
Semi-Online Preemptive Scheduling:

One Algorithm for All Variants

Tomáš Ebenlendr∗ Jǐŕı Sgall∗

Abstract

The main result is a unified optimal semi-online algorithm for preemptive scheduling on
uniformly related machines with the objective to minimize the makespan. This algorithm
works for all types of semi-online restrictions, including the ones studied before, like sorted
(decreasing) jobs, known sum of processing times, known maximal processing time, their
combinations, and so on. We derive some global relations between various restrictions
and tight bounds on the approximation ratios for a small number of machines.

1 Introduction

We study scheduling on uniformly related machines, which means that the time needed to
process a job with processing time p on a machine with speed s is p/s. The objective is
to minimize the makespan, i.e., the length of a schedule. In the online problem, jobs arrive
one-by-one and we need to assign each incoming job without any knowledge of the jobs that
arrive later.

This problem, also known as list scheduling, was first studied in Graham’s seminal paper [8]
for identical machines (i.e., all speeds equal), where it was shown that the greedy algorithm
(which is online) is a 2-approximation. Soon after that, Graham [9] proved that if the jobs
are presented in non-increasing order of their processing times, the approximation ratio goes
down to 4/3. This is no longer an online algorithm, as some partial knowledge of the input
is given to the scheduler. Since then, many problems with such a partial information given
in advance have been studied, see Section 1.2. This class of algorithms is nowadays called
semi-online algorithms.

We focus on the preemptive version of scheduling, which means that each job may be
divided into several pieces, which can be assigned to different machines in disjoint time slots.
(A job may be scheduled in several time slots on the same machine, and there may be times
when a partially processed job is not running at all.) Note that Graham [8, 9] studied the
non-preemptive version, but the cited result from [8] holds for the preemptive version, too. A
(semi-)online algorithm for preemptive scheduling, upon arrival of a job its assignment at all
times must be given and we are not allowed to change this assignment later. In other words,
the online nature of the problem is in the order in the input sequence and it is not related to
possible preemptions and the time in the schedule.
∗Institute of Mathematics, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic. Partially supported by

Institutional Research Plan No. AV0Z10190503, by Inst. for Theor. Comp. Sci., Prague (project 1M0545 of
MŠMT ČR) and grant IAA1019401 of GA AV ČR. Email: {ebik,sgall}@math.cas.cz.

1

Preprint, Institute of Mathematics, AS CR, Prague. 2008-11-12 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic



We provide a semi-online algorithm for preemptive scheduling on uniformly related ma-
chines which is optimal for any chosen semi-online restriction. This means not only the cases
listed in the abstract—the restriction can be given as an arbitrary set of allowed input se-
quences. Note that, similarly to the online algorithms, for semi-online algorithms we generally
do not require the computation to be polynomial time. However, except for computing the
optimal approximation ratio, our algorithm is efficient. And, for the restrictions considered
in the literature, even the computation of the optimal ratio is efficient.

This is a direct sequel to our (i.e., the authors and Wojtek Jawor) previous work [3],
where we have designed an optimal online algorithm. The algorithm and the proof of the
main result are similar, however, some technical issues have to be handled carefully to achieve
the full generality of our new result. The new algorithm has all the nice features from [3]: It
achieves the best possible approximation ratio for any number of machines and any particular
combination of machine speeds; it is deterministic, but its approximation ratio matches the
best approximation ratio of any randomized algorithm.

The algorithm first computes the optimal approximation ratio for the given semi-online
restriction and combination of speeds. Then, taking this as a parameter, it schedules each
incoming job as slowly as possible, accounting for the jobs seen so far and all possible exten-
sions of the input sequence. The precise specification of the schedule relies on the notion of
a virtual machine developed in [4, 3].

One research direction is to analyze the exact approximation ratio for particular cases.
This was done for a small number of machines for various restrictions in [5, 2, 16], and in
many more cases for non-preemptive scheduling. Typically, the results involve similar but ad
hoc algorithms and an extensive case analysis which is tedious to verify. Using our framework
the algorithm is always the same and, for the basic restrictions, the approximation ratio can
be computed by solving one or a few linear programs with speeds as parameters. To give the
ratio, even as a formula in terms of speeds, is then a fairly routine task which can be simplified
(but not completely automated) using standard mathematical software. Once the solution is
known, verification amounts to checking the given primal and dual solutions for the linear
program. We give a few examples of such results in Section 3. The details of analysis are
omitted due to lack of space.

Another research direction is to compute, for a given semi-online restriction, the optimal
approximation ratio which works for any number of machines and combination of speeds.
This task appears to be much harder, and even in the online case we only know that the
ratio is between 2.054 and e ≈ 2.718; the lower bound is shown by a computer-generated
hard instance with no clear structure. Only for identical machines, the exact ratio for any
number of machines is known for the online case [1], where it tends to e/(e− 1) ≈ 1.58, and
for non-increasing jobs [14], where it tends to (1 +

√
3)/2 ≈ 1.366.

We are able to prove certain relations between the overall approximation ratios for dif-
ferent variants. Typically, the hard instances have non-decreasing processing times. One
expected result is thus that the restriction to non-increasing processing times gives the same
approximation as when all jobs have equal processing times, even for any particular combi-
nation of speeds, see Section 3.3. This phenomenon is already implicit in [14] for identical
machines.

Some basic restriction form an inclusion chain, namely: known maximal processing time
(or, more precisely, the equivalent restriction that the first job has maximal processing time),
non-increasing processing times, equal processing times. The last two have the same approx-

2



imation ratio. We prove that this ratio is at most 1.52, see Section 3.3, while for known
maximal processing time we have a computer-generated hard instance with approximation
ratio 1.88. Thus restricting the jobs to be non-increasing helps the algorithm much more than
just knowing the maximal size of a job. This is different than for identical machines, where
knowing the maximal size is equally powerful as knowing that all the jobs are equal, see [14].

More interestingly, the overall approximation ratio with known sum of processing times is
the same as in the online case—even though for a small fixed number of machines knowing the
sum provides a significant advantage. This is shown by a padding argument, see Section 3.1.1.
In fact this is true also in presence of any additional restriction that allows scaling the job
sequence, taking a prefix, and extending the job sequence by small jobs at the end. Thus,
for example, we can conclude that the overall approximation ratio with non-increasing jobs
and known sum of processing times is at least 1.366, using the bound for identical machines
from [14]. (Note that ratio with equal jobs and known sum is 1; the restriction to equal jobs
does not allow padding.)

1.1 Preliminaries

Let Mi, i = 1, 2, . . . ,m denote the m machines, and let si be the speed of Mi. W.l.o.g. we
assume that the machines are sorted by decreasing speeds, i.e., s1 ≥ s2 ≥ . . . ≥ sm. To avoid
degenerate cases, we assume that s1 > 0. The vector of speeds is denoted s. The sum of
speeds is denoted S =

∑m
i=1 si and Sk =

∑k
i=1 si is the sum of k largest speeds. To simplify

the description of the algorithm, we assume that there are infinitely many machines of speed
zero, i.e., si = 0 for any i > m. (Scheduling a job on one of these zero-speed machines means
that we do not process the job at the given time at all.) Let J = (pj)n

j=1 denote the input
sequence of jobs, where n is the number of jobs and pj ≥ 0 is the length, or processing time,
of jth job. The sum of processing times is denoted P = P (J ) =

∑n
j=1 pj . Given J and

i ≤ n, let J[i] be the prefix of J obtained by taking the first i jobs.
The time needed to process a job pj on machine Mi is pj/si; each machine can process at

most one job at any time. Preemption is allowed, which means that each job may be divided
into several pieces, which can be assigned to different machines, but any two time slots to
which a single job is assigned must be disjoint (no parallel processing of a job); there is no
additional cost for preemptions. Formally, if ti denotes the total length of the time intervals
when the job pj is assigned to machine Mi, it is required that t1s1 + t2s3 + · · ·+ tmsm = pj .
In the (semi-)online version of this problem, jobs arrive one-by-one and at that time the
algorithm has to give a complete assignment of this job at all times, without the knowledge of
the jobs that arrive later. The objective is to find a schedule of all jobs in which the maximal
completion time (the makespan) is minimized.

For an algorithm A, let CA
max[J ] be the makespan of the schedule of J produced by A. By

C∗max[J ] we denote the makespan of the optimal offline schedule of J . An algorithm A is an
R-approximation if for every input J , the makespan is at most R times the optimal makespan,
i.e., CA

max[J ] ≤ R ·C∗max[J ]. In case of a randomized algorithm, the same must hold for every
input for the expected makespan of the online algorithm, E[CA

max[J ]] ≤ R · C∗max[J ], where
the expectation is taken over the random choices of the algorithm.

The optimal makespan can be computed as

C∗max[J ] = max{P/S,maxm−1
k=1 {Pk/Sk}}, (1)

where Pk denotes the sum of k largest processing times in J and Sk is the sum of k largest

3



speeds. It is easy to see that the right-hand side is a lower bound on the makespan, as the
first term gives the minimal time when all the work can be completed using all machines
fully, and similarly the term for k is the minimal time when the work of k largest jobs can be
completed using k fastest machines fully. The tightness of this bound follows from [12, 7, 4].

1.2 Semi-online restrictions and previous work

Now we are interested in semi-online algorithms. The algorithm is given some information in
advance in semi-online model. We define a general semi-online input restriction to be simply
a set Ψ of allowed inputs, also called feasible sequences. We call a sequence an input sequence
if it is a prefix of some feasible sequence. Thus input sequences are exactly the partial inputs
that the algorithm can see. Below we list some of the restrictions that are studied in literature.
Known sum of processing times,

∑
pj = P . For a given value P̄ , Ψ contains all sequences

with P = P̄ . We prove that the overall ratio is suprisingly the same as in the general online
case, on the other hand we note that for m = 2, 1-approximation is possible and analyze the
cases of m = 3, 4.
Non-increasing job sizes, denoted decr. Ψ contains all sequences with p1 ≥ p2 ≥ · · · ≥ pn.
For m = 2, the optimal algorithm for all speeds was analyzed in [5] and for identical machines
in [14]. We prove that for any speeds this case is the same as the case with all jobs equal.
We analyze the cases for m = 2, 3, and prove some bounds for larger m.
Known optimtimal makespan, C∗max = T . For a given value T̄ , Ψ contains all sequences
with C∗max[J ] = T̄ . In this case 1-approximation semi-online algorithm is known for any
speeds, see [4].
Known maximal job size, pmax = p. For a given value p̄, Ψ contains all sequences with
max pj = p̄. It is easy to see that this restriction is equivalent to the case when the first job
is maximal, as any algorithm for that special case can be used also for the case when the
maximal job arrives later. Thus this restriction also includes non-increasing jobs. In [14] it is
shown that for identical machines, the approximation ratio is the same as when the jobs are
non-increasing. We show that this is not the case for general speeds.
Tightly grouped processing times, pj ∈ [p, αp]. For given values p̄ and α, Ψ contains all
sequences with pj ∈ [p, αp] for each j. Tight bounds for preemptive scheduling for m = 2, 3
were given in [2, 16]. Non-preemptive version for 2 and 3 identical machines was studied
in [11, 10].
Inexact partial information. In this case, some of the previously considered values (op-
timal makespan, sum of job sizes, maximal job size) is not known exactly but only up to a
certain factor. These variants were studied in [16] without preemption.

The paper [13] is probably the first paper which studied and compared several notions of
semi-online algorithms. Some combination of the previous restrictions were studied in [15]
for non-preemptive scheduling on identical machines.

We should note that there are also semi-online models that do not fit into our framework
at all. For example, the algorithm may get a hint which job is the last one, or it is allowed
to store some job(s) in a buffer.

The semi-online restrictions listed above are essentially of two kinds. The first type are
those restriction that put conditions on individual jobs, their relations, or their order. These
restrictions are closed under taking subsequences, i.e., any subsequence of a feasible sequence

4



is also feasible. The second type are those restriction where some global information is given
in advance, like

∑
pj = P or C∗max = T . These are not closed under taking subsequences, but

are closed under permuting the input sequence. We define a large class of restrictions that
includes both types of restrictions discussed above as well as their combinations. As we shall
see later, for these restriction, computation of the optimal approximation ratio is simpler.

Definition 1.1 An input restriction Ψ is proper if for any J ∈ Ψ and any subsequence I of
J there exists an end extension I ′ of I such that I ′ ∈ Ψ.

2 The optimal algorithm

Suppose that we are given a parameter r and we try to develop an r-approximation algorithm.
In the online case, we simply make sure that the current job completes by time r times the
current optimal makespan. In the semi-online case, if the restriction is not closed under taking
a subsequence, this would be too pessimistic. It may happen that the current input is not
feasible and we know that any feasible extension has much larger optimal makespan; then
we can run the current job on a slow machine. For this purpose, we define the appropriate
quantity to be used instead of current optimal makespan.

Definition 2.1 For an input restriction Ψ and an input sequence J , we define the optimal
makespan as infimum over all possible end extensions of J that satisfy Ψ:

C∗,Ψmax[J ] = inf{C∗max[J ′] | J ′ ∈ Ψ & J is a prefix of J ′}

This definition is meaningful for any input sequence (i.e., for any prefix of some J ∈ Ψ).
For J ∈ Ψ the values of C∗max[J ] and C∗,Ψmax[J ] are equal. Furthermore, for a proper restriction
Ψ, C∗,Ψmax[I] ≤ C∗,Ψmax[J ] whenever I is a subsequence of J .
Algorithm RatioStretch

Our algorithm takes as a parameter a number r which is the desired approximation ratio.
Later we show that for the right choice of this parameter, our algorithm is optimal. Given r,
we want to schedule each incoming job so that it completes at time r · C∗,Ψmax[J[j]]. If this is
done for each job, the algorithm is obviously r-approximation.

Even when we decide the completion time of a job, there are many ways to schedule it
given the flexibility of preemptions. We choose a particular one based on the notion of a
virtual machine from [4, 3]. We define the ith virtual machine, denoted Vi, so that at each
time τ it contains the ith fastest machine among those real machines M1, M2, . . ., Mm that
are idle at time τ . Due to preemptions, a virtual machine can be thought and used as a
single machine with changing speed. When we schedule (a part of) a job on a virtual machine
during some interval, we actually schedule it on the corresponding real machines that are
uniquely defined at each time.

Upon arrival of a job j we compute a value Tj defined as r ·C∗,Ψmax[J[j]]. Then we find two
adjacent virtual machines Vk and Vk+1, and time tj , such that if we schedule j on Vk+1 in the
time interval (0, tj ] and on Vk from tj on, then j finishes exactly at time Tj . We give a more
formal description of the algorithm in Appendix A.

We need to show that we can always find such machines Vk and Vk+1. Since we have
added the machines of speed 0, it only remains to prove that each job can fit on V1. This is
true for the appropriate value of r and the proof is included in Appendix C.

5



Optimality of Algorithm RatioStretch
Our goal is to show that whenever r is at least the optimal approximation ratio for

the given Ψ and s, the algorithm works. We actually prove the converse: Whenever for some
instance J the algorithm with the parameter r fails, we prove that there is no r-approximation
algorithm.

This is based on a lemma of Epstein and Sgall [6] which provides the optimal lower bounds
for online algorithms. The key observation is that on an input J , if the adversary stops the
input sequence at the ith job from the end, any r-approximation algorithm must complete
by time r times the current makespan, and after this time, in the schedule of J , only i − 1
machines can be used. This bounds the total work of all the jobs, in terms of r and optimal
makespans of the prefixes, and thus gives a lower bound on r.

To generalize this to arbitrary input restrictions, we need to deal with two issues.
First, the adversary cannot stop the input if the current part is not in Ψ. Instead,

the sequence then must continue so that its optimal makespan is the current C∗,Ψmax (or its
approximation). Consequently, the bound obtained uses C∗,Ψmax in place of previous C∗max,
which possibly decreases the obtained bound.

Second, if Ψ is not proper, this bound would not be optimal. Suppose, e.g., that Ψ contains
sequences that at each even position have jobs with size 0. Then we need to ignore these jobs
and stop the sequence only after the non-trivial jobs. To deal with that, we choose from J a
subsequence of important jobs, but bound their work in terms of values C∗,Ψmax of the prefixes
of the original sequence J . This allows us to prove that our algorithm is optimal for any
Ψ. However, we observe that if Ψ is proper, then this is not needed, as C∗,Ψmax[I] ≤ C∗,Ψmax[J ]
whenever I is a subsequence of J , and thus we only need the case where an input sequence
is considered, see Observation 2.4.

The proof of the lemma is along the lines of [6] and is given in Appendix B

Lemma 2.2 Given any randomized R-approximation semi-online algorithm A for preemptive
scheduling on m machines with an input restriction Ψ, then for any input sequence J ∈ Ψ
and for any subsequence of jobs 1 ≤ j1 < j2 < · · · < jk ≤ n we have

k∑
i=1

pji ≤ R ·
k∑

i=1

sk+1−iC
∗,Ψ
max[J[ji]].

We define rΨ to be the largest bound obtained by Lemma 2.2 for the given input, or for the
largest bound for the given speeds and any instance, or the overall bound for the restriction
Ψ.

Definition 2.3 for any vector of speeds s and any sequence of J which is an input sequence,
we define

rΨ(s,J ) = sup
1≤j1<j2<···<jk≤n

∑k
i=1 pji∑k

i=1 sk+1−i · C∗,Ψmax[J[ji]]
.

For any vector of speeds s, let rΨ(s) = supJ rΨ(s,J ); the supremum is taken over all
input sequences.

Finally, let rΨ = sups r
Ψ(s).

6



Observation 2.4 For any proper Ψ,

rΨ(s) = sup
J

P∑n
i=1 sn+1−i · C∗,Ψmax[J[i]]

,

where the supremum is taken over all initial segments of sequences in Ψ.

Thus, we will use another definition of rΨ(s,J ) for proper restrictions:

Definition 2.5 Let Ψ be proper semi-online restriction, then we redefine

rΨ(s,J ) =

∑n
j=1 pj∑n

j=1 sn+1−j · C∗,Ψmax[J[j]]
.

This definition is not consitent with previous of rΨ(s,J ), in fact J here plays role of the
sequence (pji)

k
i=1 in previous definition. The value of rΨ(s) stays same for both definitions of

rΨ(s) for proper restrictions.
With these definitions and Lemma 2.2, it is easy to prove the following theorem, see

Appendix C. Essentially, the chosen subsequence in Lemma 2.2 is taken to be the jobs on
the first virtual machines and the incoming job, and we argue that if Algorithm RatioStretch
cannot schedule the incoming jobs, Lemma 2.2 says that no (randomized) algoritm with same
aproximation ratio is able to.

Theorem 2.6 For any restriction Ψ and vector of speeds s, Algorithm RatioStretch is r ≥
rΨ(s) approximation algorithm for semi-online preemptive scheduling on m uniformly related
machines.

In particular, rΨ(s) (resp. rΨ) is the optimal approximation ratio for semi-online algo-
rithms for Ψ with speeds s (resp. with arbitrary speeds).

3 Reductions and linear programs

We have an abstract formula for rΨ(s) which gives the desired approximation ratio for any
speeds and Ψ as a supremum over a bound for all input sequences. Even if Ψ is proper, it is
not obvious how to turn this into an efficient algorithm. In this section, we develop a general
methodology how to compute the ratio using linear programs and apply it to a few cases.

Our strategy is to reduce the number of sequences J that need to be taken into account.
Typically, we show that the sequences must be sorted. Then we know what are the biggest
jobs and we can express the optimal makespans for prefixes by linear constraints in job sizes.
Maximizing the expression for rΨ(s) which gives the desired bound is then reduced to solving
one or several linear programs.

The following observation helps us to limit the set of relevant sequences.

Observation 3.1 Let Ψ be arbitrary proper restriction and s be arbitrary speed vector. Let
J and J ′ be two input sequences with n jobs. Suppose that for some b > 0:

n∑
j=1

pj = b
n∑

j=1

p′j

(∀i = 1, . . . , n) C∗,Ψmax[J[i]] ≥ bC∗,Ψmax[J ′[i]]

then r(s,J ′) ≥ r(s,J ).

7



It follows immediately from the definition of rΨ(s,J ). If some choice of a subsequence pro-
vides a bound on r(s,J ), we use the same subsequence to bound r(s,J ′), and due to the
assumptions the value cannot go down.

In particular, the observation implies that whenever Ψ is closed under permutations of
the sequence and increasing the size of the last job of a sequence cannot decrease C∗,Ψmax, the
observation implies that it is sufficient to consider sequences of non-decreasing jobs: If J
contains two jobs pk > pk+1, swaping them does not change any C∗,Ψmax[J[i]] with the exception
of C∗,Ψmax[J[k]], and that one can only increase; thus the observation applies with b = 1.

3.1 Known sum of processing times,
∑

pj = P

Here we are given a value P̄ and Ψ contains all J with P = P̄ . It can be easily verified that
C∗,Ψmax[J ] = max{C∗max[J ], P̄ /S} for any J with P ≤ P̄ .

Since we can permute the jobs, Observation 3.1 implies that we can restrict ourselves to
non-decreasing sequences J . Furthermore, we may assume that P = P̄ : We know that P ≤ P̄ ,
as otherwise J is not an input sequence. If P < P̄ , we scale up J to J ′. Observation 3.1
then applies with some b < 1, as each C∗,Ψmax[J ′[i]] = max{C∗max[J ′[i]], P̄ /S} increases by at
most the scaling factor. Finally, we observe that we can restrict ourselves to sequences J
with less than m jobs. If n ≥ m, we have C∗,Ψmax[J[i]] ≥ P̄ /S for any i and thus rΨ(s,J ) =
P/(

∑n
i=1 sn+1−i · C∗,Ψmax[J[i]]) ≤ P/(

∑n
i=1 sn+1−i · P̄ /S) = 1, using m ≤ n in the last step.

Summarizing, we can assume that J is a non-decreasing sequence of n < m jobs with
P = P̄ . (Note that this does not mean that the adversary uses fewer jobs than machines, as
he may need to release some small jobs at the end of the prefix sequence, to extend it to a
sequence in Ψ.) To obtain the worst case bound, we compute m− 1 linear programs, each for
one value of n, and take the maximum of their solutions. The linear program for given P , s,
and n has variables qi for job sizes and Oi for optimal makespans of the initial segments:

minimize r−1 =
s1On + s2On−1 + · · ·+ snO1

P
subject to
q1 + · · ·+ qn = P

P ≤ (s1 + s2 + · · ·+ sm)Ok for k = 1, . . . , n
qj + qj+1 + · · ·+ qk ≤ (s1 + s2 + · · ·+ sk−j+1)Ok for 1 ≤ j ≤ k ≤ n

qj ≤ qj+1 for j = 1, · · · , n− 1
0 ≤ q1

(2)

We can see that r−1 is independent of value P .
We now examine the special cases of m = 2, 3. The linear program is trivial for n = 1,

as we can always schedule one job optimally. So for two machines the approximation ratio is
equal to 1. We can see this also intuitively: if optimal makespan is determined by

∑
p/(s1+s2)

then the 1-approximation algorithm for known optimum works. We follow this algorithm until
it fails. In that case the optimal makespan is pmax/s1, then all other jobs are scheduled on
the slow machine and when job with size

∑
ps1/(s1 + s2) is encountered, it is scheduled on

the fast machine. Then the rest of jobs is scheduled on second machine.

8



For m = 3, it remains to solve the case when n = 2. The ratio is:

r
P

pj=P (s1, s2) =



s1(s1 + s2)
s2

1 + s2
2

for s2
1 ≤ s2(s2 + s3)

(s1 + s2)(s1 + s2 + s3)
s1(s1 + s2 + s3) + s2(s1 + s2)

= 1 +
s2s3

s1(s1 + s2 + s3) + s2(s1 + s2)

for s2
1 ≥ s2(s2 + s3)

The overall worst case ratio for three machines is 2+
√

2
3 ≈ 1.138 for s1 =

√
2, s2 = s3 = 1.

This should be compared with the unrestricted online case where the optimal ratio for two
machines is 4/3 and for three machines 1.461.

3.1.1 Padding

We prove the padding lemma that shows that knowing the total size of jobs does not improve
the overall approximation ratio. This may sound surprising, as for two machines, knowing
the sum allows to generate an optimal schedule, and also for three machine the improvement
is significant.

We say that Ψ allows scaling if for any J ∈ Ψ and b > 0, the modified sequence J ′ =
(bpj)n

j=1 satisfies J ′ ∈ Ψ. We say that Ψ allows padding if for any J ∈ Ψ, there exists ε0 > 0
such that any sequence J ′ created by extending J by some number of equal jobs of size
ε < ε0 at the end satisfies J ′ ∈ Ψ.

Theorem 3.2 Suppose that Ψ allows scaling, padding, and is closed under taking prefixes.
Let J ∈ Ψ and let s be arbitrary. Then for any δ > 0 there exists J ′ and s′ such that

rΨ,
P

pj=P (s′,J ′) ≥ rΨ(s,J )/(1 + δ).

Consequently, rΨ,
P

pj=P = rΨ.

Proof: We fix s, J , and P̄ given to the algorithm with the restriction
∑
pj = P . We proceed

towards constructing the appropriate s′ and J ′.
Since Ψ allows scaling, the value C∗,Ψmax[J ] is multiplied by b when J is scaled by b.

Consequently, the value of rΨ(s,J ) does not change when J is scaled. Let J ′ = (p′j)
n
j=1 be

the sequence J scaled so that
∑n

j=1 p
′
j = P̄ . Then rΨ(s,J ′) = rΨ(s,J ).

Choose a small σ > 0 so that σ < sm and σ < δS/n. Let O1 = p′1/s1, i.e., the optimal
makespan after the first job. Let s′ be the sequence of speeds starting with s and continuing
with n + P̄ /(O1σ) of values σ. The first condition on σ guarantees that s′ is monotone and
thus a valid sequence of speeds. The second condition guarantees that the added machines are
sufficiently slow, so that for any sequence of at most n jobs, in particular for the prefixes of J ′,
the makespan decreases by at most the factor of (1+δ). Since Ψ is closed under taking prefixes,
C∗,Ψmax equals C∗max for any sequence. Thus we conclude that rΨ(s′,J ′) ≥ rΨ(s,J ′)/(1 + δ).

Finally, we have added sufficiently many new machines so that for any sequence of at
most n jobs, the empty new machines can accommodate total work of P̄ without exceeding
makespan O1. This implies that for all prefixes of J ′, C∗,Ψ,

P
pj=P

max [J ′[i]] = C∗,Ψmax[J ′[i]; thus

rΨ,
P

pj=P (s′,J ′) = rΨ(s′,J ′).
Chaining the inequalities at the end of the previous three paragraphs yields the statement

of the theorem. �

9



3.2 Known maximal job size, pmax = p

Here we are given size of maximal job p̄. As noted before, any algorithm that works with first
job being the maximal one can be easily changed to a general algorithm for this restriction.
First it virtually schedules the maximal job and then it compares processing time of each job
to p̄. If it is equal for the first time, it schedules the job to the time slot(s) it reserved by
virtual scheduling at beginning. Other jobs are scheduled in the same way in both algorithms.
Thus we can work with the equivalent restriction where the first job is maximal. Then
C∗,Ψmax[J ] = C∗max[J ] for any input sequence. Furthermore, by Observation 3.1, the other jobs
can be swapped as in previous case, and we can maximize only over non-decreasing sequences
(with the exception of the first job).

Again we want to solve m linear programs, one for sequences of n jobs for each n < m
and one for n ≥ m jobs. We will show the program for n ≥ m jobs. Program for n = m can
be derived by setting q1 = 0, and programs for smaller n are in fact programs for n = m, as
we do not use last m− n machines.

We want to solve following non-linear programs that can be linearized by theirs homo-
geneity. The variable q1 represents the total processing time of jobs between p1 and pn−m+2.

maximize r =
P

s1Om + s2Om−1 + · · ·+ smO1

subject to
p+ q1 + · · ·+ qm = P
p+ q1 + · · ·+ qk ≤ (s1 + s2 + · · ·+ sm)Ok for k = 1, . . . ,m

p+ qj+1 + qj+2 + · · ·+ qk ≤ (s1 + s2 + · · ·+ sk−j+1)Ok for 1 ≤ j ≤ k ≤ m
qj ≤ qj+1 for j = 2, · · · ,m− 1
0 ≤ q1

qm ≤ p
0 ≤ q2

(3)

Because of homogenity r is independent of p, so we can choose p to be a variable and the
denominator of the objective function to be a constant. Thus we add following constraint

1 = s1Om + s2Om−1 + · · ·+ smO1

Further simplifications
Now, after examining the linear programs, we can further restrict the set of sequences.

We can assume that the last job is equal to first (maximal) job: The sequence is sorted so
that the first job is the maximal job and last job is second largest job in the sequence. So
we can replace both first and last jobs with jobs of size (pmax + pn)/2. As pn is used only
to compute optimum of whole sequence, and it occurs in all inequalities only with pmax, the
optima may not increase and Observation 3.1 applies again.
Small number of machines. For two machines we get approximation ratio

rpmax=p(s1, s2) =
(s1 + s2)2 + s2

1 + s1s2

(s1 + s2)2 + s2
1

= 1 +
s1s2

(s1 + s2)2 + s2
1

The is maximum is 1.2 for s1 = s2.

10



For three machines we get

rpmax=p(s1, s2, s3) =


S2 + s1S

S2 + s2
1

= 1 +
s1(s2 + s3)
S2 + s2

1

for s1s2 ≥ s3S

S2 + 2s1S

S2 + 2s2
1 + s1s2

= 1 +
s1s2 + 2s1s3

S2 + 2s2
1 + s1s2

for s1s2 ≤ s3S

The first case is optimized by s1 = s2 = 1, s3 =
√

2−1. This gives ratio of (1+
√

2)/2 ≈ 1.207.
The second case is optimized by s1 = 2, s2 = s3 =

√
3, giving the ratio (8+12

√
3)/23 ≈ 1.252.

3.3 Non-increasing jobs, decr

We are also interested in sequences of non-increasing jobs, as this is one of the most studied
restrictions. Now Ψ contains sequences which have pj ≥ pj+1 for all j. We cannot swap jobs,
however, we can take two adjacent jobs j and j + 1 and replace both of them by a job of the
average size (pj + pj+1)/2. By Observation 3.1, the approximation ratio does not decrease.
Similarly, we can replace longer segement of jobs with only two distinct sizes by all jobs of
the same average size. Repeating this process we can conclude that for the worst case for a
given set of speeds it is sufficient to consider sequences where all jobs have equal size. We
only need to determine the length which gives the highest ratio.

W.l.o.g. all jobs have pj = 1. Then C∗,Ψmax[J ] = C∗max[J ] = n/Sn. (Recall that si = 0 for
i > m and Sk =

∑k
i=1 si.) Using this for the prefixes, we obtain from 2.4

rdecr(s,J ) =
n∑n

k=1
ksn−k+1

Sk

.

Having this formula, it would appear to be easy to find the worst case speeds for each n and
thus to obtain the overall ratio. This amounts to an intriguing geometric question which we
are unable to solve. Suppose we have numbers xi, yi, i = 1, . . . , n such that xiyi = i for all i and
each sequence xi and yi is non-decreasing. Consider the union of rectangles [0, xi]× [0, yn+1−i]
over all i; this is a sort of staircase part of the positive quadrant of the plane. What is the
smallest possible area of this union of rectangles? After some numerical experiments, we
conjecture that the optimum has y1 = y2 = . . . = yk and xk+1 = xk+2 = . . . = xn for some
k. This would imply that the overall competitive ratio is the same as for identical machines,
which is about 1.366 by [14].

Let us denote rn = sups r(s,J ). We can prove certain relations between these values. In
particular, for any integers a and n, ran ≥ rn, and supn′ rn′ ≤ n+1

n rn. For the first proof,
we replace a sequence of speeds from the bound for rn by a sequence where each speed is
repeated a times, and the bound follows by manipulating the formula for rn. The converse
inequality is shown by replacing the speeds for rn′ by a shorter sequence where each new
speed is a sum of a segment of a speeds in the original sequence, for a suitable a. Details are
omitted due to the space limit. Together these relations show that whenever we are able to
evaluate some rn for a fixed n, the overall ratio is between rn and n+1

n rn.
For n = 2 we get formula:

rdecr(s1, s2, s3) =
(
s2

2s1
+

s1

s1 + s2

)−1

Theis maximum is r2 = 4
7

√
2 + 2

7 ≈ 1.094 for s2 = (
√

2− 1)s1.

11



For n = 3 the formula is

rdecr(s1, s2, s3) =
(
s3

3s1
+

2s2

3(s1 + s2)
+

s1

s1 + s2 + s3

)−1

The maximum is r3 = 1.2 for s1 = s2 = 1, s3 = 0. This yields global upper bound of
rn ≤ 4

3 ·
6
5 = 1.6. By a computer-assisted proof we have shown that r4 = (

√
7 + 1)/3 ≈ 1.215

yielding global upper bound of rn ≤ 5
12(
√

7 + 1) ≈ 1.52.

3.4 Other variants

In the full version of the paper we will demonstrate a few other semi-online restrictions. At
this point, this becomes a somewhat mechanical exercise; we have not found any surprising
phenomenon in the cases we have examined so far.

If Ψ is given as an intersection of two standard restrictions, the same methods for reducing
the number of candidates for the worst case instances apply. Thus typically we get again a
linear program or an expression as for the individual restrictions, with additional constraints.

If some value from previous restrictions is given not exactly but it is only known to belong
to some interval, typically it means that the linear program is weakened by relaxing some
equation to a pair of inequalities, or by relaxing some inequality. Then the optimal ratio is
again computed using a linear program.

The case of tightly grouped jobs is more interesting. We set up the usual linear program
with additional constraints on variables corresponding to individual jobs. The linear program
also has a variable for the sum of processing times of the sequence of small jobs, before the
last large jobs. If the processing times are in [p, αp], this variable needs to be constrained to
a union of intervals [p, αp], [2p, 2αp], etc. Eventually the intervals start to overlap, thus there
is a finite number of them and we can solve one linear program for each interval. However,
the number of intervals goes to infinity as α goes to 1. This exactly corresponds to analytical
expressions from [11, 10], which have infinite number of cases for α close to 1.
Conclusions. We have provided a general algorithm for semi-online preemptive scheduling.
Now, instead of re-inventing the whole machinery for new cases of interest and going through
the ad hoc case analysis, we can just analyze the appropriate linear programs as we have
demonstrated on several special cases.

The most interesting question in this area is if some similar results can be proven for
non-preemptive algorithms. There we do not have the same understanding of the optimal
makespan, so perhaps one can only hope for some reasonably good bound on the competitive
ratios. The current best overall upper bounds are 5.828 for deterministic and 4.311 for
randomized algorithms, while the lower bounds are only 2.438 and 2. Also for a fixed number
of machines very little is known.

References

[1] B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm for preemptive on-line
scheduling. Oper. Res. Lett., 18:127–131, 1995.

[2] D. Du. Optimal preemptive semi-online scheduling on two uniform processors. Inform.
Process. Lett., 92(5):219–223, 2004.

12



[3] T. Ebenlendr, W. Jawor, and J. Sgall. Preemptive online scheduling: Optimal algorithms
for all speeds. In Proc. 13th European Symp. on Algorithms (ESA), volume 4168 of
Lecture Notes in Comput. Sci., pages 327–339. Springer, 2006.

[4] T. Ebenlendr and J. Sgall. Optimal and online preemptive scheduling on uniformly
related machines. In Proc. 21st Symp. on Theoretical Aspects of Computer Science
(STACS), volume 2996 of Lecture Notes in Comput. Sci., pages 199–210. Springer, 2004.

[5] L. Epstein and L. M. Favrholdt. Optimal preemptive semi-online scheduling to minimize
makespan on two related machines. Oper. Res. Lett., 30:269–275, 2002.

[6] L. Epstein and J. Sgall. A lower bound for on-line scheduling on uniformly related
machines. Oper. Res. Lett., 26(1):17–22, 2000.

[7] T. F. Gonzales and S. Sahni. Preemptive scheduling of uniform processor systems. J.
ACM, 25:92–101, 1978.

[8] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical J.,
45:1563–1581, 1966.

[9] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.,
17:263–269, 1969.

[10] Y. He and G. Dósa. Semi-online scheduling jobs with tightly-grouped processing times
on three identical machines. Discrete Appl. Math., 150(1):140–159, 2005.

[11] Y. He and G. Zhang. Semi on-line scheduling on two identical machines. Computing,
62(3):179–187, 1999.

[12] E. Horwath, E. C. Lam, and R. Sethi. A level algorithm for preemptive scheduling. J.
ACM, 24:32–43, 1977.

[13] H. Kellerer, V. Kotov, M. G. Speranza, and Z. Tuza. Semi on-line algorithms for the
partition problem. Oper. Res. Lett., 21:235–242, 1997.

[14] S. Seiden, J. Sgall, and G. J. Woeginger. Semi-online scheduling with decreasing job
sizes. Oper. Res. Lett., 27:215–221, 2000.

[15] Z. Tan and Y. He. Semi-on-line problems on two identical machines with combined
partial information. Oper. Res. Lett., 30:408–414, 2002.

[16] Z. Tan and Y. He. Semi-online problems on identical machines with inexact partial
information. In Proc. 11th Annual International Computing and Combinatorics Conf.
(COCOON), volume 3595 of Lecture Notes in Comput. Sci., pages 297–307. Springer,
2005.

A The Optimal Algorithm: Description

To facilitate the proof, we maintain an assignment of scheduled jobs (and consequently busy
machines at each time) to the set of virtual machines, i.e., for each virtual machine Vi we
compute a set Si of jobs assigned to Vi. Although the incoming job j is split between two

13



different virtual machines, at the end of each iteration each scheduled job belongs to exactly
one set Si, since right after j is scheduled the virtual machines executing this job are merged
(during the execution of j). The sets Si serve only as means of bookkeeping for the purpose
of the proof, and their computation is not an integral part of the algorithm.

See Figure 1 for an example of a step of the algorithm.

R · OPT1

R · OPT2

R · OPT1

R · OPT2

Figure 1: An illustration of a schedule of two jobs on three machines produced by RatioStretch.
Vertical axis denotes the time, horizontal axis corresponds to the speed of the machines. The
pictures on the left depict the schedule on the real machines, with bold lines separating the
virtual machines. The pictures on the right show only the idle time on the virtual machines.
The top pictures show the situation after the first job, with the second job being scheduled on
the first two virtual machines. The bottom pictures show the situation with after the second
job is scheduled and virtual machines updated.

At each time τ , machine Mi′ belongs to Vi if it is the ith fastest idle machine at time τ , or
if it is running a job j ∈ Si at time τ . At each time τ the real machines belonging to Vi form
a set of adjacent real machines, i.e., all machines Mi′ ,Mi′+1, . . . ,Mi′′ for some i′ ≤ i′′. This
relies on the fact that we always schedule a job on two adjacent virtual machines which are
then merged into a single virtual machine during the times when the job is running, and on
the fact that these time intervals (0, Tj ] increase with j, as adding new jobs cannot decrease
the optimal makespan.

Let vi(t) denote the speed of the virtual machine Vi at time t, which is the speed of the
unique idle real machine that belongs to Vi. Let Wi(t) =

∫ t
0 vi(τ)dτ be the total work which

can be done on machine Vi in the time interval (0, t]. By definition we have vi(t) ≥ vi+1(t)
and thus also Wi(t) ≥ Wi+1(t) for all i and t. Note also that Wm+1(t) = vm+1(t) = 0 for all
t.
Algorithm RatioStretch. Let a parameter r ≥ rΨ(s1, . . . , sm) be the optimal objective value

14



or its approximation. Initialize T0 := 0, Si := ∅, vi(τ) := si, and vm+1(τ) := 0 for all
i = 1, 2, . . . ,m and τ ≥ 0.
For each arriving job j, compute the output schedule as follows:

(1) Let Tj := r · C∗,Ψmax[(pi)
j
i=1].

(2) Find the smallest k such that Wk(Tj) ≥ pj ≥ Wk+1(Tj). If such k does not exist,
then output “failed” and stop. Otherwise find time tj ∈ [0, Tj ] such that Wk+1(tj) +
Wk(Tj)−Wk(tj) = pj .

(3) Schedule job j on Vk+1 in time interval (0, tj ] and on Vk in time interval (tj , Tj ].
(4) Set vk(τ) := vk+1(τ) for τ ∈ (tj , Tj ], and vi(τ) := vi+1(τ) for i = k + 1, . . . ,m and

τ ∈ (0, Tj ]. Also set Sk := Sk ∪ Sk+1 ∪ {j}, and Si := Si+1 for i = k + 1, . . . ,m.
We leave out implementation details. We only note that are piecewise linear with at most

2n parts. Thus it is possible to represent and process them efficiently. The computation of
Tj is efficient as well. To comput the parameter r, we need to design effective computation
of r for every particular restriction Ψ. In our applications we can use r = rΨ(s1, . . . , sm) as
the optimal approximation can be computed for fixed speeds using linear programs.

B Proof of Lemma 2.2

Having a witness sequence J that forbids approximation ratio R according to Lemma 2.2,
adversary will submit jobs from this sequence one by one until it finds that makespan of
algorithm’s output is larger than RC∗,Ψmax[Ji], where Ji is sequence of jobs submitted so far.
Then it has to find J ′ = argminJ ′⊇Ji

{C∗,Ψmax[J ′] | J ′ ∈ Ψ} (or some good approximation if
minimum does not exist) and finishes the input sequence with jobs from J ′ \Ji. Algorithm’s
makespan will not decrease, and J ′ sequence ensures that C∗,Ψmax will not increase. This way
adversary wins the game and proves that algorithm is not R-competitive.

Fix a sequence of random bits used by A. Let Ti denote the last time when at most i
machines are running the jobs from subsequence j1, j2, . . . , jk. First observe that

k∑
i=1

pji ≤
k∑

i=1

siTi. (4)

During the time interval (Ti+1, Ti] at most i machines are busy with jobs from (j`)k
`=1, and

their total speed is at most s1 + s2 + . . . + si. Thus the maximum possible work done on J
in this interval is (Ti − Ti+1)(s1 + s2 + . . .+ si). Summing over all i, we obtain

∑m
i=1 siTi. In

any valid schedule of J all the jobs are completed, so (4) follows.
Since the algorithm is online, the schedule for J[ji] is obtained from the schedule for J by

removing the jobs j > ji. At time Ti there are at least i jobs from (j`)k
`=1 running, thus at

least one job from (j`)k−i+1
`=1 is running. So we have Ti ≤ CA

max[J[jk−i+1]] for any fixed random
bits. Averaging over random bits of the algorithm and using (4), we have

k∑
i=1

pji ≤ E

[
k∑

i=1

siC
A
max[J[jk−i+1]]

]
=

k∑
i=1

siE
[
CA

max[J[jk−i+1]]
]
.

Since A is R-competitive, i.e., E[CA
max[J[jk−i+1]]] ≤ R · C∗,Ψmax[J[jk−i+1]], the lemma follows,

reindexing the sum on the right-hand side backwards. �

15



C Proof of Theorem 2.6

If RatioStretch schedules a job, it is always completed at time Tj ≤ r · C∗,Ψmax[(pi)n
i=1]. Thus

to prove the theorem, it is sufficient to guarantee that the algorithm does not fail to find
machines Vk and Vk+1 for the incoming job j. This is equivalent to the statement that there
is always enough space on V1, i.e., that pj ≤W1(Tj) in the iteration when j is to be scheduled.
Since Wm+1 ≡ 0, this is sufficient to guarantee that required k exists. Given the choice of k, it
is always possible to find time tj as the expression Wk+1(tj) +Wk(Tj)−Wk(tj) is continuous
in tj , for tj = 0 it is equal to Wk(Tj) ≥ pj , and for tj = Tj it is equal to Wk+1(Tj) ≤ pj .

Consider now all the jobs scheduled on the first virtual machine, i.e., the set S1. Let
j1 < j2 < · · · < jk−1 denote the jobs in S1, ordered as they appear on input. Finally, let
jk = j be the incoming job.

Consider any i = 1, . . . , k and any time τ ∈ (0, Tji ]. Using the fact that the times Tj are
non-decreasing in j and that the algorithm stretches each job j over the whole interval (0, Tj ],
there are at least k − i jobs from S1 running at τ , namely jobs ji, ji+1, . . . , jk−1. Including
the idle machine, there are at least k + 1 − i real machines belonging to V1. Since V1 is the
first virtual machine and the real machines are adjacent, they must include the fastest real
machines M1, . . . , Mk+1−i. It follows that the total work that can be processed on the real
machines belonging to V1 during the interval (0, Tjm ] is at least s1Tjm +s2Tjm−1 + · · ·+smTj1 .
The total processing time of jobs in S1 is pj1 + pj2 + · · · + pjk−1

. Thus to prove that jk can
be scheduled on V1 we need to verify that

pjk
≤ s1Tjk

+ s2Tjk−1
+ · · ·+ skTj1 − (pj1 + pj2 + · · ·+ pjk−1

).

Using Tji = rC∗,Ψmax[J[ji]], this is equivalent to the conclusion of Lemma 2.2

k∑
i=1

pji ≤ r ·
k∑

i=1

sk+1−iC
∗,Ψ
max[J[ji]].

By the choice of r in the algorithm we know that there exist an semi-online r-approximation
algorithm, thus Lemma 2.2 guarantees that the inequality indeed holds. �

16


