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Abstract

In this note we introduce a Yang-Mills bar equation on complex vector
bundles over compact Hermitian manifolds as the Euler-Lagrange equation for
a Yang-Mills bar functional. We show the existence of a non-trivial solution
to this equation over compact Kähler manifolds as well as a short time exis-
tence of the negative Yang-Mills bar gradient flow. We also show a rigidity
of holomorphic connections among a class of Yang-Mills bar connections over
compact Kähler manifolds of positive Ricci curvature.
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1 Introduction

LetM2n be a compact Hermitian manifold of dimension 2n and E be a complex
vector bundle over M2n. The following Koszul-Malgrange criterion [6], see
also ([2], 2.1.53, 2.1.54) establishes the equivalence between the existence of a
holomorphic structure on E and a partial flatness of E.

Koszul-Malgrange criterion. A complex vector bundle E over a com-
plex manifold M2n carries a holomorphic structure, if and only if there is a
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connection A on E such that the (0, 2)-component F 0,2
A of the curvature FA of

A vanishes.

Thus we shall call a connection A satisfying the Koszul-Malgrange criterion
a holomorphic connection. It is well-known (see e.g. [2]) that we can replace
the connection A in the Kozsul-Malgrange criterion by a unitary connection
A for any given choice of a compatible (Hermitian) metric h on E.

We introduce in section 2 (see (2.5.1) and (2.5.2)) a Yang-Mills bar equa-
tion as the Euler-Lagrange equation for the Yang-Mills bar functional which is
the square of the L2-norm of the (0, 2)-component F 0,2

A of a unitary connection
A on (E, h). Solutions of a Yang-Mills bar equation are called Yang-Mills bar
connections. The Yang-Mills bar equation has an advantage over the equation
for a holomorphic connection, because the later one is overdetermined if the
complex dimension of the bundle is greater or equal to 2, and the first one
is elliptic modulo a degeneracy which is formally generated by an action of
the complex gauge group of the complex vector bundle E (the degeneracy is
formal generated since the action of this group on the “small” space does not
preserve the Yang-Mills bar functional, see 2.7.b and Remark 5.13). Thus we
hope that by using this equation we shall be able to find useful sufficient con-
ditions under which a complex vector bundle carries a holomorphic structure.
Appropriate sufficient conditions for the existence of a holomorphic structure
on complex vector bundles over projective algebraic manifolds could be a key
step in solving the Hodge conjecture, if the conjecture is correct. A particular
result in this direction is our Theorem 4.25 which states that an almost holo-
morphic connection over a compact Kähler manifold of positive Ricci curvature
is holomorphic, in particular any Yang-Mills bar connection on a 4-dimensional
compact Kähler manifold of positive Ricci curvature is holomorphic.

In section 2 after introducing the Yang-Mills equation we also discuss the
symmetry of this equation in 2.7. In section 3 we give a proof of the Hodge-
Kähler identities for general unitary connections over Kähler manifolds and
show the existence of non-trivial Yang-Mills bar connections. In section 4 we
derive a Bochner-Weitzenböck type identity on compact Kähler manifolds and
prove Theorem 4.25. In section 5 we introduce the notion of affine integrability
condition, a negative Yang-Mills bar gradient flow and find an affine integra-
bility condition for this flow (Theorem 5.9). Unlike previously known cases for
weakly parabolic equations (Ricci flow, Yang-Mills flow), our affine integrabil-
ity is not derived from an action of a group, which preserves the Lagrangian
on the space where our flow is considered (see 2.7.b and Remark 5.13.i). The
automorphism group of the Yang-Mill bar equation gives us only ”half” of the
integrability condition. In the last section 6 we prove the short time existence,
uniqueness and smoothness of a solution of an evolution equation with affine
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integrability condition, slightly extending a Hamilton’s result.

2 Yang-Mills bar equation

Let (V, 〈, 〉) be a Euclidean space. Denote by VC its complexification. Then 〈, 〉
extends uniquely to a complex bilinear form 〈, 〉C : VC × VC → C. Denote by
(v, w) := 〈v, w̄〉C the associated Hermitian form on VC and by 〈v, w〉 = Re(v, w)
the Euclidean metric on the space (VC)⊗R. We note that the restriction of this
metric to V coincides with the original metric 〈, 〉. Conversely any Hermitian
metric (J-invariant Euclidean metric) on a complex space (V, J) considered as
a complexification of a real vector space V0 is obtained in this way.

In this note we shall define by the same (, ) (and resp. 〈, 〉) the Hermitian
form (resp. the Euclidean metric) extended in the above way from any vector
bundle (E, 〈, 〉) provided with a fiber-wise Euclidean metric 〈, 〉 to its complex-
ification VC (resp. considered as a real space). If A is a connection on (E, 〈, 〉)
then A can be extended to a unitary connection also denoted by A on the com-
plexification VC with that extended metric by setting dA(

√
−1φ) :=

√
−1dA(φ).

Now let A be a connection on a complex vector bundle (E, J) over a Her-
mitian manifold M2n. Denote by Ωp,q(E) the space of E-valued (p, q)-forms
on M2n: Ωp,q(E) = Ωp,q(M)⊗C E. We have the decomposition

dA = ∂A ⊕ ∂̄A : Ω(E) → Ω1,0(E)⊕ Ω0,1(E).

In general we have the inclusion

dA(Ωp,q(E)) ⊂ Ωp+1,q(E)⊕ Ωp,q+1(E),

since for g ∈ Ω0(E) and φ ∈ Ωp,q(M2n) we have

dA(g ⊗ φ) = dA(g)⊗ φ+ g ⊗ dφ ∈ Ωp+1,q(E)⊕ Ωp,q+1(E).

(The operator dA is well defined on Ωp,q(E), since dA(Jg) = JdA(g).) For φ ∈
Ωp,q(E) we shall denote by ∂A(φ) the projection of dA(φ) on the first factor and
by ∂̄A(φ) the projection on the second factor w.r.t the above decomposition.

We note that the curvature FA ∈ Ω2(EndJE) of A can be consider as an
element in Ω2

C(EndJ(E)).
Let (E, h) be a Hermitian vector bundle, i.e. a complex vector bun-

dle (E, J) provided with a Hermitian metric h but E need not to be holo-
morphic. There is a natural (Killing) metric on the space uE , defined by
〈A,B〉 = −ReTr(AB). We can also write EndJE = uE ⊕

√
−1uE . Thus

the metric h extends to a positive definite bilinear form on EndJE (defined
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by 〈A,B〉 = ReTr(AB∗)). Here B∗ is the conjugate transpose of B, the
adjoint of B w.r.t the unitary metric h. We note that this metric is invari-
ant under the original complex structure on EndJ(E) induced by J which
we denoted above by multiplication with

√
−1. Hence by the remark at

the beginning of the section, this metric extends to a metric on the space
Ωk

C(EndJE) by combining with the Hermitian metric on M2n. The decom-
position Ωk

C(EndJE) =
∑

p+q=k Ωp,q(EndJE) is an orthogonal decomposition
w.r.t this metric.

If A is a unitary connection on (E, h), then FA ∈ Ω2(uE) ⊂ Ω2(EndJE).
We also note that in the decomposition for the curvature of unitary connection
A:

FA = (FA)2,0 + (FA)1,1 + (FA)0,2

we have (FA)0,2 = −((FA)2,0)∗. The Kozsul-Malgrange criterion suggests us
to consider the following Yang-Mills bar functional on the space of all unitary
connections A on (E, h) over M2n

YMb(A) = (1/2)
∫

M2n

||(FA)0,2||.

It is easy to see that the functional YMb is invariant under the gauge
transformation of the Hermitian vector bundle (E, h). We shall derive the
first variation formula for the Yang-Mills bar equation. First we shall extend
the usual Hodge operator ∗ : Ωp(M2n) → Ω2n−p(M2n) to ∗̄ : Ωp(EndJE) →
Ω2n−p(EndJE) defined as follows . First we extend ∗ to Ωp

C(M2n) so that for
all α ∈ Ωp

C(M2n) and β ∈ Ωp
C(M2n) we have (see [5], chapter III, §2, or [3],

chapter I, §2)

(2.1) 〈α(x), β(x)〉 = 〈volxM2n, α(x) ∧ (∗̄β(x))〉.

Then we extend ∗̄ : Ωp(EndJE) → Ω2n−p(EndJE) so that for each α ∈
Ωp

C(EndJE) and β ∈ Ωp
C(EndJE) we have

(2.2) 〈α(x), β(x)〉 = 〈volxM2n, α(x) ∧(,) (∗̄β(x))〉.

Here ∧(,) means that we compose the wedge product with the contraction
of the coefficients in EndJE of α =

∑
ui

A ⊗ θi
A and ∗̄β = ∗̄(

∑
uj

B ⊗ θj
B)

via the natural Hermitian form (, ) on EndJE. Now we define the operator
∂̄∗A : Ωp,q(EndJE) → Ωp,q−1(EndJE) as follows (see also [5], chapter III,
(2.19), or [3], chapter 1, §2, for the case E is absent)

(2.3) (∂̄∗A)βp,q := (−1)∗̄∂̄A∗̄βp,q.

4



Using the following identity for the formal adjoint d∗A of dA on an even dimen-
sional manifold M2n (see e.g. [B-L1982, (2.27)] for the real case, the complex
case can be proved by the same way by using the Stocks formula locally):

(d∗A)β = (−1)∗̄dA∗̄β

and taking into account (2.3) which implies that ∂̄∗A is the component with
correct bi-degree of d∗A, we conclude that ∂̄∗A is the formal adjoint of ∂̄A. Now
using the formula (FA+ta)0,2 = (FA)0,2 + t∂̄Aa

0,1 + t2a0,1 ∧ a0,1 and taking into
account (2.2) we get immediately

2.4. Lemma. Let M2n be a compact Hermitian manifold with (possibly
empty) boundary. The first variation of the Yang-Mills bar functional is given
by the formula

d

dt |t=0
YMb(A+ ta) =

∫
M2n

〈(∂̄A)∗F 0,2
A , a〉+

∫
∂M2n

〈volx, a ∧(,) ∗̄F 0,2
A 〉.

We shall call a smooth unitary connection A a Yang-Mills bar connection,
if it satisfies the following two conditions

(2.5.1) (∂̄A)∗F 0,2
A = 0,

(2.5.2) (∗̄F 0,2
A )|∂M2n = 0.

Let 4∂̄
A := ∂̄A(∂̄A)∗ + (∂̄A)∗∂̄A. Using the Bianchi identity ∂̄AF

0,2
A = 0

(which follows from the usual Bianchi identity) and using the equality 〈volx, a∧(,)

∗̄b〉 = 〈volx, b ∧(,) ∗̄a〉 we conclude that we can replace (2.5.1) in the system of
two equations (2.5.1) and (2.5.2) by the following condition

(2.6.1) 4∂̄
A(FA)0,2 = 0,

to get an equivalent system of equations.

2.7. Symmetries of the Yang-Mills bar equation. a) We can vary
the Yang-Mills bar functional among all compatible Hermitian metrics h′ on
(E, J) in order to get an invariant of the complex vector bundle E. Let At be
a family of unitary connections w.r.t. a compatible metric ht. We note that we
can write ht = gt(h), where gt is a (complex) gauge transformation of (E, J).
Clearly (gt)−1At is a unitary connection w.r.t. h ( i.e. d(gt)−1At

h = 0). Now
we have F 0,2

At
= AdgtF

0,2
(gt)−1At

. Moreover

(2.7.1) ||F 0,2
At
||ht = ||Ad−1

gt
F 0,2

At
||h = ||F 0,2

(gt)−1(At)
||h.
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(We can get (2.7.1) easily by noticing that our inner products on EndJE
induced by h and g(h) satisfy the following relation

〈A,B〉g(h) =
∑

i

〈A(g(ei)), B(g(ei))〉g(h) =
∑

i

〈Adg−1A(ei), Adg−1B(ei)〉h

where ei is an orthonormal basis in E w.r.t. h.)
Hence the infimum of the Yang-Mills bar functional is a constant which

does not depend on the unitary metric h.
b) The linearization of the Yang-Mills bar equation is not elliptic, because

the equation is invariant under the gauge group G(E, h) of (E, h) (see (2.7.1).
The complexification of this group is the gauge group G(E). This complexified
group acts also on the space of all unitary connections w.r.t. a fixed compatible
metric h [D-K1990, (6.1.4)]. For g ∈ G(E) and a unitary connection A we
denote by ĝ the new (non-canonical) action of g defined as follows

∂̄ĝ(A) = g∂̄Ag
−1 = ∂̄A − (∂̄Ag)g−1,

∂ĝ(A) = ∂A + [(∂̄Ag)g−1]∗.

Then ĝ(A) is a unitary connection. Thought this action of Ĝ(E) does not
preserve the Yang-Mills bar functional, infinitesimally it fails to do it at a
connection A only by a quadratic term in F 0,2

A (see (5.3)).

In the rest of this note we shall consider only compact Kähler mani-
folds without boundary. Clearly any unitary holomorphic connection is a
Yang Mills bar connection. We shall call a unitary connection A almost
holomorphic, if ∂AF

0,2
A = 0. It follows from the Kähler identity (3.1) that

an almost holomorphic connection is a Yang-Mills bar connection. Since
∂g(A)F

0,2
g(A) = Adg∂AF

0,2
A , the notion of almost holomorphic connections is also

invariant under the (canonical) gauge transformations of the complex vector
bundle E. So we shall say that a complex vector bundle is almost holomorphic
if it admits an almost holomorphic connection.

We shall see in the next section that there are almost holomorphic connec-
tions on a complex vector bundle which carries no holomorphic structure.

3 Yang-Mills bar connections over com-

pact Kähler manifolds

Suppose that A is a unitary connection on a Hermitian vector bundle E over
a Kähler manifold M2n with a Kähler form ω. As before denote by ∂̄∗A the
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formal adjoint of ∂̄A : Ωp,q(E) → Ωp,q+1(E) defined by (2.3), and by ∂∗A the
formal adjoint of ∂A : Ωp,q(E) → Ωp+1,q(E) defined in the same way.

Denote by Λ : Ωp,q(E) → Ωp−1,q−1(E) the adjoint of the wedge multiplica-
tion by ω, an algebraic operator. The following Hodge-Kähler identities

(3.1) ∂̄∗A =
√
−1[∂A,Λ],

(3.2) ∂∗A = −
√
−1[∂̄A,Λ],

are well-known for the case of a holomorphic bundle E and A being the metric
connection compatible with the holomorphic structure ([5], chapter III, (2.39)),
or ([3], chapter 0, §7, chapter 1, §2), where they are called the Hodge identities.
These identities have been called Kähler identities in ([2], §6.1). For the sake
of completeness we shall give a proof of the general case here.

Note that it suffices to prove these identities locally (i.e. its suffices to
consider their actions on forms with small support), so we can assume that
the bundle is U(n)-trivial and ∂A = ∂ + A1,0, where A1,0 =

∑n
i=1Aidzi, Ai ∈

EndJ(E). Similarly ∂̄A = ∂̄ +A0,1 with A1,0 =
∑n

i=1−(Ai)∗dz̄i.
Here we define ∂̄ and ∂ to be the (1, 0) and (0, 1) components of the unique

unitary connection which is compatible with the trivial holomorphic structure.
Assuming the validity of the Hodge-Kähler identity for A = 0, we reduce the
Hodge-Kähler identities (3.1) and (3.2) to following equations

(3.3) [A0,1]∗ =
√
−1[A1,0,Λ],

(3.4) [A1,0]∗ = −
√
−1[A0,1,Λ].

In view of the Hermitian linearity of LHS of (3.3) and (3.4):

(λA+ γB)∗ = λ̄A∗ + γ̄B∗

for λ, γ ∈ C, and taking into account the unitary of A which implies A1,0 =
−(A0,1)∗, it suffices to prove these identities for a C-basic {A1,0 = eijdzk, | 1 ≤
i, j ≤ dimCE, 1 ≤ k ≤ dimCM

2n = n} of (0, 1)-forms in Ω0,1(EndJE). Here
eij is an elementary matrix in EndJ(E). We also assume that the Kähler
metric at a given point x is

∑
i dzidz̄i. Denote by ik and īk the adjoint of the

multiplication operators dzk∧ and dz̄k∧ correspondingly. Then we have

[A1,0]∗ = (ejiik), [A0,1]∗ = −(eij īk)

Λ = −
√
−1
2

n∑
k=1

īkik.
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Substituting these identities in LHS of (3.3) and (3.4) we conclude that (3.3)
and (3.4) are equivalent to the following identities for all i, j, k

(3.5) −(eij īk) =
√
−1[eijdzk,−

√
−1
2

n∑
k=1

īkik],

(3.6) (ejiik) = −
√
−1[−ejidz̄k,−

√
−1
2

n∑
k=1

īkik],

In their turn (3.5) and (3.6) are immediate consequences of the following iden-
tities

(3.7) −īk =
1
2
[dzk∧,

n∑
k=1

īkik].

(3.8) −ik =
1
2
[dz̄k∧,

n∑
k=1

īkik],

To prove (3.7) (and (3.8) resp.) we shall compare the action of LHS of (3.7)
(and of (3.8) resp.) and the action of RHS of (3.7) (and of (3.8) resp) on
φ = dzJ ∧ dz̄K . We use the following formulas proved in p.112-113 of [3]

(3.9) ik(dzJ ∧ dz̄K) = 0, if k 6∈ J,

(3.10) ik(dzk ∧ dzJ ∧ dz̄K) = 2dzJ ∧ dz̄K ,

(3.11) īk(dzJ ∧ dz̄K) = 0, if k 6∈ K,

(3.12) īk(dz̄k ∧ dzJ ∧ dz̄K) = 2dzJ ∧ dz̄K .

Withe help of (3.9) -(3.12) we compute the action of RHS of (3.7) on dzJ∧dz̄K .
For a multi-index J = (j0, · · · , jl, · · · jp) we shall use the following abbrevia-
tions

(−1)#(J) := p+ 1, (−1)(jl)JdzJ\{jl} := (−1)ldzj0 ∧ · · ·d̂zjl
· · · ∧ dzjp .

Now we have

1
2
[dzk ∧

∑
l

īlil(dzJ ∧ dz̄K)−
∑

l

īlil(dzk ∧ dzJ ∧ dz̄K)] =

8



if k 6∈ K̄,

= 2dzk ∧
∑

l∈J∩K

(−1)#(J)(−1)lJdzJ\{l} ∧ (−1)lKdz̄K\{l}

(3.13) −2
∑

l∈J∩K

(−1)#(J)+1)(−1)lJ+1dzk ∧ dzJ\{l} ∧ (−1)lKdz̄K\{l} = 0;

and if k ∈ K̄,

(3.14) = −2(−1)#(J)(−1)kKdzJ ∧ dz̄K\{k}.

Comparing (3.13) and (3.14) with (3.11) and (3.12) we get (3.7) immediately.
It is easy to see that (3.8) can be obtained from (3.7) by changing the complex
orientation. 2

Set 4∂
A := ∂A∂

∗
A + ∂∗A∂A.

3.15. Corollaries. For φ, ψ ∈ Ω0,p(E) we have the following simple
expressions

(3.15.1) ∂̄∗Aφ = −
√
−1Λ∂A(φ),

(3.15.2)∫
M2n

〈
√
−1ΛF 1,1

A φ, ψ〉 =
∫

M2n

−〈∂̄∗Aφ, ∂̄∗Aψ〉+ 〈∂Aφ, ∂Aψ〉 − 〈∂̄Aφ, ∂̄Aψ〉.

More generally, for all φ ∈ Ωp,q(EndJE) we have

(3.15.3) (4∂
A −4∂̄

A)φ = −
√
−1[F 1,1

A ∧,Λ]φ

(3.15.4) 4∂̄
Aφ =

1
2
(4d

A +
√
−1[−F 0,2

A + F 2,0
A + F 1,1

A ,Λ])φ

Proof. 1) The first statement follows immediately from the Hodge-Kähler
identity (3.1).

2) Substituting F 1,1
A = ∂̄A∂A + ∂A∂̄A we get∫

M2n

〈
√
−1ΛF 1,1

A φ, ψ〉 =
∫

M2n

〈
√
−1Λ(∂̄A∂A + ∂A∂̄A)φ, ψ〉.
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Now applying the Hodge-Kähler identities to this equation we get∫
M2n

〈
√
−1ΛF 1,1

A φ, ψ〉 =
∫

M2n

〈
√
−1(∂̄AΛ∂A−

√
−1∂∗A∂A)φ, ψ〉−

∫
M2n

〈∂̄∗A∂̄Aφ, ψ〉

(3.16) =
∫

M2n

〈
√
−1Λ∂Aφ, ∂̄

∗
Aψ〉+

∫
M2n

〈∂Aφ, ∂Aψ〉 −
∫

M2n

〈∂̄Aφ, ∂̄Aψ〉.

Using (3.15.1) we get Corollary 3.15.2 immediately from (3.16).

3) Using the Hodge-Kähler identities (3.1) and (3.2) we get

−
√
−14∂

A = ∂A(Λ∂̄A − ∂̄AΛ) + (Λ∂̄A − ∂̄AΛ)∂A

(3.17) = ∂AΛ∂̄A − ∂A∂̄AΛ + Λ∂̄A∂A − ∂̄AΛ∂A

In the same way we have
√
−14∂̄

A = ∂̄A(Λ∂A − ∂AΛ) + (Λ∂A − ∂AΛ)∂̄A

(3.18) = ∂̄AΛ∂A − ∂̄A∂AΛ + Λ∂A∂̄A − ∂AΛ∂̄A.

Using the identities
−(∂A∂̄A + ∂̄A∂A) = −F 1,1

A ∧

we get from (3.17) and (3.18)

−
√
−1(4∂

A −4∂̄
A) = −[F 1,1

A ∧,Λ].

which yields (3.15.3) immediately.

4) We have

4d
A = (∂A + ∂̄A)(∂∗A + ∂̄∗A) + (∂∗A + ∂̄∗A)(∂A + ∂̄A)

(3.19) = 4∂
A +4∂̄

A + (∂A∂̄
∗
A + ∂̄A∂

∗
A + ∂∗A∂̄A + ∂̄∗A∂A)

Using the Hodge-Kähler identity (3.1) and replacing ∂A∂A by F 2,0
A ∧ we get

(3.20)
(∂A∂̄

∗
A+∂̄∗A∂A) = −

√
−1∂A(Λ∂A−∂AΛ)−

√
−1(Λ∂A−∂AΛ)∂A =

√
−1[F 2,0

A ∧,Λ].

Similarly
(3.21)
(∂̄A∂

∗
A+∂∗A∂̄A) = −

√
−1∂̄A(∂̄AΛ−Λ∂̄A)−

√
−1(∂̄AΛ−Λ∂̄A)∂̄A = −

√
−1[F 0,2

A ∧,Λ].
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Using corollary 3.15.3 we get from (3.19), (3.20), (3.21)

4d
A = 24∂̄

A −
√
−1[F 1,1

A ∧,Λ] +
√
−1[F 0,2

A ∧,Λ]−
√
−1[F 0,2

A ∧,Λ]

which yields (3.15.4) immediately.
2

3.22. Remark. Clearly (3.15.2) follows directly from (3.15.3).
Using Corollary 3.15.1 we observe that a connection A over a compact

Kähler manifold is Yang-Mills bar, iff Λ∂AF
0,2
A = 0. We shall call a connection

A almost holomorphic, if ∂AF
0,2
A = 0. Using the Bianchi identity ∂̄AF

0,2
A = 0

we get that ∂AF
0,2 = 0, iff dAF

0,2
A = 0. Since F 2,0

A = −(F 0,2
A )∗ we observe that

dAF
0,2
A = 0, iff dAF

2,0 = 0. Using the Bianchi identity dAFA = 0 we observe
that A is almost holomorphic, iff dF 1,1

A = 0. If F 1,1
A = 0 we shall call A almost

flat holomorphic connection.
If dimension of M equals 4 it is easy to check that

Λ∂AF
0,2
A = 0 ⇐⇒ ∂AF

0,2
A = 0.

Thus any Yang-Mills bar connection over M4 is an almost holomorphic con-
nection.

3.23. Existence of almost holomorphic connections. Let T 4 be a
2-dimensional complex torus with coordinates z1 = x1 +

√
−1y1, z2 = x2 +√

−1y2. Let L be a complex line bundle whose Chern class is represented by
the cohomology class c1 of dz1∧dz2 +dz̄1∧dz̄2. Let A be a unitary connection
of L. Then FA =

√
−1(dz1∧dz2+dz̄1∧dz̄2)+

√
−1dα, where α ∈ Ω1(T 4). The

new connection A′ = A−α has the curvature
√
−1(dz1∧dz2+dz̄1∧dz̄2) whose

component F 1,1
A′ vanishes. Thus A′ is an almost flat holomorphic connection.

We observe that by the Hodge theorem L carries no holomorphic structure.

To get an almost holomorphic connection in vector bundles of higher di-
mension we can take the sum of line bundles or a tensor product of a complex
line bundle with a holomorphic vector bundles.

In the next section we shall show that if M2n is a Kähler manifold of
positive Ricci curvature, then any almost holomorphic connection is a holo-
morphic connection (Theorem 4.25), in particular any almost flat holomorphic
connection is a flat connection.

In general the Hodge theory implies that on any Hermitian complex line
bundle over a Kähler manifold there is a Yang-Mills bar connection which
realizes the infimum of the Yang-Mills bar functional.
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4 Yang-Mills bar equation over compact Kähler

manifolds of positive Ricci curvature

Suppose that A is a unitary connection on a Hermitian vector bundle E over
a Kähler manifold M2n. Let D be the Levi-Civita connection on T ∗M2n:

D : Ω1(M2n) → Ω1(M2n)⊗ T ∗M2n.

The connection D extends C-linearly to a connection also denoted by D :
Ω1

C(M2n) → Ω1
C(M2n) ⊗C T ∗

CM
2n =R Ω1

C(M2n) ⊗R T ∗M2n. Since M2n is
Kähler we have Dv(φ±

√
−1Jφ) = Dv(φ)±

√
−1JDv(φ) for all v ∈ T ∗

CM
2n and

for all φ ∈ Ω0,1(M2n). It follows that D(Ω0,1(M2n)) ⊂ Ω0,1(M2n)⊗C T
∗
CM

2n,
and iterating we have D(Ω0,p(M2n)) ⊂ Ω0,p(M2n) ⊗C T

∗
CM

2n for all p. Now
we denote by D̄ the projection π0,1 ◦D : Ω0,p(M2n) → Ω0,p(M2n)⊗C T

0,1M2n.
Clearly for all φ ∈ Ω0,p(M) the following formula holds

(4.1) Dv0,1(φ) = D̄v0,1(φ),

where v0,1 denotes the (0, 1)-component of v: v0,1 = (1/2)(v +
√
−1Jv).

Combining D̄ with ∂̄A : Ω(E) → Ω0,1(E) we define the following partial
connection

∇̄A : Ω0,p(E) → Γ(E ⊗C Λ0,pT ∗
CM

2n ⊗C T
0,1M2n).

In view of (4.1) we have

∇̄A = π0,1 ◦ ∇A|Ω0,p(E),

where ∇A is the tensor product of dA and D which preserves the natural
induced metric on the bundle E ⊗C ΛpT ∗

CM
2n :

∇A : Ωp
C(E) → Γ(E ⊗C ΛpT ∗

CM
2n ⊗C T

∗
CM

2n).

In view of (4.1) we also have ∇A(Ω0,p(E)) ⊂ Ω0,p(E)⊗C T
∗
CM

2n.
We shall use the following notation. For any element φ ∈ Ωp(E) the ex-

pression φv1,··· ,vp denotes the value of φ at (v1, · · · , vp) ∈ Λp(T∗M2n).
Now we define a basic zero order operatorRA : Ω1

C(EndJE) → Ω1
C(EndJE)

by setting

(4.2.0) RA(φ)X =
2n∑

j=1

[(FA)ej ,X , φej ] ∈ EndJE,

12



where (e1, · · · , en+k = Jek, · · · , e2n) is a unitary basis of the tangent space
TxM

2n at the point x in question. We also consider (as before) FA as an
element in Ω2

C(EndJ(E)).
Recall that the Ricci transformation Ric : (TxM

2n)C → (TxM
2n)C is de-

fined by

Ric(X) =
2n∑

j=1

RX,ejej

where R denotes the curvature tensor of the Levi-Civita connection on the
tangent space TM2n whose action extends C-linearly on TCM

2n. We modify
this transformation as follows

Ric−(X) =
2n∑

j=1

RX,eje
0,1
j .

Since J ◦R = R ◦ J we have Ric−(X) = π0,1 ◦Ric(X). Here π0,1 denotes the
projection on the (0, 1)-component.

Now we define a C-linear transformationRic : Ω0,1(EndJE) → Ω0,1(EndJE)
as follows. For any (0, 1)-vector X let

(φ ◦Ric)X := φRic(X), (φ ◦Ric−)X := φRic−(X).

If φ ∈ Ω0,1(E), then we have φ ◦Ric− = φ ◦Ric.

4.2. Lemma. Suppose that (E, h) is a Hermitian vector bundle provided
with a unitary connection A. We have the following simple formulas for any
φ ∈ Ω0,p(E) and (0, 1)-vectors Xi

(4.3) (∂̄Aφ)X0,··· ,Xp =
p∑

k=0

(−1)k((∇A)Xk
φ)X0,··· ,X̂k,···Xp

,

(4.4) (∂̄∗Aφ)X1,··· ,Xp−1 = −
2n∑

j=1

((∇A)
e1,0
j
φ)

e0,1
j ,X1,··· ,Xp−1

,

where (e1, · · · , en+k = Jek, · · · , e2n) is an unitary frame at a given point, and
e1,0
j = 1

2(ej −
√
−1Jej) is the (1, 0)-component of ej.

Proof. First we extend a well-known formula in real case (see e.g. [B-L1981,
(2.12), (2.13)]) to complex forms φ ∈ Ωk

C(E) and Xi ∈ T ∗
CM

2n.

(4.5) (dAφ)X0,··· ,Xp =
p∑

k=0

(−1)k((∇A)Xkφ))X0,··· ,X̂k,···Xp
,
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Formula (4.5) holds, since it holds for all real forms φ ∈ Ωk(E) ⊂ Ωk
C(E)

and for all Xi ∈ T∗M2n, and because both LHS and RHS of (4.5) are C-linear
w.r.t. to variables φ and Xk.

Next we observe that, by definition the LHS of (4.3) equals the LHS of
(4.5) and clearly the RHS of (4.3) equals the RHS of (4.5). Hence we get (4.3).

In the same way, for φ ∈ Ω0,p(E) and for a (1, 0)-vector X0 and (0, 1)-
vectors Xi, 1 ≤ i ≤ p, using (4.5), we have

(4.6) (∂Aφ)X0,X1··· ,Xp =
p∑

k=0

(−1)k((∇A)Xk
φ)X0,··· ,X̂k,···Xp

,

since LHS of (4.6) coincides with the value (dAφ)X0,X1··· ,Xp . Since φ ∈ Ω0,p(E)
we get

(4.7)
p∑

k=0

(−1)k((∇A)Xk
φ)X0,··· ,X̂k,··· ,Xp

= ((∇A)X0φ)(X1, · · · , Xp).

Thus we get

(4.8) (∂Aφ) =
n∑

i=1

dzi ∧ (∇A)
e1,0
i
φ.

Now using the Kähler identity ∂̄∗A = −
√
−1Λ∂A we get from (4.8)

(∂̄∗Aφ)X1,··· ,Xp−1 =
−1
2

n∑
k=1

n∑
j=1

[̄ikikdzj ∧ ((∇A)
e1,0
j
φ)]X1,··· ,Xp−1

(4.9) = −
n∑

j=1

[̄ij((∇A)
e1,0
j
φ)]X1,··· ,Xp .

Clearly the last term of (4.9) equals the RHS of (4.4). 2

The following Proposition is a complex analogue of Theorem 3.2 in [1].

4.10. Proposition. We have for φ ∈ Ω0,1(EndJE)

(4.10.1) 4∂̄
Aφ = ∇̄∗

A∇̄A(φ) + φ ◦Ric+RA(φ).

Proof. Let X ∈ T 0,1
x (M2n). We extend X locally on M2n so that DX(x) =

0. We also extend the unitary frame {e1, · · · , en+k := Jek, · · · , e2n} locally so
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that Dei(x) = 0. Now using (4.3) and (4.4), and since (Jej)0,1 = −
√
−1e0,1

j

and (Jej)1,0 =
√
−1e1,0

j , we get at the point x

(∂̄A∂̄
∗
Aφ)X = (∇A)X{∂̄∗Aφ} = −(∇A)X{

2n∑
j=1

[(∇A)ejφ]
e0,1
j
}

(4.11) = −
2n∑

j=1

[(∇A)X(∇A)ejφ]
e0,1
j
.

(∂̄∗A∂̄Aφ)X = −
2n∑

j=1

{(∇A)ej (∂̄Aφ)}
e0,1
j ,X

= −
2n∑

j=1

(∇A)ej{[(∇A)
e0,1
j
φ]X − [(∇A)Xφ]

e0,1
j
}

(4.12) = −
2n∑

j=1

{[(∇A)ej (∇A)
e0,1
j
φ]X − [(∇A)ej (∇A)Xφ]

e0,1
j
}.

Summing (4.11) and (4.12) we get

(4.13) (4∂̄
Aφ)X = −

2n∑
j=1

{[(∇A)ej (∇A)
e0,1
j
φ]X +

2n∑
j=1

(RA
ej ,Xφ)

e0,1
j
}.

Here we denote byRA the curvature of the tensor product connection on the
bundle T ∗

CM
2n ⊗C EndJE = (T ∗M2n ⊗R EndJE)C. This curvature coincides

with the one on T ∗M2n ⊗R EndJE, if we consider Ω2(T ∗M ⊗R EndJE) as a
subspace in Ω2

C(T ∗
CM

2n⊗CEndJE). Now we observe that for ψ ∈ Ω0,1(EndJE)
we get

〈−
2n∑

j=1

[(∇A)ej (∇A)
e0,1
j
φ], ψ〉 =

(4.14) −
2n∑

j=1

[(∇A)ej 〈(∇A)
e0,1
j
φ, ψ〉 − 〈(∇A)

e0,1
j
φ, (∇A)ejψ〉].

Denote by θ the real valued 1-form on M

θ(X) := 〈(∇A)X0,1φ, ψ〉.
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Then

(4.15) −
2n∑

j=1

(∇A)ej 〈(∇A)
e0,1
j
φ, ψ〉(x) = (−d∗θ)(x),

and

〈(∇A)
e0,1
j
φ, (∇A)ejψ〉 = 〈∇̄Aφ, ∇̄Aψ〉+

2n∑
i=1

〈(∇A)
e0,1
j
φ, (∇A)

e1,0
j
ψ〉.

Since (Jej)0,1 = −
√
−1e0,1

j and (Jej)1,0 =
√
−1e1,0

j , we get

〈(∇A)
e0,1
i
φ, (∇A)

e1,0
j
ψ〉+ 〈(∇A)(Jei)0,1φ, (∇A)(Jej)1,0ψ〉 = 0

=⇒
2n∑
i=1

〈(∇A)
e0,1
j
φ, (∇A)

e1,0
j
ψ〉 = 0

(4.16) =⇒ 〈(∇A)
e0,1
j
φ, (∇A)ejψ〉 = 〈∇̄Aφ, ∇̄Aψ〉.

From (4.14), (4.15), (4.16) we get

(4.17)
∫

M2n

−〈(∇A)ej (∇A)
e0,1
j
φ, ψ〉 =

∫
M2n

−d∗θ +
∫

M2n

〈∇̄Aφ, ∇̄Aψ〉.

Next we have

(4.18) (RA
ej ,Xφ)

e0,1
j

= (FA)ej ,Xφe0,1
j
− φ(Rej ,Xe

0,1
j ).

Clearly Proposition 4.10 follows from (4.13), (4.17) and (4.18).
2

Denote byRA the following linear operator : Ω0,2(EndJE) → Ω0,2(EndJE)
such that for all (0, 1)-vectors X,Y we have

(4.19.0) (RA(φ))X,Y =
2n∑

j=1

{[(FA)ej ,X , φej ,Y ]− [(FA)ej ,Y , φej ,X ]}.

We also associate to each φ ∈ Ω0,2(EndJE) a new (0, 2)-form φ◦(Ric∧I) ∈
Ω0,2(EndJE)

(φ ◦ (Ric ∧ I))X,Y := φ(Ric(X), Y )− φ(Ric(Y ), X),
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4.19. Proposition. We have for φ ∈ Ω0,2(EndJE)

(4.19.1) 4∂̄
Aφ = ∇̄∗

A∇̄Aφ+ φ ◦ (Ric ∧ I) +RA(φ).

Proof. (Cf. Theorem 3.10 in [1].) We use the notations X,Y, e1, · · · , en as
in the proof of Proposition 4.10. Then at the point x and for (0, 1)-vectors X
and Y we have

(∂̄A∂̄
∗
Aφ)X,Y = ((∂̄A)X ∂̄

∗
Aφ))Y − ((∂̄A)Y ∂̄

∗
Aφ)X

= −(∇A)X{
2n∑

j=1

((∇A)ejφ)
e0,1
j ,Y

}+ (∇A)Y {
2n∑

j=1

((∇A)ejφ)
e0,1
j ,X

}

(4.20) = −
2n∑

j=1

{[(∇A)X(∇A)ejφ]
e0,1
j ,Y

− [(∇A)Y (∇A)ejφ]
e0,1
j ,X

}.

We also have

(∂̄∗A∂̄Aφ)X,Y = −
2n∑

j=1

((∇A)ej ∂̄Aφ)
e0,1
j ,X,Y

= −
2n∑

j=1

(∇A)ej{((∇A)
e0,1
j
φ)X,Y + ((∇A)Y φ)

e0,1
j ,X

+ ((∇A)Xφ)
Y,e0,1

j
}

(4.21)

= −
2n∑

j=1

{[(∇A)ej (∇A)
e0,1
j
φ]X,Y +[(∇A)ej (∇A)Y φ]

e0,1
j ,X

−[(∇A)ej (∇A)Xφ]
e0,1
j ,Y

}.

Summing (4.20) and (4.21) we get
(4.22)

(4∂̄
Aφ)X,Y = −

2n∑
j=1

[(∇A)ej (∇A)
e0,1
j
φ]X,Y +

2n∑
j=1

{[RA
ej ,Xφ]

e0,1
j ,Y

− [RA
ej ,Y φ]

e0,1
j ,X

]}.

As in the proof of Proposition 4.10 (see (4.14)) we have for ψ ∈ Ω0,2(EndJE)

(4.23)
∫

M2n

〈−
2n∑

j=1

(∇A)ej (∇A)
e0,1
j
φ, ψ〉 =

∫
M2n

〈∇̄Aφ, ∇̄Aψ〉.

We use the following identity

(RA
X,Y φ)Z,W = [(FA)X,Y , φZ,W ]− φ(RX,Y Z,W )− φ(Z,RX,YW )
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and combining with (4.23) to rewrite (4.22) as follows

(4∂̄
Aφ)X,Y = (∇̄∗

A∇̄Aφ)X,Y +RA(φ)X,Y + φ(Ric−(X), Y )

(4.24) −
2n∑

j=1

φ
e0,1
j ,Rej ,XY

− φ(Ric−(Y ), X) +
2n∑

j=1

φ
e0,1
j ,Rej ,Y X

.

Using the Bianchi identity

−Rej ,XY −RY,ejX = RX,Y ej

and taking into account that the following quantity vanishes for all φ ∈
Ω0,2(EndJE) and for all X,Y ∈ T 0,1M2n

(φ ◦R)X,Y :=
2n∑

j=1

φ(ej , RX,Y ej),

because (Jej)0,1 = −
√
−1e0,1

j and (Jej)1,0 =
√
−1e0,1

j , we get Proposition 4.19
immediately from (4.24). 2

4.25. Theorem. Let M be a compact Kähler manifold with positive Ricci
curvature. If A is an almost holomorphic connection, then A is holomorphic.

Proof. First let us prove the following formula for φ ∈ Ω0,2(EndJE).

(4.26) RA(φ) = −
√
−1{ΛF 1,1

A ∧ φ− (ΛF 1,1
A )φ} (4.25.0)

= R̄(A)φ.

We also take convention on ei, dz̄i as before for computing the value RA(φ)(x).
Let us rewrite the expression in (4.19.0) as follows

(4.27) RA(φ) =
∑

1≤k<l≤n

2n∑
j=1

{[(FA)
ej ,e0,1

k
, φ

ej ,e0,1
l

]−[(FA)
ej ,e0,1

l
, φ

ej ,e0,1
k

]}dz̄kdz̄l.

We shall use the following abbreviation. For any φ ∈ Ωk,p(EndJE) denote
by

φi1···ik,j̄1···j̄p
:= φ(e1,0

i1
, · · · , e1,0

ik
, e0,1

j1
, · · · , e0,1

jp
).

Since φ ∈ Ω0,2(EndJE) we get from (4.27)
(4.28)

RA(φ) =
∑

1≤k<l≤n

2n∑
j=1

{[(FA)jk̄, φj̄ l̄]−[(FA)jl̄, φj̄k̄]+[(FA)j̄k̄, φj̄ l̄]−[(FA)j̄ l̄, φj̄k̄]}dz̄kdz̄l.
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Since (J(ej))0,1 = −
√
−1e0,1

j and (J(ej))1,0 =
√
−1e1,0

j we get from (4.28)

(4.29) RA(φ) = 2
∑

1≤k<l≤n

n∑
j=1

{[(FA)jk̄, φj̄ l̄]− [(FA)jl̄, φj̄k̄]} dz̄kdz̄l.

Now expanding the expression in local coordinates

√
−1ΛF 1,1 ∧ φ =

1
2

n∑
p=1

īpip{
∑
i,j

∑
k<l

[(FA)ij̄ , φk̄l̄] dzidz̄jdz̄kdz̄l}

= √
−1(ΛF 1,1

A )φ− 2
∑

1≤i≤n

∑
1≤j,l≤n

[(FA)ij̄ , φīl̄]dz̄jdz̄l.

and comparing it with the RHS of (4.29) we get (4.26) immediately.

Now let A be a Yang-Mills bar connection. Applying (4.19.1) to F 0,2
A and

using (4.26) we get

(4.30)

0 =
∫

M2n

〈∇̄AF
0,2
A , ∇̄AF

0,2
A 〉+ 〈F 0,2

A ◦ (Ric ∧ I), F 0,2
A 〉+

∫
M
〈R̄(A)F 0,2

A , F 0,2
A 〉.

Since A is a Yang-Mills bar connection, differentiating (2.7.1) we get

(4.31) 〈(ΛF 1,1)F 0,2
A , F 0,2

A 〉 = 0.

Now let A be an almost holomorphic connection. Using (4.30), (4.31), (3.15.2)
we get immediately that F 0,2

A = 0. 2

4.32. Remark Theorem 4.25 implies that any Yang-Mills bar connection
on a compact 4-dimensional Kähler manifold of positive Ricci curvature is
holomorphic. It is easy to extend this theorem for a larger class of Yang-Mills
bar connections, but we shall consider this extension only in a relation with a
topology of the underlying complex vector bundle in a subsequent note.

5 Short time existence of a Yang-Mills bar

gradient flow over a compact Kähler mani-

fold

5.1. Affine integrability condition. The following identity holds for any
θ ∈ Ω(EndJE) and unitary connection A

(5.2)
∫

M2n

〈[θ, F 0,2
A ], F 0,2

A 〉 = −
∫

M2n

〈[F 0,2
A , θ], F 0,2

A 〉.
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We shall prove that at any point x ∈M2n we have

(5.3) 〈[θ, F 0,2
A ], F 0,2

A 〉 = −2〈θ,ΛΛF 0,2
A ∧ F 2,0

A 〉.

We write θ = θ+ +
√
−1θ− where θ+, θ− ∈ uE . In the same way at a fixed

point x ∈M2n we can take coordinates such that the Kähler metric g has the
form g(x) =

∑
dzi ⊗ dz̄i. We shall write

F 0,2
A =

∑
1≤i<j≤n

(F+
ij +

√
−1F−

ij )dz̄idz̄j ,

where F±
ij ∈ uE . Then F 2,0

A =
∑

ij(F
+
ij−

√
−1F−

ij )dzidzj . Recall that ||dz̄idz̄j ||2 =
4. A direct computation at a point x shows

〈[θ, F 0,2
A ], F 0,2

A 〉 =
∑

1≤i<j≤n

〈[θ−, F+
ij ]dz̄idz̄j , F−

ij dz̄idz̄j〉+

(5.4)
∑

1≤i<j≤n

〈−[θ−, F−
ij ]dz̄idz̄j , F+

ij dz̄idz̄j〉 = 8〈θ−,
∑

1≤i<j≤n

[F+
ij , F

−
ij ]〉.

Now we compute

〈θ,ΛΛF 0,2
A ∧ F 2,0

A 〉 = −2
∑

1≤i<j≤n

〈θ−,ΛΛ[F+
ij , F

−
ij ]dzidzjdz̄idz̄j〉

(5.5)
= −4

√
−1

∑
1≤i<j≤n

〈θ−,Λ[F+
ij , F

−
ij ](dzjdz̄j+dzidz̄i)〉 = −16〈θ−,

∑
1<i<j≤n

[F+
ij , F

−
ij ]〉.

Clearly (5.3) follows from (5.4) and (5.5).
Now substituting [F 0,2

A , θ] = ∂̄A∂̄Aθ in the RHS of (5.2) and taking into
account (5.3) we get

(5.6) −
∫

M2n

〈θ, 2ΛΛF 0,2
A ∧ F 2,0

A 〉 =
∫

M2n

〈θ, ∂̄∗A∂̄∗AF
0,2
A 〉.

Thus we get the following identity

(5.7) ∂̄∗A∂̄
∗
AF

0,2
A + 2ΛΛF 0,2

A ∧ F 2,0
A = 0.

Define the following operator PA : Ω0,1(EndJE)×Ω0,1(EndJE) → Ω(EndJE)

(5.8) PA(a)φ := ∂̄∗A+aφ+ 2ΛΛF 0,2
A+a ∧ F

2,0
A+a.
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Clearly PA(a)φ is a differential operator of order 1 in a and order 1 in φ. More-
over PA(a)φ is an affine differential operator w.r.t. φ, i.e. PA(a)φ = LA(a)φ+
CA(a), where LA(a)φ is a linear differential operator w.r.t. φ. By (5.6) we have
PA(a)∂̄∗A+aF

0,2
A+a = 0. Thus we shall call PA(a) an affine integrability condition

for the differential operator ∂̄∗A+aF
0,2
A+a : Ω0,1(EndJE) → Ω0,1(EndJE).

5.9. Proposition. Let ξ ∈ T ∗
xM

2n \ {0}. All the eigenvalues of the
eigenspace of the symbol σξD(−1)∂∗A+aF

0,2
A+a : Ω0,1(EndJE) → Ω0,1(EndJE)

in Null σξPA(a) are positive. Hence the evolution equation

(5.9.1)
da

dt
= −∂̄∗A+aF

0,2
A+a,

has a unique smooth solution for a short time which may depend on a.

Proof. Since F 0,2
A+a+th = F 0,2

A + t∂̄A+a ∧ h + t2h ∧ h for h ∈ Ω0,1(EndJE),
we have the following expression for the linearization of ∂̄∗A+aF

0,2
A+a at point

a ∈ Ω0,1(EndJE)

(5.10) Da(∂̄∗A+aF
0,2
A+a)(h) = ∂̄∗A+a∂̄A+ah+ { terms of lower order }.

We may assume that ξ = dx1. Then a direct computation using the Hodge-
Kähler identity ∂̄∗A+a = −

√
−1Λ∂A+a and (5.10) shows

(5.11) −σξDa(∂∗A+aF
0,2
A+a)(α1dz̄1, · · · , αndz̄n) = (0, α2dz̄2, · · · , αndz̄n).

Clearly the linearization DφPA(a)φ with respect to the variable φ is

[DφPA(a)φ]h =
d

dt |t=0
∂̄∗A+a(φ+ th) + 2ΛΛF 0,2

A+a ∧ F
2,0
A+a = ∂̄∗A+a(h).

We note that this linearization does not depend on φ. A short computation
shows

(5.12) σξDφPA(a)(α1dz̄1, · · · , αndz̄n) =
√
−1α1.

Now (5.11) and (5.12) imply the first statement of Proposition 5.9. The second
statement follows from Hamilton’s theory for evolution equation with integra-
bility condition [4], Theorem 5.1, actually from its slightly extended version
in Theorem 6.6 below. (We note that though in the statement of his Theo-
rem [4], Theorem 5.1, Hamilton did not require the linearity w.r.t. h of the
integrability condition L(f)h, (in our case L(f)h = PA(a)φ), a = f, h = φ,
but in his proof, it is important (and we shall see that it is sufficient) to have
the linearization DhL(f)(h) w.r.t. h independent on h. Our operator PA(a)φ
satisfies this condition, see the next section for more details.) 2
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5.13. Remarks. 1. By taking derivative of (2.7.1) in the time t we also
get (5.2) and hence (5.7). In the same way we can get (5.2) (and hence (5.7)) as
an infinitesimal consequence of the non-canonical action of the complex gauge
group on the space of unitary connections w.r.t. a fixed Hermitian metric on
the bundle.

2. Using (2.3) it is easy to prove that ∂∗AF
0,2
A also satisfies an affine integra-

bility condition analogous to (5.8), if the ground manifold M2n is Hermitian
but not necessary Kähler.

6 Evolution equations with affine integra-

bility condition

In his work [4] Hamilton introduced the notion of an evolution equation with
integrability condition. Let us rapidly recall the Hamilton concept from section
5 of that paper.

We shall consider an evolution equation

df

dt
= E(t),

where E(f) is a non-linear differential operator of degree 2 in f . We suppose
f belong to an open set U in a vector bundle F over a compact manifold X,
and E(f) takes its values in F also. Then E is a smooth map

E : C∞(X,U) ⊂ C∞(X,F ) → C∞(X,F )

of an open set in a Fréchet space to itself.
We shall consider problems where some of the eigenvalues of the symbol

σDE(f)ξ are zero. This happens when E(f) satisfies an integrability condi-
tion.

6.1. Definition. [4] Let g = L(f)h : C∞(X,U)× C∞(F ) → C∞(G) be a
differential operator of degree 1 on sections f ∈ U ⊂ F , h ∈ F , and G another
vector bundle over X. We call L(f)h the integrability condition for E(f), if
the operator Q(f) = L(f)E(f) only has degree at most one in f .

Suppose that L(f)h is an integrability condition for E(f). Taking a varia-
tion in f̃ we see that

(6.2) L(f)DE(f)f̃ +DL(f){E(f), f̃} = DQ(f)f̃ .
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Since DQ(f)f̃ as well as L(f)DE(f)f̃ only have degree 1 in f the operator
L(f)DE(f)f̃ also have degree 1. hence σL(f)(ξ)σDE(f)(ξ) = 0. Therefore
we get

(6.3) ImσDE(f)(ξ) ⊂ Null σL(f)(ξ).

6.4. Theorem ([4], Theorem 5.1). Let df/dt = E(f) be an evolution
equation with integrability condition L(f). Suppose that all the eigenvalues of
the eigenspaces of σDE(f)(ξ) in Null σL(f)(ξ) is positive. Then the initial
value problem f = f0 at t = 0 has a unique smooth solution for a short time
0 ≤ t ≤ ε where ε may depend on f0.

6.5. Remark. Hamilton’s notation in (6.2) indicates that L(f)h is a
linear w.r.t. h. (In fact, in section 4 of that paper Hamilton stressed that
L(f)h is linear w.r.t. h.) A closer look at Hamilton’s proof (see also our proof
of Theorem 6.6 below) shows that, the linearity of L(f)h w.r.t. h is important.
We shall call such integrability condition L(f)h linear in the argument (and f
shall be considered as parameter). Now we shall call an integrability condition
L(f)h an affine integrability condition, if L(f)h = L0(f)h+A(f), where L0(f)h
is linear w.r.t. h. The linearization (DφL(f)h)h̃ = L0(f)h̃ does not depend on
h.

6.6. Theorem. Let df/dt = E(f) be an evolution equation with inte-
grability condition L(f) which is affine in the argument: L(f)h = L0(f)h +
A(f). Suppose that all the eigenvalues of the eigenspaces of σDE(f)(ξ) in
Null σL0(f)(ξ) is positive. Then the initial value problem f = f0 at t = 0 has
a unique smooth solution for a short time 0 ≤ t ≤ ε where ε may depend on
f0.

Proof of Theorem 6.6. We follow Hamilton’s argument, replacing L(f)h
in his proof by L0(f)h in some places, and re-arranging parameters which do
not depend on h. To keep our notations as close as possible with those of
Hamilton, we denote by DL the derivative of L(f)h w.r.t the parameter f .
We divide the proof in 3 steps.

STEP 1. Reduction of Theorem 6.6 to a version of the Nash-Moser inverse
function theorem.

In this step we reduce Theorem 6.6 to the following

6.7. Lemma. Suppose that f̄ is a solution of the perturbed evolution
equation by a term h̄(t, x)

df̄(t, x)
dt

= E(f̄(t, x)) + h̄(t, x),
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f̄(0, x) = f̄0(x)

over the interval 0 ≤ t ≤ 1. Then for any f0 near f̄0 and h near h̄ there exists
a unique solution of the perturbed equation

df(t, x)
dt

= E(f(t, x)) + h(t, x),

f(0, x) = f0(x)

over the interval 0 ≤ t ≤ 1.

Now we explain how to get Theorem 6.6 from Lemma 6.7. Let f̄(t, x) be
any function satisfying

df̄(t, x)
dt |t=0

= E(f(0, x)),

f̄(0, x) = f0(x).

Set

h̄(t, x) :=
df̄(t, x)
dt

− E(f̄(t, x)).

Then h̄(0, x) = 0.
Since X is compact, for any δ〉0 there exist a number ε > 0 and a function

h(t, x) such that H(t, x) is δ-close to h̄(t, x) and moreover h(t, x) = 0 for a
short time 0 ≤ t ≤ ε. Applying Lemma 6.7 to the pair (h̄, h) we conclude that
the equation

df(t, x)
dt

= E(f(t, x)) + h(t, x),

f(0, x) = f0(x)

has solution up to time ε. This solution in the interval (0, ε) is a solution of
our original equation in that time interval. This completes the first step.

STEP 2. Reduction of Lemma 6.7 to a case of a weakly parabolic linear
system of (6.14.1) and (6.14.2). We can apply the Nash-Moser inverse function
theorem to the operator

E : C∞(X × [0, 1], F ) → C∞(X × [0, 1], F )× C∞(X,F ),

E(f) = (df/dt− E(f), f |{t = 0}).

Its derivative is the operator

DE(f)f̃ = (
df̃

dt
−DE(f)f̃ , f̃ |{t = 0}).
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We must show that the linearized equation

(6.8) df̃/dt−DE(f)f̃ = h̃

has a unique solution for the initial value problem f̃ = f̃0 at t = 0, and verify
that the solution f̃ is a smooth tame function of h̃ and f̃0.

We make the substitution g̃ = L(f)f̃ . Then g̃ satisfies the evolution equa-
tion

(6.9)
dg̃

dt
= L0(f)

df̃

dt
+DL(f){f̃ , df

dt
}.

Now differentiating the integrability condition L(f)E(f) = Q(f) we get

(6.10) L0(f)DE(f)f̃ = −DL(f){E(f), f̃}+DQ(f)f̃ .

Substituting df̃/dt = DE(f)f̃ + h̃ from (6.8) into (6.9) and taking into
account (6.10) we rewrite (6.9) as follows

(6.11)
dg̃

dt
−M(f)f̃ = k̃,

where k̃ = L0(f)h̃ and

M(f)f̃ = DL(f){f̃ , df
dt
} −DL(f){E(f), f̃}+DQ(f)f̃ =

(6.12)
(6.10)
= DL(f){f̃ , df

dt
}+ L0(f)DE(f)f̃ .

is a linear differential operator in f̃ of degree 1 whose coefficients depend
smoothly on f and its derivatives.

If we choose a measure on X and inner product on the vector bundle F
and G, we can form a differential operator L∗0(f)g = h of degree 1 in f and g
which is the adjoint of L0(f). Let us write

P (f)h := DE(f)h+ L∗0(f)L(f)h.

We claim that the equation df̃/dt = P (f)f̃ is parabolic (for a given f). To
see this we must examine the symbol

(6.13) σP (f)ξ = σDE(f)σ + σL∗0(f)(ξ) · σL0(f)(ξ).

Suppose v is an eigenvector in F with eigenvalue λ. Then σP (f)(ξ)v = 0. But
σL0(f)(ξ) ·σDE(f)(ξ) = 0, so applying σL0(f) to the LHS and RHS of (6.13)
we get
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σL0(f)(ξ) · σL∗0(f)ξ · σL0(f)(ξ)v = λσL0(f)(ξ)v.

Taking inner product of the above equality with σL0(f)(x)v we get

|σL∗0(f)(ξ) · σL0(f)(ξ)v|2 = λ|σL0(f)(ξ)v|2.

Now if σL∗0(f) · σL0(f)(ξ)v = 0 then σL0(f)(ξ)v = 0, and otherwise λ is
real and strictly positive. When σL0(f)(ξ)v = 0, then σDE(f)(ξ)v = λv by
(6.13) and λ has strictly positive real part by our hypothesis in Theorem 6.6.
Thus P (f) is parabolic.

We proceed to solve the system of equations

(6.14.1)
df̃

dt
− P (f)f̃ + L∗0(f)g̃ = h̃,

(6.14.2)
dg̃

dt
−M(f)f̃ = k̃

for the unknown function f̃ and g̃ for given h̃ and k̃ and given f , with initial
data f̃ = f̃0 and g̃ = g̃0 = L(f0)f̃0 at t = 0.

In Step 3 below we prove that the solution (f̃ , g̃) exists and is unique, and
is a smooth tame function of (f, h̃, k̃, f̃0, g̃0). Then putting l̃ = g̃ − L(f)f̃ and
substituting k̃ = L0(f)h̃ we get

dl̃

dt
=
dg̃

dt
− L0(f)

df̃

dt

= L0(f)DE(f)f̃ + k̃ − L0(f)
df̃

dt
(6.14.1)

= −L0(f)DE(f)f̃ − L0(f)P (f)f̃ + L0(f)L∗0(f)g̃
(6.13)
= L0(f)[−L∗0(f)L(f)f̃ + L∗0(f)L(f)(l̃ + L(f)f̃)]

(6.15) = L0(f)L∗0(f)l̃,

and l̃ = 0 at t = 0. But then (6.15) implies the obvious integral inequality

d

dt

∫
X
|l̃|2dµ+ 2

∫
X
|L∗0(f)l̃|dµ = 0.

Hence l̃ = 0. Then it follows that g̃ = L(f)f̃ . Using this and we get from
(6.14.1)

df̃

dt
−DE(f)f̃ = h̃.
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This completes Step 2.

STEP 3. The system (6.14.1) and (6.14.2) is a weakly parabolic linear
system whose smooth solution uniquely exists.

Set P0(f)h := DE(f)h+L∗0(f)L0(f)h. Then P0(f)h is a linear differential
operator in h and P (f)h = P0(f)h + L∗0(f)A(f). Set h = h̃ − L∗0(f)A(f).
Since f in the system of (6.14.1) and (6.14.2) is given, we shall re-denote a
given constant k̃ by k, variables f̃ , g̃, by f, g and linear differential operators
P0(f), L∗0(f),M(f) by P,L,M . Then the system of (6.14.1) and (6.14.2) is
equivalent to the following system of linear evolution equations on 0 ≤ t ≤ T
for sections f of F and g of G

(6.16)
df

dt
= Pf + Lg + h,

dg

dt
= Mf + k.

Clearly the existence, uniqueness and smoothness of a solution of (6.16) is a
consequence of Hamilton’s theorem [Hamilton1982, Theorem 6]. He considered
the following equation

(6.17)
df

dt
= Pf + Lg + h,

dg

dt
= Mf +Ng + k

where P,L,M and N are linear differential operators involving only space
derivatives whose coefficients are smooth functions of both space and time.
He assumed that P has degree 2, L and M have degree 1 and N has degree 0.

6.18. Theorem ([4], Theorem 6). Suppose the equation df/dt = Pf
is parabolic. Then for any given (f0, g0, h, k) there exists a unique smooth
solution (f, g) of the system (6.17) with f = f0 and g = g0 at t = 0.

The proof of this Theorem occupies the whole section 6 in Hamilton’s paper.

Finally we formulate a conjecture which might be solved by using the Yang-
Mills bar equation and might be helpful for understanding the Hodge conjec-
ture. A unitary connection A on a Hermitian bundle E over a projective
algebraic manifold M is holomorphic, if the Lp

q-norm of the component F 0,2
A

less than some positive constant ε(M), where p, q are some integers depending
on the dimension of M .
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