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Anisotropic L?—estimates of weak solutions to the
stationary Oseen-type equations in 3D-exterior
domain for a rotating body

S.Kracmar, S.Necasové and P.Penel

Abstract

We study the Oseen problem with rotational effect in exterior three-dimensional
domains. Using a variational approach we prove existence and uniqueness theo-
rems in anisotropically weighted Sobolev spaces in the whole three-dimensional
space. As the main tool we derive and apply an inequality of the Friedrichs-
Poincaré type and the theory of Calderon-Zygmund kernels in weighted spaces.
For the extension of results to the case of exterior domains we use a localization
procedure.

1 Introduction

1.1 Formulation of the problem

In a three-dimensional exterior domain 0 C R3, the classical Oseen problem [28§]
describes the velocity vector v and the associated pressure 7 by a linearized version
of the incompressible Navier-Stokes equations as a perturbation of v, the velocity at
infinity; v, is generally assumed to be constant in a fixed direction, say the first axis,
Voo = |Voo|€1. In the next we denote |v| by k, and we will write the Oseen operator
k 0yv. On the other hand it is known that for various flows past a rotating obstacle,
the Oseen operator appears with some concrete non-constant coefficient functions,
e.g. a(x) = w X x, where w is a given vector, see [16, 27]; in view of industrial
applications a(x) can also play the role of an “experimental” known velocity field, see
[18].

This paper is devoted to the study of the following problem in ) for general
non-solenoidal vector function u = u (x) and scalar function p = p (x):

—vAu+kdu— (wxx)-Vu+wxu+Vp = f in Q (1.1)
divu = ¢ in Q (1.2)

u—0 as [x|]— o (1.3)

u = (wxx)—ke ond (1.4)

where w = (0, 0, 0) is a constant vector, v, k and @ are some positive constants, and
f = f(x) a given vector function, g = g (x) a given scalar function.



We restrict ourselves to the assumption of compact support of g. The system
arises from the Navier-Stokes system modelling viscous fluid around a rotating body
which is moving with a given non-zero velocity in the direction of its axis of rotation.
An appropriate coordinate transform and a linearization yield in the stationary case
equations (1.1) and (1.2), for details see [3, 16]. The third term together with the
forth one (the Coriolis force w x u) in (1.1) arise from the influence of rotation of the
body.

Let us begin with some comments and relevant process of analysis of the problem
(1.1)-(1.4).

e The governing equations of fluid motion are stationary and linear, but in un-
bounded domains the convective operators, k0, and (w x x) - V, cannot be
treated as perturbations of lower order of the Laplacian.

e The fundamental tensor (similarly as the fundamental tensor to the Oseen prob-
lem) exhibits the anisotropic behavior in the three-dimensional space.To reflect
the decay properties near the infinity we introduce the following weight func-
tions:

0 (%) =52 (x) = (1+06r)" (1 +es)”,

with r=7 (x) =|x|=(30_, 22)/2, s=s(x)=r—x1, x €R? £, > 0, a,f € R.
Discussing the range of the exponents a and ( the corresponding weighted
spaces L4 (R?’; 77;;) give the appropriate framework to test the solutions to (1.1)-
(1.3). This paper is concerned with ¢ = 2. Let us mention also that 1§ belongs
to the Muckenhoupt class Ay of weightsin R3if -1 < 8 < 1land -3 < a+3 < 3.

e In this paper we will prefer the variational approach. To avoid the difficulties
with the pressure part of the solution p we solve firstly the problem in R?. Using
the theory of Calderon-Zygmund integrals in corresponding weighted spaces we
determine the pressure p of the problem in R? to be from the same space as the
right-hand side of (1.1). This first step cannot be done directly in an exterior
domain. Then we apply the variational approach for the velocity part of the
solution.

e For the extension of the results to the case of exterior domains we use the
localization procedure, see |20].

1.2 Short bibliographical remarks

The weighted estimates of the solution to the stationary classical Oseen problem
were firstly obtained by Finn in 1959, see [9]. The variational approach to the model
equation —v Au+ kOju = f in an exterior domain in anisotropically weighted L?-
spaces was applied by Farwig, see [1]. The same variational viewpoint has been also
applied in |25, 26| by Kra¢mar and Penel to solve the generic scalar model equation
—vAu+koiu—a-Vu = f with a given non-constant and, in general, non-solenoidal



vector function a in an exterior domain. Both model equations are assumed with
boundary conditions v =0 on JQ? and u — 0 as |x| — oo.

Another common approach to study the asymptotic properties of the solutions to
the Dirichlet problem of the classical steady Oseen flow is the use of the potential
theory, i.e. convolutions with Oseen fundamental tensor and its first and second
gradients for the velocity (or with the fundamental solution of Laplace equation for
the pressure): the L?-estimates in anisotropically weighted Sobolev spaces in R? were
derived by Farwig 2], the Li%-estimates in these spaces were proved in R3 and R" by
Kra¢mar, Novotny and Pokorny in [23] and [24], respectively. Different approach was
used by Kobayashi and Shibata [19].

The fundamental solution to rotating Oseen problem in the time dependent case
is known due to Guenther and Thomann, see [30], but, unfortunately, the respective
stationary kernel is not seem to be of Calderon-Zygmund type. The Littlewood-
Paley decomposition technique offers another approach for an L%-analysis: Thus, L9-
estimates in non-weighted spaces were derived for the rotating Stokes problem by
Farwig, Hishida, and Miiller [5], and for the rotating Oseen problem in R? by Farwig
[3, 4]. L%setting with non-integrable right-hand side in non-homogeneous case was
investigated by Kra¢mar, Nec¢asova and Penel in [22|. The Littlewood-Paley decom-
position technique for Li-weighted estimates with anisotropic weight functions was
used by Farwig, Krbec and Necasova [7, 8|.

Another approach based on the use of the non-stationary equations in both the
linear and also non-linear cases is proposed by Galdi and Silvestre in [12, 11, 13].

We would like also to mention that the problem was solved by the semigroup
theory in L2-setting in particular by Hishida [17], and then the respective results
were extended to L7 case by Geissert, Heck and Hieber [14].

1.3 Basic notations and elementary properties

Let us outline our notations. Let S’ be the space of the moderate distributions in
R3. Let € be an exterior domain with a boundary of the class C?, and

Wi (Q) = {u e L, () : Due LI (Q), [I| =m)}

1/q —~
with the seminorm [ul,, = (Zm:m Jo |u|q> . It is known that W™ (Q) is a
Banach space (and if ¢ = 2 the space H™ () = Wm2 (Q) a Hilbert space), provided
we identify two functions us, us whenever |u; — us|,, . = 0, ie. uy, uy differ (at most)

on the polynomial of the degree m — 1. As usual, we denote by Wg"’q () the closure
of C&° () in W™ (Q) .

Let (L2 (Q; w))® be the set of measurable vector functions £ = (fi, fa, f3) in ©
such that

1112 0, = /Q £ w0 dx < oo,

We will use the notation L2 ;(€2) instead of (L? (; 77%))3 and ||- |, 5 instead of
|- H(L?(Q-n“))?’ . Let us define the weighted Sobolev space H' (€; 7§, ngll) as the set
S5



of functions u € La0 5, (Q2) with the weak derivatives d;u € L7, 5 (Q). The norm of
uecH! (Q Nes M5, ) is given by

1/2
2 2 «
HuHHl(Q;nZ‘g,ngll) - (/Q|u] 775(? dX—l-/Q|Vu| 77,311 dx) .

As usual, ISI1 (Q; Nes M3, ) will be the closure of C{° () in H! (Q 776077761) , where

C3 (Q)is (C5° (Q))?, and H! (9 150, ng") will be the closure of CF° (©) in H'(€; 75,75 ) .
For simplicity, we shall use the following abbreviations:

L: 5(Q) instead of (L2 (; 77%))3

|- ||2,a,ﬁ;9 instead of || - ||(L2(Qna))3

ﬁi,ﬁ () instead of  H! (% m5=1,n5)

V.5(Q) instead of Hl(Q; g~ 7775)

Vas () instead of  H! (2 n5~"n3)
We shall use these last two Hilbert spaces for « > 0, § > 0, a4+ < 3. If no
confusion can occur, we omit the domain in the notation of the norm |- |, , 5. - The

notation H' () and H' () mean, as usual, the non-weighted spaces (H' (€; 1, 1))3

and (}}1 (Q; 1, 1))3, respectively. As usual, omitting the domain © in the notation of
spaces will indicate that Q = R3, so e.g. H = H' (R?).

Concerning the weight functions 7§ , we will use two notations 7§ (z) and ngg(x)
taking the advantages of the following remark:

Remark 1.1 Let us note that for 772"5 and for any 01, d2,£1,62 > 0 one has

0452 0452

Coin * M52 <320 < Conax * ML,

Cmin = min (1, (61/d2))-min(1, (81/82) )y Cmax = max (1, (81 /02)%) - max(1, (51/52)ﬁ).
The parameters § and ¢ are useful to re-scale separately the isotropic and anisotropic
parts of the weight function 7.

We also use the notation of sets B = {x € R3; |x| < R}, B® = {x € R3; |x| > R},
Qp = BrNQ, QF = BRNQ, Bi! = BMNBg,, Q! = BN, for positive numbers
R, Ry, R,.

1.4 Main results

In the first part of the paper (chapters 2-4) we study the problem in R3. Let us
assume for a moment that pressure p is known. In solving the problem (1.1)-(1.3)
with respect to u and p by means of a pure variational approach, we shall deal with
the following equation:

|Vu|2wdx+y/

R3

k
uVu-Vwdx — —/ lu|? 0w dx (1.5)
R3 2 R3
1

—= |u|2div(w[w><x])dx:/ fuwdx—/ Vp-uwdx
2 Jrs R3 R3
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as we get integrating formally the product of (1.1) by wu with w an appropriate
weight function. First, let us note that div (77/3Y [w x x]) equals zero for w = nj. The
left hand side can be estimated from below by:

1
v \Vul” wdx + —/ u)? (—V|Vw|2 Jw — kdyw) dx (1.6)
2 R3 2 R3
Because the term —v \Vw|2 Jw — kojw is known explicitly, we have the possibility to
evaluate it from below by a small negative quantity in the form —C' 77‘5":11 without any
constraint in s(-) (see Lemma 2.5).

An improved weighted Friedrichs-Poincaré type inequality in }Oli 5 18 necessary.
The obtained inequality allows us to compensate by the viscous Dirichlet integral the
“small” negative contribution in the second integral of (1.6). We finally prove the
existence of a weak solution (1.1) - (1.3) in V, 3 by the Lax-Milgram theorem.

The main results of the first part of the paper can be summarized in the following
theorems (parameters «, 3, §, € are specified in Section 1.3):

Theorem 1.2 Let 5 > 0. There are positive constants Ry, co, ¢1 depending on «,
B, 8, e (explicit expressions of these constants are given by Lemma 2.3, essentially
co=0(E?4+062% and ¢y = O(e157Y) for § and e tending to zero) such that for all

VGHé’g

V120 sy < / Vv dx + e / vPngdx.  (L7)
Br, BEo

Theorem 1.3 (Euzistence and uniqueness) Let 0 < <1, 0<a <y 3, f € L2, 4,
g € W) with suppg = K cC R, and Jgs g dx = 0; y1 will be given in Lemma 4.3.
Then there ezists a unique weak solution {u, p} of the problem (1.1) - (1.8) such that
ueVag, pell, , Vpell,,  ; and

[l 015+ 190505 + 12051 + 19Pl50015 < C (Il agas + llgllyz) -

In the second part of the paper (chapters 5, 6) we extend the results of the first
part onto exterior domains.

Theorem 1.4 Let Q C R3 be an exterior domain and 0 < 3<1,0< a <y, -8, n
is given in Lemma 4.8, f € Liﬂﬁ Q) , g€ VVOI’2 (Q), with suppg = K CC 2 and
Jo9dx =0 . Then there exists a weak solution {u,p} of the problem (1.1) - (1.4)
such that u € Vo (), pe L2 5., (Q), Vpe L2, ;(Q) and

Iy a1+ V050 + 1pllsp1 + 9Pl as1s < € (Il 0p0s+ lglliz)



2 Friedrichs-Poincaré inequality

In this section we derive an inequality of the Friedrichs-Poincaré type in weighted
Sobolev spaces. We also recall some necessary technical assertions, for more details
see Kra¢mar and Penel [25].

Proposition 2.1 For arbitrary o, 3 >0 and x € R3, x # 0 :
Ang (x) > 26min (1, 8) e dn§7; (x)

Proof.  We introduce $* = min(3, 1) in an explicit expression of Ang:
1+es 1+es S
Ang = 22— — ad? 203e—
s {(a 14 or “ + or + 2088 87‘

1
F2B(8 - 1)~ (1+0r)

1
+2a 6% (1 + 5) o + (1 -3 +5*)25§(1 +5r)}n§_11,

for r > 0. We denote the five terms in { } by T3, Ts, ..., Ts, and overwrite the previ-
ous relation as An§ = {[T1 + Ty] + T + [T5 + (1 — 5*) T5] +6*T5} n5_{. Observing
that Ts > 23¢9, the proposition is trivial. O

Proposition 2.2 Let o > 0, 3> 0,5 >0, e > 0 and k > 1. Then for x € R3,
x| > [67! - (25)_1| (k—1)"":

Vo ()" < 250e (ot 0)° (512 (0)) (2.8)

Leta>0,3>0,0>0,e>0and (3—a)(2c —§) > 0. Then forx € R x # 0:
a 2 2 ( a—-1/2 2
[V ()| < (0 +282)” (43713 () (2.9)

Proof. 1f =0 and a = 0 then both inequalities (2.8) and (2.9) are valid. Let us
concentrate on the nontrivial cases:

For r > 0, s € [0,2r], we have that dg/Jds > 0, where g is a function defined by
relations:

2

Vs GI° = gl ()7 () (13 ()
14e€s s 1447\ s
062(52 ( ) + 20&666; + 2ﬁ2€2 ( ) ;

g(s,7) 1+ 0r 1+e¢s

So, g(s,) is increasing as a function of s and

G(r) = max g(s,7) =g (2rr) (2.10)
s€[0,2r]
142 1
= 2B e 1432 0T < k(o v )0

1+ or 14+ 2er —

for k > 1 and r > !5_1 - (25)71‘ (k —1)"". So, inequality (2.8) is proved.
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To justify the second inequality (2.9), we observe that for the given values of «, £,
J, € and for r > 0, G(r) < G(0). 0

Next we derive an inequality of the Friedrichs-Poincaré type in the space H}l g It
is necessary for our aim to get expressions of constants in this inequality. It follows
from Proposition 2.1

Lemma 2.3 Let >0, 3 >0, a+ (3 <3, k> 1. Let 6 and € be arbitrary positive
constants, such that (f — a)(2e —6) > 0. Then for all ueH, 4

2
[ull3.01 51 < coll VUl Br,ll3 .5+ c1 || Vu| B (2.11)

||2,o¢,ﬁ ?

where cq = i(aé + 2652 /(BB*0e)]?, e = [(26) / (0€)] - [(a+ B) / (BB*)]> and Ry >
67— (2) 7| (k= 1)”

Remark 2.4 Let us observe that if additionally § < 2¢ and 1 < k <2e¢/6+9/ (2¢) —1
then ¢y > ¢;.

Proof of Lemma 2.3 Due to the density of Ci° in ISIiﬁ it is sufficient to prove the
inequality for all u € C{°. From Proposition 2.1 it follows that for v € Cg°

2ﬁ6*65/ A 77“ 1dx</ V2Ang dx
R3\B, R3\B,
= —2/ VVV-Vnng—I—/ VQVng-ndS
R3\B, aBp
< 55*55/ o ldx + —— / Vv|© |V —otlax
- 77ﬁ 1 ﬁﬁ Se ’ | ’ 775| N_p+1

- / v? Vi§nds.
oB,

Hence, because the surface integral is a value of the order O (p?), we have:

56*55/ % 77"‘ Ldx < ﬁﬁ* / IVv|? ’Vnﬁ| n_gﬂ dx (2.12)
By means of the Cauchy-Schwarz inequality and from Proposition 2.2 with Ry>
|67 — (26)_1’ /(k — 1) we finally get (2.11). O

We will need some technical lemmas. Let us define F, 5(s,r; v) by the relation:

a—1 — (e} 2 « «
Fop(s,r;v)- n5- 11 =—v }Vr]ﬂ‘ /775 — ko njg (2.13)
The following lemma gives the evaluation of F, 5(s,r; v) from below

Lemma 2.5 Let 0 < a <3, k>1,0<e<(1/(2x)) (k/v) - ((B—«)/B%) and d,
v, k> 0. Then

Fop(s,riv) — (1 —&7") kée (B —a)s > —adk (14 vk~ ad) (2.14)

for all r >0 and s € [0,2r].



Proof. Expressing the function F, g (s,7;v) explicitly we get:

1 14+46
F.5(s,mv) = —va?s? (1 1 Zi) — 2V04ﬁ5€§ — w322 <%) ;
r—s s
—kad (1+¢s) + ke (14 6r) .

For convenient use we subtract (1 — k™) kde (8 — a) s from F, g (s, ;). We observe
(see Appendix A) that, for the given «, S, €, &, for all §, v, & > 0 and for r >
0, Fop(s,r;v)— (1 —rYkée(B—a)s > F,z(0,7; v), which immediately gives
inequality (2.14). 0

3 Uniqueness in R3

In this section, we will start with the question about the unique weak solvability
of the problem (1.1)-(1.3) in 2 = R3. The presented approach will be also used in
the next section, in the proof of existence of a solution verifying solenoidality of the
constructed function u.

Theorem 3.1 (Uniqueness in R?) Let {u,p} be a distributional solution of the prob-
lem (1.1)-(1.8) with £ = 0, g = 0 such that u € Hy” and p € L}.. Then u =0 and
p = const.

Proof. From the condition u € }AI(I)’Q we get Vu € L2, ue LS wue S Because
div ((w x x) - Vu—w x u) = (w x x)-Vdivu = 0, we have Ap = 0. Hence, applying
Laplacian and the Fourier transform we get

A(—vAu+kou— (wxx)-Vu+wxu)=0,

P (v 1€ a+ik&i— (wx€) - Vai+wxtd) =0 inS.
Assuming the equation in cylindrical coordinates (&1, p, @), and denoting T'(p) vV =
ﬁ <§17 P, QD) ) where
1, o 0
T(p)=10, cos(p), —sin(p) |,
0, sin(p), cos(y)
we get

P {=0,V + [(v/D) | +i (k/@) &)V} =0 in S (3.15)

We will show that from this equation follows that suppv C {0}, and due to the
definition of v we will have also suppu C {0} . This means that u is a polynomial
of 21, Ts, 3. Because u € L° we get u = 0. Substituting into (1.1) we get Vp = 0
and p = const.

So, we have to prove that for an arbitrary real vector function ¥ € C3° (R?\ {0})
defined for [¢1, &, &3] € R? we have (v, U) = 0. If for each ¥ € C° (R3\ {0}) there
is a function ® € Cg° (R?\ {0}) such that

0y (1617 @) + [(v/@) € +i (k/D)&] (|7 @) = (3.16)
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then from (3.15) follows:

0= (| {-0,V + [(v/D) |¢]* +i (k/D)&] ¥}, @)
= (¥, 0, (JE]° @) + [(v/@) |€]* +i (k/@) &] (€ @) = (v, )

Hence, the proof of suppv C {0} is reduced to the solvability of (3.16). First we
note that it is sufficient to solve the equation

0.+ (/@) € +i (k/@) &) ¢ =T (3.17)

because the division on the expression |€|° defines the one-to-one correspondence of
the space C (R?\ {0}) onto C (R?\ {0}).

Let us analyze the equation (3.17) in cylindrical coordinates [£1, p, @], where p =
(&2 +§§)1/2. For an arbitrary real vector function ¥ € C¥ (R?\ {0}) defined for
(€1, &2, &3] € R we define f (t) := W (&, p cost, psint), a = (v/) ’5‘2 +i(k/w) &,
assuming w > 0.

Now, we will use the following technical proposition about the existence of a solu-
tion of an ordinary differential equation in a space of periodical functions (and later
also in the proof of existence of a solution of the problem for checking solenoidality
of a constructed solution, see the proof of Theorem 4.4):

Proposition 3.2 Let a € C, Rea > 0. Let f € C™ (R) be a 2m-periodical complex
function. Then there is unique 2w-periodical solution g € C™ (R) of the equation

g +ag=f

and the solution g can be expressed in the following form:

27 ®
— 27ra_1*1 at dt = ™% at d
s =@ =) [ eerna=e [ et a

Proof of the proposition follows from standard computations.

Using the Proposition 3.2 we get the solution of (3.17 ) in the form

-1
2

/ exp [(Z |§\2+i££1) t} W (&, pcos(t+ @), psin(t+p)) dt.
0 w w

It is easy to see that function ¢ as the function of [¢1, &, &3] is infinitely differentiable
with respect to these variables and ¢ € C (R?\ {0}). Finally we put ® = ¢/ |¢]*.
O

4 Existence of a solution in R3

In this section we will construct a weak solution of the problem (1.1)—(1.3) assuming
that ¢ = 0.



4.1 Existence of the pressure in R? for a solenoidal solution

If there exist distributions u, p satisfying

—vAu+kdu— (wxx)-Vat+twxu+Vp = f in R
divu = 0 in R

then pressure p satisfies the equation
Ap =divf (4.18)

because div ((w x x) - Vu —w x u) = (w X x)-Vdivu = 0, and div(Au + kdyu) =0
provided divu = 0.

Let &€ be the fundamental solution of the Laplace equation, i.e. £ = —1/(47r).
Assuming firstly f €C{° we have p = Exdivf and Vp = VExdivf and so, p = VE« f
and Vp = V?Exf. It is well known that both formulas can be extended for f € L2, 4
with 0 < 3 < 1 and —2 < a+ 3 < 2 (the last convolution Vp = V2€ % f due to
the fact that V€ is the singular kernel of the Calderon-Zygmund type and that n§""
belongs to the Muckenhoupt class of weights Ay ), see [2, Thm. 3.2, Thm 5.5|, [24,
Thm. 4.4, Thm 5.4], where the theorems are formulated for the pressure part P of
the fundamental solution of the classical Oseen problem, so P = V& and VP = V3€.
Forf € L2, s weget pe€ L2 5, and Vp € L2, 4, and there are positive constants

C1, Cs such that the following estimates are satisfied:

1Pll5.05-1 < Crllflloarng » 1VPlaaip < Collfllynis (4.19)

4.2 The problem in By - solenoidal solutions

We will study in this section the existence of a weak solution of the following problem
in a bounded domain Bpg, pressure p is assumed here to be known, the right hand

side f —Vp=felL, 4:

—vAu+kou— (wxx)-Vu+wxu = f in Bg (4.20)
u = 0 ondBg (4.21)

We show the existence of a weak solution ug € ﬁ(BR). Following (1.5), (1.6) again
with w = 7720, Bo € (0, 1], using notation (2.13), let us introduce a continuous bilinear

form Q (-, -) on H(Bg)xH(Bg):
@(u,v) = / vVu-V (v 77%0) dx + k:/ ou - (Vngo) dx
Bgr Br

—I—/ (wx x)-Vu (Vngo) dx,
Bgr

Q(v,v) > 21y/ \Vv|27720dx+ 21/ V2 Ey g, (8,75 V) n/gol_ldx. (4.22)
Br

Br
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Lemma 4.1 Let 0 < fy < 1. Then, for all £ € L2, (Bg), g0 < (1/2)- (k/v)- (1/B0),

a,E0

N5 = Mg oys there erists unique ug € ﬁ(BR) such that for all v € ﬁ(BR)

Q(uR,v):/B Fvngo dx. (4.23)

Proof. Bilinear form @ is coercive, i.e. there exists a constant C'’z > 0 such that
Q (v,v) > Cg ||v||*, where ||-|| is the norm in the space H(Bg). Indeed, we get

1% 2 1 _
Q(v,v)> E/B |Vv| ngodx+ 5/3 V2F0,[30(S,T; V) nﬁol_ldx
R R

Because g9 < (1/2) - (k/v) - (1/8,) there is a constant  satisfying all previous con-
ditions and additionally ¢y < (1/2k) - (k/v) - (1/50). Because a = 0 we get from
Lemma 2.5

/ V2 Ey g, (8,73 V) nﬁ_ol_ldx > (1 — /1_1) kegﬁg/ V2nﬁ_ol_1s dx,
Br

Br

v 1 1
Q(v,v) > 5/ \Vv|27720dx+ 3 (1 — —) kaoﬁo/ V2n501_1 (e08) dx.
Br K Br

Using Lemma 2.3 and Remark 2.4 we derive:

~ 14

1% _
Qv.v) = - / Vv, dx + o208 / V210X
Br Br

1 1 _
—i—§ <1 — E) kaoﬁo/B V277B01_1 (g08) dx
R
1\ v . 1 k
> (1 — E) Zmll’l {1, 16(2)53, 2;ﬁ0€0} (424)
' (/ |VU|2 ngodx +/ V277,§01dx)
Bgr Br
Q(v,v) > Ch </ IVv|? dx+/ V2dX) = CrIvI?, (4.25)
Br Br

where Cr = (v/4) - (1 — 1) -min {1, e363/4, 2 (k/v) Beo} - (1 4+ &9 R) . Using Lax-
Milgram theorem we get that there is ug € IO{(BR) such that (4.23) is satisfied. O

Remark 4.2 An arbitrary function @Eﬁ(BR) can be exrpressed in the form ® =

(;57720, where ¢ is a function from }OI(BR). Therefore we have for ug

O (up, &) /B F.®ax, (4.26)

for all ® € ﬁ(BR) where by the definition Q (ug, ®) = Q (ugr, ¢ - 1) = Q (ug, ¢).
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4.3 Uniform estimates of up in R? - solenoidal solutions

Our next aim is to prove that the weak solutions ug of (4.23) are uniformly bounded
in Vo as R — +o00.

Let y; be the unique real solution of the algebraic equation 41+ 8y?+5y—1 = 0.
It is easy to verify that y; € (0,1). We will explain later, why the control of a/( by
Y1 is necessary.
Lemma 4.3 Let 0 < < 1,0 < a <y 0, fe Li—&-l,ﬁ' Then, as R — +o00, the weak
solutions ug of (4.23) given by Lemma 4.1 are uniformly bounded in V. g. There is
a constant ¢ > 0, which does not depend on R such that

2
/ @20 dx + / Vi ngdx < c/ ’f‘ 0o Hdx (4.27)
R3 R3 R3
for all R greater than some Ry > 0, Qg being extension by zero of ug on R3\ Bg.

Proof. First, we derive estimate of ug on a bounded subdomain Bg, C Bpg; The
choice of Ry will be given in the next part of the proof. Our aim is to get an estimate
with a constant not depending on R. Let us substitute ¢ = ug into (4.23). Hence,
we get from (4.24):

@(uR,uR) :/ fuRngde >4 (/ |VuR|2ngde+/ uén_oldx) ,
Br Bgr

Br

with the constant C; > 0 stated in (4.24). Let Ry be some fixed positive number
such that 0 < Ry < R. We get

/ |VuR\2ngdx —I—/ u?{ng_ldx < C’Q/
Br, Br, Br

where the constant Cy = C; ' (1 + 29 Ro)* (1 + & QRO)W_&" depend on k, v, «, 3,
0o, €0, Ro, k, but does not depend on R.

Now, we are going to derive an estimate of ug on domain Bg. Using the test
function ® =ugng =ug(1l+6r)*(1+es)’ € H(Bg) in (4.26) we get after integration
by parts:

?( | ngdx, (4.28)

k
y/ ]VuR|2n§dx+1// urVug - Vg dx — —/ u?zﬁmgdx
Br Br 2

Br
= / fu R1zdx
Br

So, we get for some xk > 1:

v

1 N
5/ |VUR|2nng + 5/ u%Faﬁ(s,r; V)nﬁ_lldx < /
Br Br

Br

?) lug|ngdx
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Let Ry > }5_1—(26)71’(%6 — 1)7'. Using Lemma 2.5 (with 0 < a < 3, ¢ <
(1/(2x)) (k/v) ((B — ) /3?)) and Lemma 2.3 (with § < 2¢), the second term in
the previous estimate can be evaluated from below:

/ w2, Fop(s, 7 ) dx
Br

> —adk (1—1-?046) <5ﬁ*) /]VuR|27]§dX

+(1—/<;_1) kde (ﬁ—a)/R UR% 1de—2C'4/ |vuR|2n§dX
B

Denote Cs = adk (1+ & (v/k) ad) (k] (6¢)) ((a+ B) / (B6*))*. Tt is clear that Cy <
v/ (2K < v/(2k) if 1 +vkad/k < 5 (ie. 6 < (k/v) -((k—1))/(kB) ) and
a < (1/(26%) - (v/k) - ((867) / (v + )" . We have

v

1
o ]VUR\ ng dx + - 5 (1 — —) kde (8 — )/ uR’?@ | s dx
B

R
_06/ u%ngjlldx — C7/ \Vu3]2 ngdx < /
Br, Br, Br

We use now relation (4.28) in order to estimate the integrals computed on the domain
Bpg,. Before using the mentioned inequality we should re-scale it with respect to new
values €, 0, see Remark 1.1. The new constant in (4.28) after rescaling we denote C%.

f’ [ug| ngdx.

V/ ‘VUR’ T]ﬁdX‘i‘k(Sff (ﬂ )/ uRT,,B 1$dX< CY8/ /f) ’uR’ngdxa
K Bgr Bgr Br

where Cg = {1 4 C,max (Cg, C7)} -2 (1 — k™)', We use Lemma 2.3 and Remark
24. So,if 0 <2cand 1 <k <2/6+6/(2¢) — 1 we get

v GB*0e 2/ 9 a1 v 9
— | —— S dx < — \Y Gd
2K (a5+256> BRU-R%—1 * =9 BR‘ a3 dx.

v ) (IRE / 1
%d old
or g, |V (a5+2ﬁs) T 0

—l—k&e(ﬁ—a)/ UR% 1sdx<08/
Br B

?‘ lug|ngdx.

R

So we get

/B |VuR] nﬁdx+2/ u%n%‘_%dx#—%/ U—R% 1sdx
R

Br Br

/ |Vug|’ nﬂdx—l—Q/ u%ngldnglg/ f zdx,
BR BR BR
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Co = min (v/ (2k), (v/ (2k)) (B38*3e/ (ad + 2B¢))*, ké (B — a) /2) and Cyg = Cs/Co.

We have also:

~ ¢ 1 12
/ ‘f‘ lug|ngde < 5/ u%ng—ldx—l— 2_75/ ‘f‘ ngﬂdaﬁ
BR BR BR

So, if we choose t = 2 - C;' then we get :

/ \VuR|2ngdx+/ ug 7§ ldx < c/
Br Br R?

It can be easily shown that the all conditions on «, (3, 4, €, k used in the proof are
compatible if 0 < a < 113, see Appendix B. O

~|2
f‘ ngtdx,

4.4 The problem in R? - solenoidal solutions

Let y; be the same as in Lemma 4.3.

Theorem 4.4 (Erxistence and uniqueness in R®) Let 0 < 8 < 1,0 < a < y1,
f e Liﬂﬁ. Then there ezists a unique weak solution {u, p} of the problem

—vAu+kdu— (wxx)-Vu+wxu+Vp = f inR? (4.29)
divu = 0 in R (4.30)

such that u € Vo5, p € Liﬁ,p Vp € szrl,ﬁ and
lallo s s + 1Vl + 1Pl 0oy + 1VPloarrs < CMEllyapns-  (4:31)

Proof. Existence. Let p be the same as in Subsection 4.1. Let {R,,} be a sequence
of positive real numbers, converging to +00. Let ug, be the weak solution of (4.20),
(4.21) on Bg,. Extending ug, by zero on R?\ Bg, to a function 01, € V,, 5 we get a
bounded sequence {,} in V, g. Thus, there is a subsequence i, of @1, with a weak
limit u in V, 5. Obviously, u is a weak solution of (4.29) and

allyqr+ VUl s < liminf ( / i, 05 dx + / |vank|2ngdx)
eN R3 R3

< c

2
f‘ ng“ dx = c/ if — Vp|? ngH dx.
R3

Taking into account also relation (4.19) we get (4.31).
Let us also check that for u the equation (4.30) is satisfied. Let us mention that
u € H2 because f — Vp € L? - 50, computing the divergence of (4.29) we get

loc a+1,
—v A (divu) + k0; (divu) — (w x x) - V (divu) = divf — Ap (4.32)

in distributional sense. From (4.18) and (4.31) we have

—V Ay 4+ kOy— (wxx)-Vy=0
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for v = divu € L7, ; C L*. Using Fourier transform we get

(WP +ik&)T— (wx &) VeA=0 in &

1/2

Assuming 7 in cylindrical coordinates [&1,p, 0], p = (§5 4+ &3)77, we can overwrite

the equation in the form:

=07 + [(v/) €] + i (k/D) &] 7 =0.

Using the same approach as in the proof of the uniqueness Theorem 3.1 we prove
that supp”y C {0} . The proof of this fact is reduced to the solvability of the equation
(3.17) which was proved for arbitrary ¥ € Cg° (R?\ {0}) in the proof of Theorem 3.1.
So, by the same procedure we derive that ~ is a polynomial in R? and because v € L?
we get v = 0, i.e. (4.30). The uniqueness of the solution follows from Theorem 3.1.

O

4.5 The problem in R? with non-zero divergence

First of all let us formulate the lemma which will be used for the extension of our
results to the case with nonzero divergence:

Lemma 4.5 (M.E. Bogovski, G.P. Galdi, H. Sohr)
Let Q CR™ n > 2, be a bounded Lipschitz domain, and 1 < g < oo, n € N. Then

for each g € WP () with Jq9dx =0, there ezists G € (Wéﬁl’q (Q))n satisfying
divG =g, ‘|G||(v[/§+1v‘I(Q))” <C ||g||W§’q(Q)

with some constant C = C (q, k, ) > 0.

For the proof and further references see e.g. [29, Lemma 2.3.1]. We will prove the
following theorem:

Theorem 4.6 (Ezistence and uniqueness in R?) Let 0 < 8 < 1,0 < a < 310,
f e Liﬂﬂ, g € T/Vol’2 with suppg = K CC R3, and ngng = 0. Then there exists
a unique weak solution {u, p} of the problem

—vAu+kdu— (wxx)-Vut+twxu+Vp = f inR?
divu = g inR?

such that w € Vo, p € L7, 51, Vp € L2, 5 and

||u||27a—l7ﬁ + ||Vu||27a,5 + ||p||27a,/3—1 + ||Vp||2,a+1ﬂ <C <||f||2,a+l7ﬁ + ||9||1,2> :

Proof. Using Lemma 4.5 we find G € W(Q)’Q, supp G C K, where K is a bounded
Lipschitz domain containing in e—neighbourhood . of compact set K for an arbi-
trary € > 0, divG =g, [|Gll,, < C||g]|, - Let us assume the following problem

—vVvAU+ kU —-(wxx)-VU+wxU+Vp = F in R?

divU = 0 in R®
where U=u—-G, F=f+rvAG-k0G+ (wxx) VG —-—wxG with G €
W2, function G has a compact support, and |Gy, < Cllgll;,- The assertion of
Theorem 4.6 follows from Theorem 4.4. O
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5 Uniqueness in an exterior domain ) C R?

The last two sections are devoted to the problem in an exterior domain. We start with
the question of uniqueness. The uniqueness theorem proved in this section together
with the uniqueness theorem in R? from Section 3 will be used in the next section
in the proof of the existence of a solution in an exterior domain, in the localization
procedure. The homogenous Dirichlet boundary condition on 92 for u in the next
theorem follows from the assumption u €V (Q2).

Theorem 5.1 Let {u,p} be a distributional solution of the problem (1.1)-(1.3) with
f =0 and g =0 such that u €V, (Q) and p € L? | (). Then u=0 and p = 0.

Proof. Let & = ®(2) € C5°((0,+00)) be a non-increasing cut-off function such
that ®(z) =1 for z < 1/2 and ®(2) =0 for z > 1. Let |®'| < 3. Let dp = O (x) =
® (|x|/R). We have |[V®g| < 3/R and |0,Pg| < 3/R for x € R*, R/2 < |x| < R.
Let {R;} € R be an increasing sequence of radii with the limit +o00. So we have that
u; =u-dp, cH! (Q), and {u;} is a sequence of functions with limit u in the space
Voo (). Using the (non-solenoidal) test functions ¢ = u@%j =u; Pr, € H! (Q) for
equation (1.1) we get:

y/Vu-V(qu?%j) dx—l—k/@lu-u@?%j dx (5.33)
0 Q

—i—/(w><x)-Vu-ufbf%jdx—i-/Vp-u@%jdx:O
Q Q

Using in (5.33) relation Vu-V (u (I%j) = |Vu;|> — VOp, - V®p, u?, integrating by

parts, we get after some evident rearrangements

1
y/]Vuj\2 dx——/div(wxx)u?dx
Q 2 Ja

1
—E/uzﬁl@%_dx——/uQ (w x x) - V&% dx
2 Jq T )

Q

—V/ ’V@ij u’ dx—/puV <®%j) dx = 0.
Q Q

V/ IV, |* dx < C /R 2u2r1dx—|—/R Lol Julr~tdx | .
Q ) 2/

uel? ((Q),pelL?,(Q),pueLl (Q).So,for j — oo weget [,,|Vul* dx <O0.
Hence, the function Vu = 0 a.e. in €2, and this means u is a constant a.e. in (2. From
u € L2, (Q) follows that u =0 a.e. in Q. Using now an arbitrary test function ¢
for equation (1.1), we get [, Vppdx = 0. So, the function Vp = 0 a.e. in 2, and this
means p is a constant a.e. in Q. From p € L?, ( () follows that p = 0 a.e. in Q, and
the uniqueness is proved. O
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6 Existence of solution in exterior domains

In this section we assume problem (1.1)-(1.4) in an exterior domain 2. First we
assume the case of the homogenous Dirichlet boundary condition on 0f2.

6.1 Homogenous Dirichlet boundary conditions

Function g is assumed to be zero, and f = divF with F € C° (Q)°. We will prove
that the problem has a weak solution {u,p} € H} (Q) x L (). So we assume the
following sequence of problems on domains (2 = B N :

—vAug + kojug + (w X x)-Vugp —w X ug + Vpr = divF in Qp (6.34)

divug =0 in Qg (6.35)
ur =0 on Qg (6.36)

Using (Girault-Raviart [15]) mixed variational approach we formulate the problem in
the following form: To find {ug, pr} € Wg x Ilg, such that for all v.€ Wg, 7 € [Ig:

a(ug, v) +b(v, pr) = (divF,v) (6.37)
b(ug,m) = 0, (6.38)

~

where WR = H(l) (QR) s

HR:{WELQ(QR); / de:O}
Qr

with usual norms ||y, = [[Volly, |7y, = |7, and

a(p, ) = v Vo - Vi dx+k OG- Pdx

Qr Qg

+/ [(wxx)-Vp—wx | -pdx
Qg
b(p, m) = —/Q dive - wdx.

These bilinear forms are continuous on Wi x Wi and Wi x IR, respectively. It is
easy to see that a (¢, ¢) > v H¢H%VR , and it is known that

(7, divv)

sup

ZC() s
veWn |V|WR || ||HR

for some Cy = Cy(R) > 0. Hence, there exists a weak solution {ug,pr} of the
problem and |[ug|lw, + [|P&llg, < Ci [|[divF||_, for some C; = Cy (R) > 0. Testing
now (6.37) by v = ug we get:

y/ Vug|? dx:/ (divF)~uRdx:/ F - Vg dx < ||F||, [|Vugl),
QR QR QR
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IVugll, < v [F], (6.39)

Since the a priori estimate (6.39) is available, where ug is understood as its ex-
tension by setting zero in €2\ Qg, there exists u € PAI}) (2) and a sequence {R,} — oo
so that up, — u weakly in H} () as n — oo.

Let us show that divu = 0 in L? (). From the same inequality follows the weak
convergence of divug, in L? (). From (6.38) we get divug, = C,, on Qy, for some
real constant C,, depending on n. In spite of (6.39) we get that the weak limit of
divug, is zero in L?(Q).

Finally, for all ¢ € CJ° (£2) with div ¢=0 we have from (6.37) after R, — oo

(Lu—divF, ¢) =0,

Iu= —vAu+kdu+ (wxx) - Vu—wxu

By a result of de Rham, there is a distribution p such that —Vp = Lu — divF in
D' (Q2). Because the right-hand side belongs to H! (Qg) for every sufficiently large
R > 0 we have that p € L? (Qr) and so, p € L2 . ().

Now we use the following

Lemma 6.1 (Kozono and Sohr [20, Lemma 2.2, Corollary 2.3]) Let Q C R"(n > 2)

be any domain and let 1 < q < oo. For all g € W=19(Q) | there is G € L1 (Q)" such
that
div G = g, 1Gllgo < Cligll-100

with some C' > 0. As a result, the space {div G; G € C§° (Q)"} is dense in W-1la (Q).

Hence, we get the existence of solution {u,p} € H}(Q) x L?

~ e (Q) for an arbitrary
function f € H™! (Q).

For the extension of Theorem 4.4 to the case of an exterior domain we use the
localization procedure, see [20]. Let now f € LZ,, 5(Q). We define for an arbitrary
R>0:

£, — f, XEQR
R 0, XEQ\QR

It can be shown that f5 belongs to H! (Q) N L., 5(Q). By use of cut-off function
U we decompose the solution {u, p} of the problem (1.1)-(1.4) (with the homogenous
Dirichlet boundary condition) on the solution of the problem in R? and the solution
of the Stokes problem in a bounded domain:

u = U+V where U=(1-V)u, V=UVu
p = o+717 where o=(1-V)p, 7=Up,

where ¥ € C§°, supp ¥ CC B,, such that ¥ =1 on B,,, 0 < py < p1 < p so that
R*\ Q C B,,. We get that {U, 0} is a weak solution of the modified Oseen problem
in R?

—vAU+k0U+ (wxx)-VU—-wxU+Vo = Z (6.40)
divU = —VVU.u (6.41)
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and {V, 7} is weak solution of the Stokes problem in a bounded domain €2,

VAV +V71 = Zy in €, (6.42)
divV = V¥-u i Q, (6.43)
Vg, = 0 (6.44)

where the right-hand sides are given by Z; and Z,.

Z, = 2VU Vutu AU —kdTu— (VU (wxx)u—VUp+(l— )t
Zy = 2VU-Vu—u AV +EkVu—V [(wxx)-Vu—wxu|+V¥p+ Vg

Let us mention that Z; € LEHLB (©2). To solve the Stokes problem on the bounded
domain we use the following lemma, see [20]:

Lemma 6.2 (The Stokes problem on a bounded domain) Let ) be a bounded domain
of R™, n > 2, of class C™ 2, m > 0. For any

fe W™ (Q), geWmhi(Q), v,e Wl (pQ),

1 < q < oo, with

/ V*~nd5’:/gdx7 (6.45)
o0 Q

there exists one and only one solution {V, 7} to the Stokes system

—-AV+Vr = f i €
divV = g m o €
V = v, on 09

such that V.€ Wmt24(Q) . 7 € W™t (Q) and

Vllmsz.g + 17 = Fllnrrg < € (IElm,q + [Vallmro-1/g.0 + l9lmera) ,  (6.46)

where T = |Q| ™! [, 7dx and ¢ = c¢(m,n,q,9Q).

Furthermore, for Q of class C?, for every
feW, " (Q), g¢gelLi(Q), v,eW YpQ),

1 < q < oo, with (6.45) there exists one and only one g-generalized solution {V, T}
to the Stokes system such that V.€ WH(Q), 7 € L1 (Q) and the estimate (6.46) is
valid with m = —1.

From the results about the existence and uniqueness of solutions of the Oseen
problem in R? (6.40), (6.41), i.e. from Theorem 4.4 and Theorem 3.1 follows , that
a solution {U, ¢} is subject of the estimate (4.31), with f and g replaced by Z; and
—VVU . u, respectively. Using also the respective results in a bounded domain for
(6.42) - (6.44), see Lemma 6.2 with m = 0 and bounded domain ,, we get the
following lemma for an exterior domain:

I3
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Lemma 6.3 Let Q C R? be an exterior domain and 0 < 3 <1, 0< a <y, - 3; »
is given in Lemma 4.3. Then there exists a weak solution {u,p} of the problem (1.1)
- (1.3) with the homogenous Dirichlet boundary condition, f := fr and g = 0, such

that u € Va5 (Q), p€ L2, , (), Vp e L2, 4(Q) and

HuHZ,afl,ﬂ + HquZa,ﬂ + HPHz,a,gq + va‘|2,a+1,ﬁ (6.47)
< Cr (Wl i+ Iz, + 1Pl )

where A, := B, \ B,2, and constant Cy does not depend on R.

Now, we would like to show that the preceding estimate is valid (with another
constant) also if we add to the left-hand side the L?-norm of second gradient of u
on some compact subset of (2. Taking into account the assertion of Lemma 6.2 for
m = 0, we get that u € W2 (Q), p € W2 (Q). Multiplying the relation (1.1) -

loc
(1.4) in an exterior domain 2 (with ¢ = 0 and the homogenous Dirichlet boundary

condition on 9Q) by Au and integrating over the compact set &y with A, C K; C Q
we get
|Aullz, < Co ([[ullair, + [Vullair, + IPlzre + 1VPl2k) - (6.48)

Using (6.47), (6.48) and the known relation
IV*ullz < e (|Au]lzir, + [ VUll2k,)
with A, C K C Ky, we get
Corollary 6.4 In conditions of Lemma 6.3 the following estimate is valid:
lallyo 1,6+ 1Vl 05+ V20l 0+ 1Pl 50 + VD501 (6.49)
< C (Illyasn + Il o, + 10020, )

Now, we will prove that the estimate (6.49) is valid without the right-hand side terms
containing u and p, i.e. we will prove:

||u||2,a—1,ﬁ+||Vu||2,a,5+HV2UHQ;AP+||p||2,a,5—1+||VP||2,a+1,ﬁ <c ||fR||2,a+1,ﬁ (6.50)
Let us define the Hilbert spaces Hy, Hy with norms || - ||(1), || - [|2), respectively:

Iv,a) ly = [IVlli24, + llallo2e,
v, 0) Iy == IVllza—18 + VY20 + VY24, + llall2a6-1 + [IVall2.a41,8

We have Hy << H;. Let us assume that the estimate (6.50) is not true. This means
o0

that there is a sequence of functions {fj(%k)} , a sequence of corresponding solutions
k=1

{(ug, p) }32, and a sequence of constants {cx}7>, — oo such that

1 = | wiloa-18+ [Villzas + 1Vill2 4, + [Pell2a5-1 + | VDEll2.041,8
k
I p) ) = o |87

2,a+1,8
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So we get {‘ } — 0. The sequence {(ug, px)},—, is bounded in the norm
2,0+1,8

[[[()» so there is a subsequence of this sequence (we will denote this subsequence
using the same notation) with the weak limit (u,p) in the corresponding Hilbert
space Hy. Because Hy << Hy, we have || (ug, pi) [|(1) — 0. So, (u,p) is a solution of
the problem with the zero right-hand side. Due to uniqueness given by the Theorem
5.1 we conclude that || (u,p) |2y = 0. From the Corollary 6.4 we also get

| (0w =g, p— i) ll2) = O,

i.e. {(ug,pr)}re, converges strongly in H. Because || (ug,pr)||2) = 1 for k € N, so
we also get || (u,p) ||(zy = 1. This is the contradiction.
Let us also mention that the constant C' does not depend on R, so we can also

extend the result for an arbitrary f € L7, 5(Q). So, we proved the following

Theorem 6.5 Let Q) C R3 be an exterior domain and 0 < 3<1,0< a <y -5;
is given in Lemma 4.3, f € L7, 5(Q). Then there exists a weak solution {u,p} of
the problem (1.1) - (1.8) with the homogenous Dirichlet boundary condition on 0,
g =0, such that u € Vo3 (), pe L2 5, (), Vpe L%, 5(Q) and

lallye1 5+ [IVUllyq 5+ 1Pl205-1 T 1VPl2as18 < CllEllzais
As in the whole space we can prove the following extension for the case g # 0 :

Corollary 6.6 Let Q C R? be an exterior domain and 0 < 3<1,0< a <y - 3; n
is given in Lemma 4.3, f € Liﬂﬁ (Q), g € Wy (Q), with suppg = K CC Q and
Jo9dx = 0. Then there exists a weak solution {u, p} of the problem (1.1) - (1.8) with
the homogenous boundary condition on OSY such that u € Vop5(Q), p € L2 5, (),
VpeLl, ;(Q) and

||u||2,a—1,5 + ||Vu||27oc,ﬁ + ||p||2,a,5—1 + ||VP||2,Q+1,5 <C <||f||2,a+1,ﬁ + ||9||1,2> :

6.2 Non-homogenous Dirichlet boundary conditions

We assume problem (1.1) - (1.4) in an exterior domain € with, in general, g # 0.

Theorem 6.7 Let Q C R3 be an exterior domain and 0 < < 1,0 < a < y; - 3;
y1 is given in Lemma 4.3, £ € L2, 5(Q) , g € Wy (Q), with suppg = K CC Q
and [, gdx = 0. Then there exists a weak solution {u,p} of the problem (1.1) - (1.4)
such that u € Vo5 (Q), pe L2 51 (Q), Vpe L2, 4(Q) and

||u||2,a—1,5 + ||Vu||2,o¢,ﬂ + ||p||2,a,5—1 + ||VP||2,Q+1,5 <C <||f||2,a+1,ﬁ + ||9||1,2> :

Proof.  Let p > 0 is such that R* \ B,;s C Q. Let ® = ®(z) € C5°((0, +0))
be a non-increasing cut-off function such that ®(z) = 1 for z < 1/2 and ®(z) =0
for z > 1. Let |®'| < 3. Let &, = @,(x) = ®(|x|/p). We have |V®,| < 3/p and
|01®,] <3/p forx € R?, p/2 < |x| < p. Let us define = u—[(w X x) — key]- @, (x).
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Then function (u, p) satisfies to (1.1) - (1.3) with the homogenous Dirichlet boundary
condition, where f € L2 | 5 (€2) is replaced by some another function f € L7, 5(Q),
and g by another function g € C§° (Q) with suppg = K C A, := B, \ B,/» CC

and
/ gdx = 0.
Q

The Dirichlet boundary condition (1.4) is replaced by the homogenous Dirichlet
boundary condition for u. So, using now Corollary 6.6 we get the assertion of Theorem
6.7.

Appendix A

Relation (2.14) follows from an estimate of the derivative of F :

0 0 _
%Fl (s,7) = 55 {Faﬂ (s, v) — (1 — K 1) kée (B — ) 5}
1 1 1+ or 1
- 2¢2 -9 Z_9 2.2
va‘d 51 T l/aﬂésr v3“e A +88)2

1 1
—kade + kaé; (14 2es) + kBe (1 + or) .

(1 — k) kée (B — a)
> de{r " [k(a/e+ B/6) — va® — 2vap — 2v % /4]
+ [+ k(B—a)/k]} =0

The last inequality follows from the fact that we have ka/e > va?+2vaf, k3/5 >
2vp%/8, k(B —a)/k > 2u6% if € < (1/(2k)) (k/v) (8 — ) /3?). Hence, if the
last inequality (which is included in the conditions of Lemma 2.5) is satisfied then
(0/0s) Fy (s,7) > 0. So, we get immediately:

Fi(s,1) > F (0,7) = —kad —va?6® (1 + 6r) ' > —adk (1+ vk 'ad)

Appendix B

Let us show that all conditions on «, (3, §, €, k used in the proof of Lemma 4.3 are
compatible if 0 < <1, 0 < a < 11 8. Let us collect these assumptions: 0 < § < 2¢,
1 <k <2/6+6/(2)-1,0< a<f < (1/(26%) (k/v)- (8-a)/5?),
0 < (k/v) (k=1)/(kfB), a < (1/(2K")) - (k/v) - (56*/(@+ﬁ))28~
From o < (1/(2k%)) - (k/v) - (B3 /(oH—ﬁ)) g, and ¢ < (1/(2x%)) - (k/v) -
((B—a) /) we get @ < (1/(4x%)) - (3)* (B—a) / (a+ B)°. So we get (k > 1,
B <1): o/ < (1/(4k%) (1 —a/B)/(1+a/3)*. By substitution y = a/83 we get
the inequality
Ay + 8y +4y+r % (y—1) <0. (6.51)

Taking into account the condition 0 < a <  we seek for solutions from [0, 1).
It is clear that the equation 4y® + 8y*> + y + £ %(y — 1) = 0 has a unique real
solution y, € (0,1) for k > 1. It is also clear that arbitrary y € [0,y,) solves
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(6.51). The value y, as a function of k is decreasing. For Kk — 1 we get the
inequality 4y® + 8y? + 5y — 1 < 0. This respective equation has a unique solu-
tion g, = (VI3/ (61/6) +53/216)""" + (1/30) (v/13/ (6v/6) + 53/216) . Approx-
imately, with an error less than 107® we have y; = 0.1582981, (y; > 1/7). If
0 < a < y10 then there is k > 1 sufficiently close to number 1, such that 0 < o < y,..0,
so the relation o < (1/ (4x%)) - (3)* (6 — @) / (o + B)” is satisfied. Then we can de-
fine e = 1/ (262) - (k/v) - (8 — «) / (8?)) . The relation € < (1/(2x)) - (k/v) - (1/5)
is satisfied. Then we take sufficiently small 6 > 0 such that 0 < 0 < 2¢ and
1 < k <2/0+6/(2¢) — 1. Hence, all conditions which we assume in the proof
of Lemma 4.3 are satisfied.
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