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Frantǐsek Neuman

Abstract.

In this paper we study the effectiveness of the criterion for equivalence in the category

of linear differential equations.

I. Motivation

Certain procedures, operations, constructions in mathematics are called effective.
E.g. in geometry we say that a construction is effective if it can be accomplished
by using a ruler and a compass finite times. In analysis a procedure is considered as
effective if it requires a finite number of elementary algebraic operations, compositions
of functions and quadratures, i.e. finding primitive functions.

Here we present an examples of an effective operation having an origin in a problem
of equivalence of objects in an Ehresmann groupoid. We study the effectiveness of
the criterion for equivalence in the category of linear differential equations.

II. Category and equivalence

A class is called a category if to each pair of its elements P, Q, objects, a set
Hom(P, Q) of morphisms is assigned such that the following axioms are satisfied:

1. The sets Hom(P, Q) are disjoint for different pairs (P, Q).
2. A composition αβ ∈ Hom(P, T ) is defined for each α ∈ Hom(P, Q) and β ∈

Hom(Q, T ) such that
a) the associativity (αβ)γ = α(βγ) holds for each γ ∈ Hom(T, U),
b) there exists an identity ιP for each object P , ιQ for Q:

ιP α = α, αιQ = α for each α ∈ Hom(P, Q).
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A category is an Ehresmann groupoid if each morphism α has an inverse α−1 ∈
Hom(Q, P ):

αα−1 = ιP , α−1α = ιQ.
Moreover, an Ehresmann groupoid is a Brandt groupoid if Hom(P, Q) is not empty

for any pair (P, Q) of its objects P, Q.
An Ehresmann groupoid is a collection of connected components, Brandt group-

oids, also called classes of equivalent objects. The set Hom(P, P ) is a group, a sta-

tionary group of the object P .
Consider two categories A1 and A2 with their sets of morphisms denoted by Hom1

and Hom2, respectively. A mapping Φ defined on objects and morphisms of A1 is
called a covariant functor of the category A1 into the category A2 if

for each object P1 ∈ A1, Φ(P1) ∈ A2, and
for each morphism α ∈ Hom1(P1, Q1) , Φ(α) ∈ Hom2(Φ(P1), Φ(Q1)), and

Φ(ιP1
) = ιΦ(P1), Φ(αβ) = Φ(α)Φ(β)

whenever αβ is defined. For details see e.g. [3].
Historically one may observe that the following problems were studied when Ehres-

mann groupoids occurred:
Criterion of equivalence: sufficient and necessary conditions whether two given

objects are equivalent or not, i.e. when they are in the same Brandt groupoid.
Canonical forms and their stationary groups in each Brandt groupoid of the Ehres-

mann groupoid under our consideration. This enables us to describe a structure of
all morphisms of our category.

Invariants in each Brandt groupoid are of our interest in connection with a criterion
of equivalence.

III. Category of linear differential equations

Transformations of linear differential equations were considered by many authors.
For the second order equations it was E. E. Kummer [7] in 1834, for higher order
equations e.g. E. Laguerre [8], P. Stäckel [13], and others. linear differential equa-
tions of the form (1). O. Bor̊uvka [1] required global transformations for the second
order equations, i.e. transformations of solutions of the corresponding equations on
their whole intervals of definition. His approach was extended to linear differential
equations of an arbitrary order, see [10]. Summarizing the ideas we give the following
definition of the global transformation .

Consider a linear differential equation

y(n) + pn−1(x)y(n−1) + · · ·+ p0(x)y = 0 on I, (Pn)

I being an open interval of the reals, pi are real continuous functions defined on I for
i = 0, 1, . . . , n − 1, i.e. pi ∈ C0(I), pi : I → R, n ≥ 2. Denote also
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z(n) + qn−1(t)z
(n−1) + · · ·+ q0(t)z = 0 on J, (Qn)

another equation of this type.

Definition. We say that equation (Pn) is globally transformable into equation (Qn)
if there exist two functions,

f ∈ Cn(J), f(t) 6= 0 for each t ∈ J, and

h ∈ Cn(J), h′(t) 6= 0 for each t ∈ J, and h(J) = I,

such that whenever y : I → R is a solution of (Pn) then

z : J → R, z(t) := f(t) · y(h(t)), t ∈ J, (f, h)

is a solution of (Qn). This transformation is global in the sense that solutions are
transformed on their whole intervals of definition: h(J) = I.

Equations (Pn) and their global transformations (f, h) can be viewed as objects
and morphisms, respectively of the category of linear differential equations A.

Now consider linear differential equations (Pn) with vanishing coefficients by the
(n − 1)st derivative

y(n) + pn−2(x)y(n−2) + · · · + p0(x)y = 0 on I. (P 0
n)

Remark 1. The coefficient of pn−1 can always be eliminated if it is sufficiently
smooth, i.e. of the class C(n−1), see e.g. [5, 10, 14].

If f in (f, h) is taken as |h′|
n−1

2 for h′(t) 6= 0, h ∈ Cn+1(J), then the function z

defined by the transformation (f, h) =: τn(h)

z : J → R, z(t) := |h′(t)|
n−1

2 · y(h(t)), t ∈ J, (τn(h))

converts solutions y of equation (P 0
n) into solutions z of a differential equation of the

same form

z(n) + qn−2(t)z
(n−2) + · · ·+ q0(t)z = 0 on J. (Q0

n)

Notation 1. We will write τn(h)(P 0
n) = (Q0

n). In this way we identify equations
(P 0

n) and (Q0
n) with their solution spaces represented also by their n-tuples of linearly

independent solutions.
Remark 2. Equations of the form (P 0

n) as objects and transformations τn(h) as
morphisms form a subcategory A0 of A.
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IV. Criterion of global equivalence

Solutions of the second order linear differential equation in the Jacobi form

y′′ + p0(x)y = 0, x ∈ I, (P 0
2 )

(P 0
2 ) ∈ A0

2, have either only a finite or only an infinite number of zeros on the interval
I. According to O. Bor̊uvka [1], if the equation (P 0

2 ) is nonoscillatory, it is called of
finite type m, m being the maximal number of zeros of all its nontrivial solutions. It
means that the equation (P 0

2 ) has solutions with m zeros but no of its solutions has
m+1 zeros on I. An equation (P 0

2 ) of the finite type m is either of a general character

if it has two linearly independent solutions with m− 1 zeros on I, otherwise it is of a
special character. If the equation (P 0

2 ) is oscillatory, then it is of the type ∞ and its
character is either one-side (right- or left-side) oscillatory or both-side oscillatory.

Bor̊uvka’s criterion for A0
2. Equations (P 0

2 ) and (Q0
2), always considered with their

intervals of definition, are globally equivalent if and only if they are of the same type

and at the same time of the same character.

Remark 3. It can be shown that the same criterion holds also for the second order
linear differential equations in general form (P2) from A2, not only for the Jacobi type
equations (P 0

2 ) from A0
2, see [10].

Remark 4. Bor̊uvka’s criterion is not effective , because we do not have a formula
giving the number of zeros of solutions of equations (P 0

2 ) for general p0. However for
the third and higher order equations we have in general an effective criterion. Before
we formulate it, we need to introduce a special differential equations, called iterative.

Iterative differential equations.

Consider again the second order linear differential equations in the Jacobi form

y′′ + p0(x)y = 0 on I, (P 0
2 )

p0 ∈ Cn−2(I), and global transformations

z(t) = |h′(t)|−1/2.y(h(t)), (τ2(h))

where h(J) = I, h ∈ Cn+1(J), h′(t) 6= 0 on J .
For z we get again the second order equation

z′′ + q0(t)z = 0, on J , q0 ∈ Cn−2(J). (Q0
2)
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Open problem. The above conditions on smoothness of functions are required
because of the following constructions. It would be an interesting question whether
under weaker conditions. we could obtain similar results.

Consider a pointwise mapping Φ of solutions of the second order linear differen-
tial equations into solutions of n-th order linear differential equations satisfying the
following requirements.

For two linearly independent solutions y1(x), y2(x) of equation (P 0
2 ) let Φ map R2r

{(0, 0)} into R
n, Φ(y1(x), y2(x)) being the n-tuple of linearly independent solutions of

an equation (P 0
n). Let this equation (P 0

n) depend only on the equation (P 0
2 ) and not

on a particular choice of its solutions y1, y2. We will also write shortly Φ(P 0
2 ) = (P 0

n).
In fact, mappings under considerations convert complete solution set of one equation
into again complete solution space of another equation. This justifies our notation
that uses the same symbol for mapping solutions and equations.

Moreover, we will require ϕ to be a covariant functor of A0
2 into A0

n:

Φτ2 = τnΦ, (2)

i.e.

P 0
2

Φ
−−−−→ P 0

n

τ2(h)





y

τn(h)





y

Q0
2

Φ
−−−−→ Q0

n

In addition, let Φ keep smoothness, i.e., let it map linear second order differential
equations with real analytic coefficients into n-th order equations again with real
analytic coefficients.

Proposition. Under the above conditions on Φ, Φ is uniquely determined. For y1, y2

two linearly independent solutions of (P 0
2 ) ∈ A

0
2

Φ(P 0
2 )) = (P 0

n), Φ(y1, y2) = (yn−1
1 , yn−2

1 y2, · · · , yn−1
2 ),

this being an n-tuple of linearly independent solutions of equation (P 0
n) ∈ A0

n.

Proof of this statement can be found in was given in [9, 10]. It is based on the
form of the general solution of the functional equation for homogeneous functions,
see e.g. [6]. Such a functional equation is induced by the commutativity condition
(1). �

The explicit form of equation Φ(P 0
2 ) is

y(n) +

(

n + 1

3

)

p0(x)y(n−2) + 2

(

n + 1

4

)

p′0(x)y(n−3)+
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+

(

n + 1

5

)(

3p′0(x) +
5n + 7

3

(

p0(x)
)2
)

y(n−4) + · · · = 0.

Equations Φ(P 0
2 ) have already occurred in the mathematical literature under the

name iterative equations, [2, 4, 11, 12, 14]. What is new it in our presentation is
the categorical approach using covariant functors. And there is more important its
application in deriving an

Effective criterion for the third and higher order equations from A0
n.

Hence, consider equations (P 0
n) and (Q0

n) from A0
n. Write the differential operators

on the left sides of the equations such that:
first we put the operators corresponding the n-th order iterative equations whose

first two terms are identical with the first two terms of given equations (P 0
n) and (Q0

n);
then the rests R and S are operators that start with terms for derivatives of lower

orders than (n − 2)nd:

y(n) + pn−2(x)y(n−2) + pn−3(x)y(n−3) + · · ·+ p0(x)y =

= left side of Φ

(

1
(

n+1
3

)pn−2

)

+ R,

and similarly

z(n) + qn−2(t)z
(n−2) + qn−3(t)z

(n−3) + · · ·+ q0(t)z =

= left side of Φ

(

1
(

n+1
3

)qn−2

)

+ S.

Let R begin with r(x)y(n−k) and S with s(t)z(n−l). If k 6= l, then (P 0
n) and (Q0

n)
are not globally equivalent. If k = l and (P 0

n) is equivalent to (Q0
n), then h in τn(h)

should satisfy

s(t) = r(h(t)).(h′(t))k. (3)

On intervals where r and s do not vanish, (3) gets h by quadratures. Then we must
verify whether this h also transforms the whole (P 0

n) into (Q0
n) by means of the

transformation τn(h). For those intervals where either r or s vanish (but not both),
relation (3) shows that the equations are not equivalent. Or it does not determine h,
because both r and s vanish. In this last case we need to go to a similar relation for
higher k, and so forth. If such a k does not exist, then both R and S are vanishing.
Hence our equations are iterative, and their equivalence or non-equivalence follows
from the equivalence or non-equivalence of the corresponding second order equations,
see again [1] or [10].



EFFICIENCY 7

V. Final conclusion

Preceding considerations and constructions can be summarized in the following

Theorem.

For n−th order linear differential equations, n ≥ 3, there exists an effective

criterion determining in general whether two given equations are globally equivalent

or not. Only for one type of equations it is not possible, namely for iterative equations.

For those equations the equivalence depends on equivalence of the corresponding second

order equations for which Bor̊uvka’s criterion is not effective.
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