Preprint, Institute of Mathematics, AS CR, Prague. 2008-10-11

BOUNDEDNESS OF BIORTHOGONAL SYSTEMS IN BANACH
SPACES

PETR HAJEK AND VICENTE MONTESINOS

ABSTRACT. We prove that every Banach space that admits a Markushevich
basis also admits a bounded Markushevich basis.

1. INTRODUCTION

A Markushevich basis (in short, an M-basis) for a Banach space X is a biorthog-
onal system {z,; f,}yer in X x X* such that {z, : v € I'} is fundamental, i.e.,
linearly dense in X, and {f, : ~ € I'} is total, i.e., w*-linearly dense in X*.
The boundedness constant of the system is sup{|z,|.|[fy| : 7 € T'} (eventually
+00). If the boundedness constant of an M-basis is a finite number K, we speak
of a K-bounded M-basis. The main results of this note is the construction of a
(2(1 4 v/2) + ¢)-bounded M-basis (for every e > 0) in every nonseparable Banach
space which admits an M-basis.

The boundedness problem for an M-basis (or more generally a biorthogonal system)
has received attention in the work of many mathematicians. In the separable case,
Davis and Johnson [DJ73] (building up on the work of Singer [S73]) constructed a
(1+¢)-bounded fundamental system, an essentially optimal result for fundamental
systems (see, e.g., [HMVZ, Corollary 1.26]). An important ingredient in their work
was the use of Dvoretzky’s theorem on almost Euclidean sections. Their ideas
were developed further by Ovsepian and Pelezyniski [OP75], who constructed a
bounded M-basis in every separable Banach space. Ultimately, Pelczyniski [Pe76]
and Plichko [P177] independently, constructed a (1 + £)-bounded M-basis in every
separable Banach space. The existence in every separable Banach space of a 1-
bounded M-basis (i.e., an Auerbach basis) is still open.

In non-separable spaces, the existence of a bounded M-basis (provided the space
has some M-basis) was claimed by Plichko [P182]. His method yields a boundedness
constant roughly 10 (see, e.g., [HMVZ, Theorem 5.13]). However, the proof of this
result in [P182] (and its reproduction in [HMVZ], Theorem 5.13) is flawed. The
(subtle) troublesome point in the proof (see in [HMVZ] the claim on page 171, line
10 from below; we follow the notation there) is that span{z, : & € Jy42 \ Jy—1}
is dense in G# N X. This claim (and thus the statement of Plichko’s theorem) is
true whenever the original M-basis is strong, but it is false in general (see [HMVZ],
Proposition 1.35.). Let us recall that an M-basis {x.; f }yer is called strong if, for
every ¢ € X, x € span{(z, fy)z, : v € I'}. The class of Banach spaces having
a strong M-basis is quite large. For example, every Banach space belonging to a
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P-class has a strong M-basis [HMVZ, Theorem 5.1]. We recall here that a class
C of Banach spaces is a P-class if, for every X € C, there exists a projectional
resolution of the identity (Pa)w<a<p (Where p is the first ordinal with cardinal
dens X) such that (Py41 — Po)X € C for all a € [w, ). The class of all weakly
compactly generated (resp. weakly countably determined, resp. weakly Lindelof
determined) Banach spaces is a P-class.

However, there exists a Banach space with an M-basis admitting no strong M-basis
([HMVZ], Prop. 5.5).

Our approach to the problem uses ideas from several of the above mentioned papers,
including [P182]. The essential new ingredient is the use of the A-system lemma
(see Lemma 2), which solves the difficulties in [P182]. We are also able to reduce
the boundedness constant, by incorporating Dvoretzky’s theorem together with the
Walsh-matrices-mixing technique used in [OP75].

In the special case of WCG spaces, an adaptation of the proof in the separable case
by Plichko leads to a constant 2 + ¢ (for every € > 0) [P179], which is essentially
optimal ([P186]).

This alternative approach uses the existence of many projections in the WCG space.
In the end of our note we indicate how to obtain a (more or less formal) general-
ization of the 2 + e result for wider classes of Banach spaces (P-classes). We refer
to [HMVZ] for more results and references related to boundedness of biorthogonal
systems.

Our notation is standard. Bx is the closed unit ball of a Banach space X, Sx its
unit sphere. Given a non-empty subset S of a Banach space, let spanS be the linear
span of S, and spangS the set of all linear combinations with rational coefficients of
elements in S. The closed linear span of S is denoted spansS. Given two subspaces
F and G of a Banach space X, we put F' — G if F' is a subspace of G. We denote
by |S| the cardinality of a set S. The density character of X, dens X, is the smallest
ordinal  such that X has a dense subset with cardinal |2|. We identify, as usual,
an ordinal number  with the segment [0, ), and a cardinal number with the initial
ordinal having this cardinality. The ordinal number of N is denoted by w and its
cardinal number by Rg. If {z4; fy}yer is an M-basis for X and = € X, the support
of  (with respect to the M-basis) is the set supp (z) := {y € T : (z, f,) # 0}.
Analogously, if f € X*, supp (f) :={ye': (x, f) #0}.

For convenience, we formulate the main tools used in the proof of our theorem.

Theorem 1 (Dvoretzky). Let N € N, ¢ > 0. Then there exists a natural number
K := K(N,¢), such that for every Banach space (X, ||-||) of dimension at least K,

there exists a linear space Y — X of dimension N, which is (1 + €)-isomorphic to
oy,

A family {Ax}rca of sets is called a A-system (with root B, possibly empty) if
Ay N A, = B for all distinct \,« € A.

Lemma 2 (A-system lemma, see, e.g., [Ju80], Lemma 0.6). Let A > w be a regular
cardinal and {Ax}xen a family of finite subsets of A. Then there exists a subfamily
Q C A of cardinality A that is a A-system.

By a more or less standard argument, we obtain the next mild strengthening of the
previous result.

Corollary 3. Let A > w be a reqular cardinal, X a Banach space with an M-
basis {x; f}ver, {vataen a long sequence of finitely supported vectors in X with
supports {Ax}rea and only rational coefficients (vy, fy). Then there exists a subset
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Q C A of cardinality A and a finite set B C A such that Ay N A, = B for all
A a € ), and the coefficients of vy on B are independent of X € €.

Proof. Apply Lemma 2 to the family {A)}reca to obtain a A-system {Aj}rear
with root B such that |[A’| = |A|. The set QF is countable. We define a mapping
r: A — QF by r(vy)(b) = vA(b) for all b € B and A € A’. Assume that [{\ € A :
r(\) = q}| < |A] for all g € Q8. We have A’ = Uqege{r €A1 7r(A) = q}. Since
QP is countable and |A’| (> w) is regular we obtain a contradiction, hence there
exists q € QP such that || = |A|, where 2 :={\A € A’: r(\) =q}. Forall A € Q
and b € B we get vy (b) = q(b). O

Recall (see, e.g., [J78]) that every non-limit cardinal is regular, and thus in particu-
lar every cardinal is a limit of a transfinite increasing sequence of regular cardinals.
We rely on orthonormal matrices with special properties, described below.

Lemma 4. Given n € N, there exists an orthonormal matrizx W := (aj; ;)o<k,j<2n
with real coefficients, such that
ago= 272 for 0 <k <2, (1)
271
Z |a2’j|<1+\/§ for 0 <k <2 (2)
j=1
Such matrices were used by Ovsepian and Pelczyniski in [OP75]. For a concrete
example of Walsh matrices see, e.g., [HMVZ, Lemma 5.17] or [LT77, Lemma 1.£.5].

The following is the main result of this note.

Theorem 5. Let X be a Banach space with an M-basis {x~; fy}~yer, and let € > 0.
Then X admits an M-basis {x!; f}rer such that ||z || £}l < 2(1 + v2) +¢ for
every v € I'. Moreover, span{z., : v € I'} = span{x’, : v € '} and span{f, : v €
I} =span{f, : yeTl}.

Proof. For convenience, we may assume without loss of generality that I' is an
ordinal of cardinality |I'|. We are going to find a system consisting of a splitting
I' = Uyer A, where all Ay are countable and pairwise disjoint, together with
biorthogonal systems {z’; f! },ca,, so that

A. span{z! : 7y € Ay} = span{z, : v € A}
B. span{f : v € Ax} = span{f, :v € A\}
C. ||$9H||f~/y”§2(1+\/§)+57 forall y € Ay, A €T

The existence of such a system clearly implies the statement of the theorem. We
construct the A)’s and the biorthogonal system associated to each of them by using
induction in A € T".

We start by putting A; := {0} (the first element in T), and letting {xf; f}} be a
(single-element) biorthogonal system in span{zg} x span{ fo} with ||| = || f}|| = 1.
Suppose we achieved this for all A < 8 € I'. It remains to obtain the objects Ag and
{x’w f§}7e A5 To this end we are going to construct an increasing sequence { A7 jha
A7 C AITL) of finite subsets of T', so that Ag = U;’;l AJ. We are simultaneously
going to build finite biorthogonal systems {xly, f%}% 4i, J € Ny and a sequence of
finite sets {C7}32, satisfying the following conditions for all j € N.

1. span{z, : a € A’} =span{zl, : o € A7}

span{f, : a € A7} = span{f! : a € A7}.

Ci={a €A oI fill <20+ v2) +e).

AV c oIt

:E?Y“ = xZY whenever v € CJ_‘ :

fIt = f1 whenever v € 7.

S Ot W
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7. span{z! : o € A7} C span{z/™! :a € CIT1}.
8. span{fJ : a € AT} Cspan{fit!:a e CIT}.
The existence of such systems now implies the inductive step in the proof of the
main theorem.
Indeed, we put Ag :=J;2, A7 (= U;2, C7). If y € ¢V for some j € N then, by 5.,
x] = xI*! for all | € N, and so we can put 2/, := 27 . Similarly, by 6., f7 = fI* for
all | € N, and we put f) = f% The biorthogonality of {x; f’},ca, follows from
the fact that {zZ; fJ},cs is biorthogonal for every j €N Conditions A. and B.
are checked easily. On one hand, if v € Ag, then v € C” for some j € N, so by 1.,

!, =zl € span{z, : a € A’} Cspan{zy : a € Ag},
and, since v € A7, by 7.,

., € span{zd : a € AV} Cspan{zitt: a € CIT!}

= span{z), : a € C?*'} Cspan{z),: a € Ag}.

We obtain similar results for f! and f,. Note that conditions 3. and 4. imply C..
It remains to check that (Jy.p Ax = T'. This follows from the fact (see below) that
in the construction of {A47};cn we start by taking A := {7}, where 7y is the first
element in T'\ UA<5 Ay, so Ag # () while U)\<ﬁ Ay #T.
To start, put A' = {v}, where 7 is the first element in T"\ U>\<ﬁ Ay, x}m = Ty,
and f1 = fy,. Put C := {30} if [z, [l f50]l < 2(1 4 v2) +¢, C' = 0 otherwise.
Let us describe the inductive step from j to j+1. Suppose that AP, 28, f for p < j
have been constructed, such that 1.-8. are satisfied whenever the indices exist. Put
L={\,...,\} = AI\C7, and find C > 0 such that sup{||z,|, || frl]| : X € L} < C.
Put N = 2" — 1, with n € N large enough to have 2-"/2C' < ¢. Use Theorem 1 to
find K := K(N,e). We are going to build a family {Sy : A € L} of finite pairwise
disjoint subsets of I', disjoint also from U>\<5 A\ U Uz‘gj A', together with finite
biorthogonal systems {y+; gy }yes,, A € L, such that, for all A € L,
Sy=55US%, S5 =N, SinS3=0.
span{z, : v € Sx} = span{y, : v € S\ }.
span{ f, : v € Sx} = span{g, : v € Sx}.
{gy : v € Si}is (1 + &)-equivalent to the unit basis of £3.
llyyll <24 2¢, for v € Uyep, Sa-
Finding the above system is the main step of our construction. We have |§] < T’
and so there exists a regular cardinal R, 8 < R < I'. Denote {Bxa}reL,a<R @
system of pairwise disjoint subsets of "\ (J;. 5 As, each of them of cardinality K.
By Theorem 1, we have that every span{f, : v € Bj ,} contains a (1+¢)-isometric
copy G o of ¢ Since the pair of finite dimensional spaces

(span{fy : v € Baa},span{zy : v € Bxa})
is a dual pair, it follows by standard linear algebra that there exist a splitting
Bro = DraUEra, Dra == {1 ...;78}, Daa N Exe = 0, and a finite
biorthogonal system {h~; zy},eB, .., with properties

span{h, : v € By} =span{f,: v € By},

span{z, : v € By o} =span{z, : 7 € Bya},

{hy}vep, ., is (14 €)-equivalent to the unit basis of £5'.

Let Gy o :=span{h, : v € Dy}
Fix A€ L,a < R,and v € Dy o. Put X, := 2, [g, .-
Clearly, 1 < ||X,]| < 1+ €. Denote X, again the Hahn-Banach norm-preserving

extension of X, from Gy, — X" to the whole X*, so X, € X*. Since ob-
viously spang{z¢}cer = X, a standard application of Helly’s theorem (see, e.g.,

oo o
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[F™, Exercise 3.36]) provides an element ¥, € spang{z¢ : ( € I'} such that
2] < | Xy]l + € (< 1+ 2¢) and &, |G, .= X,. Denote by Foy® C T the finite
support sets of 56%,&, m € {1,...,N}. Apply Corollary 3 to the given M-basis
{2+; fy}er and to each system {Z patacr, m € {1,...,N}, A € L, to obtain a
(single) subset R' C R of cardinality |R|, such that the following conditions hold.
There exists finite sets Ay, C T, such that for all « < £ € R',m € {1,...,N},
AeL,

1. FX N FENS = Ay, (so supp (@ e =T ae) VAN, =0).

2. Fr)r\vu’f\A/\,mCF\(UQ<§B>\,0¢UUi§jAZUU)\<ﬁA)\)

It is also easy to see that by a suitable choice of ay, &y € R/, for A € L, we may,
without loss of generality, assume that putting for m € {1,2,..., N}

Trm = :E,YA,% — QEVMM
m m

fk,m = h’,yjn’"“x )

we have, in addition, that supp (£x,,) N supp (Zxm) = 0 unless A = X, m = m/.
Thus we have that

{%xm> famme{1,...N}
is a biorthogonal (2 + 2¢)-bounded biorthogonal system such that vectors &y,
m € {1,2,..., N}, have disjoint supports with similar systems built previously in
the inductive process. Next, we put

N
Sy := By, U U supp (&x,m), for X € L.

Again, we have Sy NSy =0, unless A = X'. Let S} = D) o, = {7’\ (“7...,7]’?,’0‘*}.
For every v = v € S , We put g, = fA,m, Y~ = Lx,m. This choice guarantees
that conditions a., d., and e. are satisfied. It remains to use standard linear algebra
in order to add elements g,y for v € S%, so that b. and c. will be satisfied.

To finish the inductive step, put A7t := A7 U User S For vy € C7, we let
it =2l It = fJ. For A € L put Zx0 = zy, fA,o = fr. We have that
{jk,m;f)\,m}me{o,.“,N} is a biorthogonal system. Let W := (a; ;)i j=0,..~ be a
matrix from Lemma 4. Put, for k =0,1,2,..., N,

N N
A Z - AL } : f
U, = A, mT X\ m;, Vg = ak,mfk,m~
m=0 m=0

Finally, define 27*! and fi*! for v € A7*! in the following way:

' u), ify=X1elL,
@It i= 4w, iy €8 (= Daay)s ¥ =™,
Yy, ify €S

‘ vy, ify=XeL,
F=3 v, iy €8} (= Daan)s v =™,
gy, ify€S3.

Since W is an orthonormal matrix, we obtain that {33%“‘1; f$+1}ye{x}usi is again a
biorthogonal system, for every A € L.

It remains to estimate the norms of the new vectors and functionals. By using
the condition d., (1), and the orthonormality of W, we get the following estimate,
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whenever v € {\} U Si:
j+1 —n/2 ;
L < 272+ (V) ol

<2720+ (14+V2)(1+¢) < (1+V2) + 4e.

Similarly, using (2) instead,

a4 < 272 sl + (14 V2) max [l
1<m<N

<2720 4 (14 v2)2(1 + 2¢) < 2(1 + V2) + 13e.

Since € > 0 was arbitrary, these estimates imply conditions 4., 7., 8.. The remaining
conditions follow from our construction by standard arguments.

O

Let us recall that Plichko in [P186] ([HMVZ], Example 5.19) has constructed an
example of a WCG space which has no C-bounded M-basis, for every C' < 2. On
the other hand, in [P179] there is a generalization of the construction of (1 + ¢)-
bounded M-basis in a separable space, to the case of WCG spaces, where one
obtains (2 + ¢)-bounded M-bases. This result can be generalized to spaces with
“many projections”. In particular, one gets the following result.

Proposition 6. FEvery Banach space belonging to a P-class of nonseparable Banach
space admits a (2 + €)-bounded M-basis for every e > 0.

Proof. Ounly formal changes in the proof in [P179] are needed. Let {P,}scr be
a projectional resolution of the identity in X, such that P,(X) belong to P for
all a. Each space X, = (Pa41 — Pa)(X) contains a 1-complemented separable
space Y,, which is 2-complemented in the whole X. In each of Y,, we can build
an M-basis, {z; f*}ien, such that {z}i=1,  n is almost isometric to the unit
basis of ¢5, for suitable values of N. Using complementability, it is possible to
extend f{*, i =1,..., N, onto the whole X keeping the norm below 2 4 ¢. Using a
standard device (see, e.g., [Fa97, Proposition 6.2.4]), we can glue all those partial
biorthogonal systems into a full M-basis for X. This is the key ingredient in the
proof, and the rest follows along the lines of [P179].

O
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