‖1,p and |〈g,qh〉| 6 G‖qh‖2 (with E, G independent of h and as-
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suming, say, E,G6 1, such that ‖DDDṽvvh‖p remains reasonably bounded) one can show (cf. (4.5), (4.7)):

‖FFF(DDDvvv)−FFF(DDDṽvvh)‖2 6 c inf
uuuh∈(vvv0,h+VVV p

h )

(
‖FFF(DDDvvv)−FFF(DDDuuuh)‖2 +‖DDDvvv−DDDuuuh‖p

)
+ c inf

rh∈Qp
h

‖π− rh‖p′ + c(E +G)

‖π− π̃h‖p′ 6 c‖FFF(DDDvvv)−FFF(DDDṽvvh)‖
2
p′
2 + c inf

rh∈Qp
h

‖rh−π‖p′ + cE.

5. Finite element approximation

In this section, we consider some finite element approximations of (pS) that satisfy the abstract the-
ory of the previous sections. We assume that, for ease of exposition, Ω is a polygonal/polyhedral
domain and that Th is a shape regular decomposition of Ω into d-dimensional simplices (or quadri-
laterals/hexahedra) so that Ω =

⋃
K∈Th

K. By hK we denote the diameter of a cell K ∈ Th; the mesh
parameter h represents the maximum diameter of the cells, i.e., h := max{hK ; K ∈Th}. We assume that
Th is non-degenerate (see (Brenner & Scott, 1994)). Hence, the neighbourhood SK of K ∈ Th, which
denotes the union of all elements in Th touching K, fulfills |K| ∼ |SK | with constants independent of h.
Furthermore, the number of cells in SK is uniformly bounded with respect to K ∈ Th. Let Xh and Yh be
appropriate finite element spaces defined on Th that satisfy Xh ⊂W1,∞(Ω) and Yh ⊂ L∞(Ω). We recall
that the finite element spaces for the velocity and pressure are given by XXX p

h := XXXh∩XXX p, XXXh = [Xh]
d , and

Qp
h :=Yh∩Qp. In order to ensure approximation properties and the discrete inf-sup conditions, we need

to specify the choice of spaces:

Assumption 5.1 (Approximation property of Xh and Yh). We assume that Xh contains the set of linear
polynomials on Ω . Moreover, we suppose that there exist a linear projection jjjh : W1,1(Ω)→ XXXh and
an interpolation operator ih : W1,1(Ω)→ Yh such that

(1) jjjh preserves zero boundary values on ΓD, such that jjjh(XXX
p)⊂ XXX p

h .

(2) jjjh is locally W1,1-stable in the sense that there exists c > 0 (independent of h) so that

−
∫

K
| jjjhwww|dx6 c−

∫
SK

|www|dx+ c−
∫

SK

hK |∇www|dx ∀www ∈W1,1(Ω), ∀K ∈Th, (5.1)

where SK denotes a local neighbourhood of K (as defined above).

(3) jjjh preserves divergence‖ in the Y ∗h -sense, i.e.,

(divwww,qh)Ω = (div jjjhwww,qh)Ω ∀www ∈W1,1(Ω), ∀qh ∈ Yh. (5.2)

(4) ih preserves mean values, i.e., ih(Qp)⊂ Qp
h , and, for any ν > 1, ih satisfies

‖q− ihq‖ν 6 ch‖q‖1,ν ∀q ∈W1,ν(Ω). (5.3)

Later we will suppose that functions in Xh satisfy the following global inverse inequality:

‖Note that in case of |ΓP| > 0 this implies
∫

ΓP
www ·nnndxxx =

∫
ΓP
( jjjhwww) ·nnndxxx; this requires that the triangulation matches ΓP appro-

priately.
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Assumption 5.2 (Inverse property of Xh). For ν ,µ ∈ [1,∞] and 06 m6 l there holds

‖wh‖l,ν 6Chm−l+min(0, d
ν
− d

µ
)‖wh‖m,µ ∀wh ∈ Xh. (5.4)

Assumption 5.2 usually requires that the mesh is quasi-uniform (in the sense of (Brenner & Scott,
1994)). Assumption 5.1 is similar to Assumption 2.21 in (Belenki et al., 2010). Clearly, the existence
of jjjh and ih as in Assumption 5.1 depends on the choice of the finite element pairing Xh/Yh:

• The construction of jjjh, such that it satisfies Assumptions 5.1 (1) – (3), is well-known for some
particular finite elements, including the Crouzeix-Raviart and MINI element (see (Belenki et al.,
2010)). If ΓD 6= ∂Ω , Assumption 5.1 (1) requires that the triangulation matches ΓD appropriately
(see (Scott & Zhang, 1990)).

• Assumption 5.1 (2) is standard in the context of interpolation in Sobolev-Orlicz spaces (cf. (Dien-
ing & Růžička, 2007)). E.g., the Scott-Zhang interpolation operator (see (Scott & Zhang, 1990))
satisfies (5.1). It is crucial that from (5.1) one can derive the local stability result

−
∫

K
ψ(|∇ jjjhwww|)dx6 c−

∫
SK

ψ(|∇www|)dx ∀www ∈W1,ψ(Ω) ∀K ∈Th, (5.5)

which is valid for arbitrary N-functions ψ with ∆2(ψ) < ∞. Here, W1,ψ(Ω) is the classical
Sobolev-Orlicz space and the constant c only depends on ∆2(ψ). For details we refer to (Diening
& Růžička, 2007).

• For standard finite elements, ih may be chosen as the L2-projection onto Yh:

(ihq,qh)Ω = (q,qh)Ω ∀qh ∈ Yh ∀q ∈ L1(Ω). (5.6)

Indeed, it is shown in (Crouzeix & Thomée, 1987) that the L2-projection is Lν -stable and even
W1,ν -stable for any ν ∈ [1,∞], and, consequently, the L2-projection fulfills (5.3). The results
of (Crouzeix & Thomée, 1987) are derived for finite element spaces Yh based on simplices,
Yh := {w ∈ C(Ω); w|K ∈ Pr(K) for all K ∈ Th}, where Pr(K) denotes the space of polynomials
on K of degree less than or equal to r. Moreover, setting qh = 1 in (5.6), we deduce that ih
preserves mean values. Hence, ih(Qp)⊂ Qp

h .

Next, we depict important consequences of Assumption 5.1:

LEMMA 5.1 Let there exist a linear projection jjjh that satisfies Assumption 5.1 (2). Then, for all K ∈Th
and www ∈W1,p(Ω) there holds

−
∫

K
|FFF(DDDwww)−FFF(DDD jjjhwww)|2 dx6 ch2

K−
∫

SK

|∇FFF(DDDwww)|2 dx (5.7)

provided that FFF(DDDwww) ∈W1,2(Ω)d×d . The constant c only depends on p.

Proof. The proof is based on the Orlicz-stability (5.5). We refer to (Belenki et al., 2010; Hirn, 2010).
�

Moreover, the assumptions on jjjh imply the discrete versions of the inf-sup inequality:

LEMMA 5.2 Let there exist a linear projection jjjh that satisfies Assumption 5.1 (1) – (3). Then, for
ν ∈ (1,∞) the discrete inf-sup inequality (ISν ) is satisfied.
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Proof. Since Th is non-degenerate, the local stability result (5.5) (with ψ(t) := tν ) leads to the global
W1,ν -stability inequality, ‖ jjjhwww‖1,ν 6Cs ‖www‖1,ν for all www ∈ XXXν , where ν ∈ (1,∞) and the stability con-
stant Cs does not depend on h. Thus, the continuous inf-sup inequality (2.20) and Assumption 5.1 imply
that for arbitrary qh ∈ Qν

h ⊂ Qν it holds

‖qh‖ν ′ 6 β (ν)−1 sup
www∈XXXν

(qh,divwww)Ω

‖www‖1,ν
= β (ν)−1 sup

www∈XXXν

(qh,div jjjhwww)Ω

‖www‖1,ν

6 β (ν)−1Cs sup
www∈XXXν

(qh,div jjjhwww)Ω

‖ jjjhwww‖1,ν
6 β̃ (ν)−1 sup

wwwh∈XXXν
h

(qh,divwwwh)Ω

‖wwwh‖1,ν
,

where β̃ (ν) := β (ν)/Cs is independent of h. �

REMARK 5.1 Let us briefly discuss the case of unstable discretizations. For instance, one may consider
an equal-order discretization, where both Xh and Yh are based on piece-wise polynomials of the same
degree. In this case, the discrete inf-sup condition is violated. For p-Stokes systems, for which the gen-
eralized viscosity only depends on the shear-rate, Hirn (Hirn, 2010) proposes a stabilization technique
based on the local projection stabilization (LPS) method, that leads to optimal convergence results.
Whether the stabilization method can be applied to the equal-order discretization of (pS), is subject of
current research.

Next we state our a priori error estimates that quantify the convergence of the finite element method.
For this, the regularity FFF(DDDvvv) ∈W1,2(Ω)d×d of the solution vvv is required (which is equivalent to (1.6)1,
see (Berselli et al., 2010)). We mention that (1.6) is available for sufficiently smooth data at least in the
space-periodic setting in two space dimensions (see (Bulı́ček & Kaplický, 2008)).

COROLLARY 5.1 Let the assumptions of Theorem 4.1 hold. We suppose that there exist operators jjjh
and ih satisfying Assumption 5.1. Moreover, we assume the additional regularity of the weak solution

FFF(DDDvvv) ∈W1,2(Ω)d×d and π ∈W1,p′(Ω)

and we set vvv0,h := jjjhvvv0. Then, the error of approximation is bounded in terms of the maximum mesh
size h as follows:

‖FFF(DDDvvv)−FFF(DDDvvvh)‖2 6Cvvvh, ‖π−πh‖2 6Cπ h. (5.8)

Assume additionally (4.6): γ0 < β̃ (p)ε
2−p

2 . Then the pressure error in Lp′(Ω) is bounded by

‖π−πh‖p′ 6C′π h
2
p′ . (5.9)

The constants Cvvv,Cπ ,C′π > 0 only depend on ‖∇FFF(DDDvvv)‖2, ‖π‖1,p′ , p, ε , σ0, σ1, γ0, β̃ (2) (and C′π
additionally depends on β̃ (p)).

Proof. According to Lemma 5.2, the discrete inf-sup inequalities (IS2), (ISp) hold true. Hence,
the desired error estimates follow from Theorem 4.1, Corollaries 4.1 and 4.2, and the interpolation
properties of jjjh and ih. More precisely, the velocity is given by vvv = vvv0 + v̂vv for some v̂vv ∈ XXX p. Since v̂vv
is divergence-free, the interpolant jjjhv̂vv fulfills (div jjjhv̂vv,qh)Ω = 0 for all qh ∈ Qp

h . Hence, jjjhv̂vv ∈ VVV p
h and

jjjhvvv = jjjhvvv0 + jjjhv̂vv ∈ (vvv0,h +VVV p
h). Consequently, we can set uuuh := jjjhvvv and rh := ihπ in Theorem 4.1 and

Corollary 4.1. Using Lemma 2.4 with ν := p, the global W1,p-stability of jjjh (which follows from (5.5)
with ψ(t) = t p and the non-degeneracy of Th), the interpolation properties (5.7) and (5.3), we easily
conclude (5.8). Finally, (5.9) follows from Corollary 4.2 and (5.8). �
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REMARK 5.2 Using (2.13) and (3.1), we deduce from Corollary 5.1 that

‖DDDvvv−DDDvvvh‖p 6 c‖FFF(DDDvvv)−FFF(DDDvvvh)‖2 6 ch.

Hence, we also obtain an a priori error estimate in W1,p(Ω).

The W1,p′ -regularity assumption for pressure can be avoided and confined to π ∈W1,2(Ω) only.
This is depicted by the following variant of Corollary 5.1. There, the assertion remains the same. The
price to pay is twofold: We assume that vvv ∈W1,∞(Ω); the property which we have not been able to
show. Moreover, in order to reproduce (5.9) we restrict to d = 2.

COROLLARY 5.2 Let d = 2. Let the assumptions of Theorem 4.1 hold and let Assumption 5.2 be
satisfied. We suppose that there exist operators jjjh and ih as in Assumption 5.1. Moreover, we assume
that the solution (vvv,π) satisfies the additional regularity

FFF(DDDvvv) ∈W1,2(Ω)d×d , vvv ∈W1,∞(Ω), and π ∈W1,2(Ω).

We set vvv0,h := jjjhvvv0. Then, the error of approximation is bounded as follows:

‖FFF(DDDvvv)−FFF(DDDvvvh)‖2 6Cvvvh, ‖π−πh‖2 6Cπ h, (5.10)

Assume additionally (4.6) and the W1,2-stability of ih. Then, there holds

‖π−πh‖p′ 6C′π h
2
p′ . (5.11)

The constants Cvvv,Cπ ,C′π > 0 only depend on ‖∇FFF(DDDvvv)‖2, ‖π‖1,2, ‖vvv‖1,∞, p, ε , σ0, σ1, γ0, β̃ (2) (and
C′π additionally depends on β̃ (p)).

Proof. First, we mention that the projection jjjh is W1,∞-stable. Indeed, similarly as in (Scott &
Zhang, 1990) it can be shown that jjjh is locally W1,1-stable, i.e., there holds ‖ jjjhwww‖1,1;K . ‖www‖1,1;SK

for all www ∈ W1,1(Ω) and K ∈ Th. Moreover, since Xh(K) is finite dimensional, there holds
|∇i jjjhwww(yyy)| . −

∫
K |∇i jjjhwww|dxxx, i ∈ {0,1}, for all yyy ∈ K and K ∈ Th. Due to the non-degeneracy of Th

it follows ‖ jjjhwww‖1,∞;K . ‖www‖1,∞;SK for all www ∈W1,∞(Ω). This yields ‖ jjjhwww‖1,∞;Ω . ‖www‖1,∞;Ω for all
www ∈W1,∞(Ω). Next, we depict that vvvh is uniformly bounded in W1,∞(Ω). Using the inverse inequality
(5.4) with d = 2, the W1,∞-stability of jjjh, Korn’s Lemma 2.5, and Lemma 2.4 with ν = 2, we estimate

‖vvvh‖1,∞ 6 ‖vvvh− jjjhvvv‖1,∞ +‖ jjjhvvv‖1,∞

6 c
[
h−1‖vvvh− jjjhvvv‖1,2 +‖vvv‖1,∞

]
6 c
[
h−1‖DDDvvvh−DDD jjjhvvv‖2 +‖vvv‖1,∞

]
6 c
[
h−1‖FFF(DDDvvvh)−FFF(DDD jjjhvvv)‖2

(
ε0 +‖∇vvvh‖∞ +‖∇vvv‖∞

) 2−p
2 +‖vvv‖1,∞

]
.

Setting uuuh := jjjhvvv and rh := ihπ in (4.8), and using the properties of the interpolation operators, we
obtain the error estimate (w.l.o.g. ε0 > 1)

‖FFF(DDDvvvh)−FFF(DDDvvv)‖2 6Ch
(
ε0 +‖∇vvvh‖∞ +‖∇vvv‖∞

) 2−p
2
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where the constant C depends on ‖∇FFF(DDDvvv)‖2, and ‖π‖1,2. Combining the latter inequalities, we easily
conclude that

‖vvvh‖1,∞ 6C =C
(
‖∇FFF(DDDvvv)‖2,‖π‖1,2,‖vvv‖1,∞

)
. (5.12)

Of course, the constant C in (5.12) also depends on p,ε,ε0,γ0,σ0,σ1, β̃ (2),Ω . However, C is indepen-
dent of h. In view of (5.12), (4.8) yields the desired error estimates (5.10).

It remains to prove the pressure estimate in Lp′(Ω). Interpolating Lp′(Ω) between L2(Ω) and
W1,2(Ω), and using the interpolation property (5.3), and the W1,2-stability of ih, for p > 2d

d+2 and
λ := d

2 −
d
p′ we obtain the estimate

‖π− ihπ‖p′ 6 c‖π− ihπ‖λ
1,2‖π− ihπ‖1−λ

2 6 ch1+ d
p′−

d
2 ‖π‖1,2. (5.13)

Thus, for d = 2 the estimate (5.11) follows from the combination of (4.7), (5.10) and (5.13). This
completes the proof. �

REMARK 5.3 Using (2.13) and (5.12), we deduce from Corollary 5.2 that

‖DDDvvv−DDDvvvh‖2 6 c‖FFF(DDDvvv)−FFF(DDDvvvh)‖2 6 ch. (5.14)

Hence, we also obtain an a priori error estimate in W1,2(Ω).

6. Numerical examples

In this section we present some numerical examples, which illustrate the a priori error estimates of
Corollary 5.1. Here, the following model is used:

η(π, |DDDvvv|2) := η0
(
δ1 +δ2 (δ3 + exp(απ))−q +δ4 |DDDvvv|2

) p−2
2 , (6.1)

where α,q,δ1, . . . ,δ4 > 0.

REMARK 6.1 Similarly as (e.g.) in (Málek et al., 2002), it can be shown that (6.1) satisfies Assump-
tions (A1)–(A2) e.g. with ε2 := δ1/δ4, σ0 := η̂ε2−p(1+ δ2δ

−q
3 /δ1)

(p−2)/2, σ1 := η̂ε2−p(p− 1), and

γ0 := αη̂ε(2−p)/2δ2δ
−q
3 δ

−1/2
4 q(p−2)/2, where η̂ := η0δ

(p−2)/2
1 (so that η(π, |DDDvvv|2)6 η̂).

Problem (pS) was discretized with the following finite elements based on quadrilateral meshes: the
first-orderQ2/Q0 elements, the second orderQ2/Q1 andQ2/P−1 elements (see (Gresho & Sani, 2000),
or (Sani et al., 1981)), and the bilinear Q1/Q1 elements. The latter element pair is not stable, thus we
used the LPS-type stabilization method presented in (Hirn, 2010); it is worth mentioning that in all
examples the stabilization method was little sensitive with respect to the stabilization parameter. The
algebraic equations were solved by Newton’s method, the linear subproblems by the GMRES method.
All computations were performed by means of the software package (GASCOIGNE, 2006) and/or the
software developed by J. Hron, see e.g. (Hron et al., 2003). In the following numerical experiments
we depict the rates of convergence with respect to the number of cells (under global mesh refinement).
For ease of presentation, we use the shortcuts EFFF

vvv := ‖FFF(DDDvvv)−FFF(DDDvvvh)‖2, E1,ν
vvv := ‖vvv− vvvh‖1,ν ,

Eν
vvv := ‖vvv− vvvh‖ν , and Eν

π := ‖π−πh‖ν .
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Table 1. Numerical experiments on error estimates.
(a) p = 1.7, Q2/Q0

#cells EFFF
vvv E p

vvv E2
π E p′

π

44 0.98 1.83 0.82 0.74
45 1.01 1.89 0.85 0.77
46 1.02 1.92 0.88 0.79
47 1.01 1.93 0.90 0.80
48 1.01 1.96 0.91 0.81

expected 1 – 1 0.82

(b) p = 1.5, Q2/Q0

EFFF
vvv E p

vvv E2
π E p′

π

0.97 1.85 0.82 0.65
1.00 1.91 0.85 0.66
1.00 1.95 0.88 0.67
1.01 1.96 0.90 0.67
1.01 1.96 0.91 0.67

1 – 1 0.67

(c) p = 1.1, Q2/Q0

EFFF
vvv E p

vvv E2
π E p′

π

0.90 1.90 0.82 0.19
0.95 1.95 0.85 0.19
0.98 1.97 0.88 0.19
0.98 1.99 0.90 0.19
0.98 2.00 0.91 0.19

1 – 1 0.18

(d) p = 1.7, Q1/Q1 stabilized

#cells EFFF
vvv E p

vvv E2
π E p′

π

45 1.00 2.17 1.00 0.83
46 1.00 2.17 1.00 0.83
47 1.00 2.17 1.00 0.82
48 1.00 2.16 1.00 0.83
49 1.00 2.16 1.00 0.83

(e) p = 1.3, Q1/Q1 stabilized

EFFF
vvv E p

vvv E2
π E p′

π

0.99 2.49 1.00 0.46
0.99 2.48 1.00 0.46
0.99 2.45 1.00 0.46
1.00 2.41 1.00 0.47
1.00 2.36 1.00 0.47

(f) p = 1.1, Q1/Q1 stabilized

EFFF
vvv E p

vvv E2
π E p′

π

0.99 2.70 0.99 0.19
0.99 2.66 1.00 0.19
0.99 2.56 1.00 0.19
1.00 2.44 1.00 0.19
1.00 2.30 1.01 0.19

(g) p = 1.5, Q1/Q1 stabilized

#cells EFFF
vvv E p

vvv E2
π E p′

π

44 – – – –
45 1.01 2.33 1.01 0.68
46 1.01 2.33 1.01 0.67
47 1.00 2.32 1.01 0.67
48 1.00 2.31 1.01 0.67
49 1.00 2.29 1.01 0.67

(h) p = 1.5, Q2/Q1

EFFF
vvv E p

vvv E2
π E p′

π

1.02 2.33 1.01 0.68
1.01 2.32 1.01 0.68
1.02 2.33 1.01 0.68
1.02 2.30 1.01 0.68
1.02 2.25 1.01 0.68

– – – –

(i) p = 1.5, Q2/P−1

EFFF
vvv E p

vvv E2
π E p′

π

1.02 2.30 1.01 0.68
1.02 2.27 1.01 0.68
1.02 2.26 1.01 0.68
1.01 2.23 1.01 0.68
1.02 2.10 1.01 0.67

– – – –

EXAMPLE 1: In a square domain Ω := (−0.5,0.5)× (−0.5,0.5), the exact solution to (pS) was given
by vvv(xxx) := |xxx|a−1

(
x2
−x1

)
and π(xxx) := |xxx|bx1x2 for a,b ∈ R. Problem (pSh) was then solved∗∗ for fff :=

−divSSS(DDDvvv)+∇π . The parameters a and b were chosen so that FFF(DDDvvv)∈W1,2(Ω)d×d and π ∈W1,2(Ω);
this requirement amounts to the conditions a > 1 and b > −2. Since ‖∇vvv‖∞ is bounded for a > 1,
according to Corollary 5.2 the requirement π ∈ W1,2(Ω) is sufficient to ensure the optimal rate of
convergence (note that Corollary 5.1 would require π ∈W1,p′(Ω) with p′ > 2). We set a = 1.01 and
b =−1.99. Hence, as soon as (3.4) is satisfied, we expect EFFF

vvv = O(h), E2
π = O(h), and E p′

π = O(h2/p′),
for finite elements satisfying Assumption 5.1.

The parameters of the model (6.1) were set to δ1 := 10−8, q := 2/(2− p) and η0 = δ2 = δ3 = δ4 := 1
in this example. Then, Remark 6.1 gives the estimate γ0 6 αδ

(2−p)/4
1 and hence, (3.4) is ensured at

least for (using δ1 � 1) α 6 β̃ (2)δ (2−p)
1 /(p− 1), i.e. for α � 1. In this particular example, we have

numerically observed the expected convergence rates (see below) for α ∈ [0,8]. For α > 8, Newton’s

∗∗Both ΓP = /0 (with −
∫

Ω
π dxxx prescribed) or ΓP chosen as one of the square edges were tested as the boundary conditions.
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FIG. 1. Pressure drop problem, p = 1.5.

(a) Velocity v1. (b) Pressure π .

(c) Velocity v2. (d) Viscosity η .

method did not converge any more. One may ask, whether the assumption (3.4) could be relaxed††;
in particular, whether the estimates (5.11) and (5.14) remain valid in the degenerate case ε ↘ 0. Here it
is worth noting that in case of Carreau-type models (i.e., γ0 ≡ 0), the error estimates similar to (5.11) and
(5.14) actually hold true and are numerically validated also for ε = 0 (see (Belenki et al., 2010; Hirn,
2010)). For fluids whose viscosity highly depends on the pressure, though, the behaviour for ε ↘ 0
remains an open question. In what follows, we set α := 1.

For the Q2/Q0 elements, which are stable and of the first-order, the convergence rates for different
values of p ∈ (1,2) are presented in Tables 1(a)–1(c). We realize that the numerical results agree with
the presented theory very well. In particular, the example reflects that the rate of convergence for the
pressure in Lp′(Ω) depends on the choice of p as predicted by the estimate (5.11). Apart from that, we
observed that the experimental order of convergence declines as soon as a < 1 or b <−2. This indicates
that the derived a priori error estimates are optimal with respect to the regularity of the solution. We also
observe that the error E p

vvv behaves like O(h2). This raises hope that a duality argument (see (Brenner &
Scott, 1994)) may be applicable here. In Tables 1(d)–1(i), we present the observed convergence rates
for the element pairs Q1/Q1, Q2/Q1, and Q2/P−1. In this example, they basically coincide with those
obtained for Q2/Q0.

EXAMPLE 2: PRESSURE DROP PROBLEM. In order to confirm the results in a realistic flow configu-
ration, we consider a planar flow between two steady parallel plates, driven by the difference of pressure
between inlet and outlet. Here, Ω = (0,1.64)× (0,0.41) and the homogeneous Dirichlet boundary con-
dition is prescribed on the upper and lower edge, while we set bbb := 0.8nnn on the inflow (left) boundary,

††However, this observation does not allow us to claim that (3.4) could be relaxed. The solution to Example 1 is given a priori
while fff is defined accordingly. In particular, the solution always exists, whatever large α and γ0 is. Moreover, the above estimate
for γ0 takes into account all π ∈R, |DDDvvv| > 0, and may be far from describing the behaviour of viscosity in a neighbourhood of
the given solution.
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Table 2. Pressure drop problem, p = 1.5.
(a) Q2/Q0

#cells E1,p
vvv E p

vvv E2
π

44 0.99 1.95 1.00
45 0.99 1.98 1.01
46 1.02 1.96 1.03
47 1.08 2.02 1.16
48 – – –

expected 1 – 1

(b) Q2/Q1

E1,p
vvv E p

vvv E2
π

2.29 3.44 2.19
2.51 3.78 2.24
2.46 3.69 2.08
2.25 3.26 2.06

– – –

(c) Q2/P−1

E1,p
vvv E p

vvv E2
π

2.16 3.19 1.92
2.19 3.15 1.96
2.14 3.04 1.99

* * *
– – –

(d) Q1/Q1 stabilized

E1,p
vvv E p

vvv E2
π

– – –
1.00 1.97 1.94
1.00 2.00 2.04
1.01 2.01 1.98
1.02 2.06 1.89

*) In this case we were not able to solve the algebraic problem to the accuracy sufficient to improve the discrete solution on finer
meshes. Note that E p

vvv /‖vvv‖p ∼ 10−7 at this level of refinement.

and bbb := 000 on the outflow (right) boundary. Moreover, we additionally require‡‡ there that vvv = (vvv ·nnn)nnn,
i.e., the stream lines are orthogonal to the inflow and outflow boundary (cf. (Heywood et al., 1996)).
Note that if the viscosity did not vary with the pressure, this setting would lead to a unidirectional flow
(Poiseuille flow) of the form vvv = (v1(x2),0) and π = π(x1). Since the viscosity depends on the pressure,
however, this needs not be the case; e.g., there is no such unidirectional solution for the Barus model
η = η0 exp(απ), as was shown in (Hron et al., 2001). Here we consider the model (6.1), provided with
η0 := 0.005, p = 1.5, q := 2

2−p , δ1 := 5 ∗ 10−6, δ2 = δ3 := 1, δ4 := 10−5, and α := 10. The resulting
velocity, pressure and viscosity fields are shown in Figure 1. For moderate and low pressures (in the
middle-length and the right-hand part of the domain) this model approximates the Barus model, while
for higher pressures (in the domain left-hand part) the behaviour is that of Carreau model. In Table 2,
we present the observed convergence rates for the different finite element pairs. Since the exact solution
is unknown, we have used the finite element approximation computed on a grid of 410 cells as the ref-
erence solution. In view of Table 2, we observe good agreement with the derived estimates. While E2

π

behaves as O(h) in the case of Q2/Q0 discretization, the higher order element pairs, including Q1/Q1
discretization, leads to better convergence rates.

Conclusion

We have shown the convergence of the finite element method in the context of fluids with shear rate
and pressure dependent viscosity. The convergence of the method has been quantified by the a priori
error estimates of Corollary 5.1. These error estimates have been demonstrated practically by numerical
experiments. All results of the present paper also cover the case of Carreau-type models. In this case,
the error estimates of Corollary 5.1 coincide with the optimal error estimates for Carreau-type models
which have been established in (Hirn, 2010) and (Belenki et al., 2010).
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ical Modeling in Prague. A. Hirn thanks the Nečas Center—project LC06052 financed by Ministry of
Education, Youth and Sports of the Czech Republic—for the kind hospitality.

REFERENCES

ACERBI, E. & FUSCO, N. (1989) Regularity for minimizers of nonquadratic functionals: the case 1 < p < 2.
Math. Anal. Appl., 140, 115–135.

AMROUCHE, C. & GIRAULT, V. (1994) Decomposition of vector-spaces and application ot the Stokes problem in
arbitrary dimension. Czechoslovak Math. J., 44, 109–140.

BARANGER, J. & NAJIB, K. (1990) Analyse numerique des ecoulements quasi-Newtoniens dont la viscosite obeit
a la loi puissance ou la loi de Carreau. Numer. Math., 58, 35–49.

BARRETT, J. W. & LIU, W. (1994) Quasi-norm error bounds for the finite element approximation of a non-
Newtonian flow. Numer. Math., 68, 437–456.

BARRETT, J. W. & LIU, W. B. (1993) Finite element error analysis of a quasi-Newtonian flow obeying the Carreau
or power law. Numer. Math., 64, 433–453.
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